JP3715243B2 - Square alkaline storage battery and method for manufacturing the same - Google Patents

Square alkaline storage battery and method for manufacturing the same Download PDF

Info

Publication number
JP3715243B2
JP3715243B2 JP2002025838A JP2002025838A JP3715243B2 JP 3715243 B2 JP3715243 B2 JP 3715243B2 JP 2002025838 A JP2002025838 A JP 2002025838A JP 2002025838 A JP2002025838 A JP 2002025838A JP 3715243 B2 JP3715243 B2 JP 3715243B2
Authority
JP
Japan
Prior art keywords
case
electrode plate
storage battery
sealing
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002025838A
Other languages
Japanese (ja)
Other versions
JP2003229097A (en
Inventor
剛太 浅野
文則 尾▲崎▼
浩之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002025838A priority Critical patent/JP3715243B2/en
Publication of JP2003229097A publication Critical patent/JP2003229097A/en
Application granted granted Critical
Publication of JP3715243B2 publication Critical patent/JP3715243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角形アルカリ蓄電池およびその製造法に関し、特にたとえば薄型の角形アルカリ蓄電池およびその製造方法に関する。
【0002】
【従来の技術】
近年、機器のポータブル化、コードレス化が急速に進む中、これらの電源として小型且つ軽量でエネルギー密度が高い二次電池への要望が高まりつつある。特に、角形電池を主電源としているオーディオ市場、特にMDプレイヤーでは、再生時間は最長100時間を超え、電池のさらなる高容量化は重要とされていない。今後は電池の薄型化が特に重要であり、薄型化が容易なリチウム二次電池の普及が促進されている。
【0003】
しかし、ニッケル−水素蓄電池やニッケル−カドミウム蓄電池などに代表されるアルカリ蓄電池について、角形リチウムイオン電池のような薄型化が実現できれば、その安価で信頼性が高いという特徴を活かし、市場においてもリチウム二次電池との差別化を図ることが可能となる。これらのアルカリ蓄電池では、正極容量と負極容量とのバランスや電池特性を考慮して、極板群の外側に配置した負極板と電池ケースとを接触させている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の角形アルカリ蓄電池は、正極端子側にガス排出機構を設けていたため、正極端子側の封口板の構造が複雑で多くの部品(一般的に8点以上)で構成されていた。このため、電池を薄型化するために封口板の各部品について新たな金型を作製すると、多大な投資が発生することになり、電池の設計変更が容易ではなかった。
【0005】
また、従来の角形アルカリ蓄電池は、正極側の封口板をレーザー溶接で封口していたが、レーザー溶接を行う際に電池上部の面積が十分にとれないため、ガスケットなどナイロンを主成分とする封止絶縁物がレーザーの熱の影響によって変形することがあった。そのため、電池の充放電時に、封止絶縁物の変形によって生じた隙間から電解液が漏出する可能性があった。
【0006】
上記の課題を解決するため、本発明は、安価で信頼性の高い薄型の角形アルカリ蓄電池とその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明の角形アルカリ蓄電池は、一端が開口している角形のケースと、前記ケースの前記一端とは反対側の他端に形成されたキャップ部と、前記ケース内に配置された極板群と、前記一端を封口する封口板とを備える角形アルカリ蓄電池であって、前記極板群は正極板と負極板とセパレータとを備え、前記負極と前記ケースとが接触しており、前記キャップ部はガス排気口と安全弁とを備え且つ負極端子として機能し、前記封口板と前記正極板とが電気的に接続されており、前記封口板は、外周部が樹脂で被覆された金属製の平板であり、前記封口板が配置された部分で前記ケースをかしめることによって前記ケースが封口されており、前記一端は、前記樹脂に向かってくの字状に折り曲げられている。なお、本明細書において、「角形アルカリ蓄電池」とは、直方体状または角が丸められた直方体状のケースを用いたアルカリ蓄電池を意味する。
【0008】
また、本発明の角形アルカリ蓄電池の製造方法は、
(i)負極板が両端に位置するようにセパレータを挟んで交互に積層された正極板と負極板とを備える極板群を作製する工程と、
(ii)一端が段差部を有する開口端である角形のケースに前記極板群を挿入する工程と、
iii )外周部が樹脂で被覆された、正極端子として機能する金属製の封口板を前記段差部に載置する工程と、
iV )前記ケースの外面における前記段差部によって突出した部分をしごきながら、前記ケースの前記一端を前記樹脂に向かってくの字状に折り曲げることによって、前記封口板で前記一端を封口する工程と、
前記ケースの前記一端とは反対側の他端に、ガス排気口と安全弁とを備え負極端子として機能するキャップ部を形成する工程とを備える。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0010】
(実施形態1)
実施形態1では、本発明の角形アルカリ蓄電池について一例を説明する。実施形態1の角形アルカリ蓄電池10の模式断面図を図1に示す。
【0011】
角形アルカリ蓄電池10は、ケース11と、キャップ部12と、極板群13(断面の図示は省略する)と、封口板14とを備える。
【0012】
ケース11は、角形の形状(直方体状または角が丸められた直方体状の形状)を有する。ケース11は、通常、導電性を有する金属からなる。ケース11の一端11aは開口されている。また、ケース11の一端11aとは反対側の他端には、ガス抜き穴11hが形成されている。ケース11は、長手方向(正極端子と負極端子とを結ぶ方向)に垂直な断面の形状が、角が丸められている長方形の形状(以下、断面楕円状という場合がある)であることが好ましい。このような形状のケースを用いることによって、ケース11をかしめて封口した際の信頼性を向上できる。
【0013】
キャップ部12は、ケース11のガス抜き穴11hの部分に形成されている。キャップ部12は、ガス排気口(図示せず)が形成されたキャップ12aと安全弁とを備える。電池の内圧が一定値以上に高まった場合には、ガス抜き穴11hとガス排気口12とを介して電池内部のガスが放出される。図1には一例として安全弁がゴム弁体12bである場合を示しているが、安全弁の構造はこれに限定されない。キャップ12aは導電性を有する金属で形成されており、キャップ部12は負極端子として機能する。
【0014】
極板群13は、正極板と負極板とセパレータとを備える。正極板と負極板とは、負極板が両端に位置するようにセパレータを挟んで積層される。このような積層体は、たとえば、両面をセパレータで被覆した正極板と負極板とを交互に積層することによって形成できる。なお、正極板の2倍程度の長さの負極板を折り曲げ、その間に正極板を配置することによって積層体を形成してもよい。極板群の両端に配置された負極板は、ケース11と接触することによって負極端子であるキャップ部12と電気的に接続される。正極板、負極板およびセパレータは、作製する電池(たとえばニッケル−カドミウム蓄電池やニッケル−水素蓄電池)に応じて選択され、公知の材料を用いて作製することができる。
【0015】
封口板14は、ケース11の一端11aを封口する。図1には、封口の方法の一例として、外周部が樹脂14aで被覆された金属製の平板14bからなる封口板14を用いた場合を示している。この場合には、封口板14が配置された部分でケース11をかしめることによってケース11を封口できる。封口板14と正極板とは、金属製のタブ15によって電気的に接続されている。図1に示すように、極板群13と封口板14とが接触しないように、絶縁性の枠体16を極板群13と封口板14との間に配置することが好ましい。なお、封口の方法は図1に示した方法に限定されない。たとえば、ケース11の一端11aの外周部を樹脂で被覆し、この樹脂が形成されている部分に封口板を配置してケース11をかしめることによって封口を行ってもよい。
【0016】
実施形態1の角形アルカリ蓄電池では、ケースを封口する部分にガス排出機構が形成されていないため、封口板の構成部品の数を減少させることができる。また、この電池では、安全弁として機能する弁体を挿入したキャップをケースに溶接することによって負極端子を形成できる。さらに、この電池では、封口板を挿入したケースをかしめることによって容易に封口ができる。このため、実施形態1の角形アルカリ蓄電池は、設計変更が容易であるとともに生産性よく安価に製造することが可能である。また、この角形アルカリ蓄電池は、レーザー溶接によって封口を行う従来の角形アルカリ蓄電池とは異なり、熱による封口部の損傷がないため、充放電サイクルを繰り返し行っても漏液が発生することがなく、また、長期間保存した場合の信頼性も向上できる。
【0017】
(実施形態2)
実施形態2では、本発明の角形アルカリ蓄電池の製造方法について一例を説明する。なお、実施形態2で用いる電池の構成部材には、実施形態1で説明したものを用いることができる。
【0018】
実施形態2の製造方法では、まず、負極板が両端に位置するようにセパレータを挟んで交互に積層された正極板と負極板とを備える極板群を作製する(工程(i))。具体的には、たとえば、正極板の両面をセパレータで被覆したのち、負極板と正極板とを交互に積層すればよい。正極板は、たとえば、金属酸化物からなる活物質を水と水溶性の結着剤とともに混練して活物質ペーストを作製し、このペーストを三次元的に連なった空間を有する帯状のスポンジ状金属多孔体に充填、乾燥してプレスした後、所定のサイズに切断することによって形成できる。また、負極板は、たとえば、水素吸蔵合金を含むペーストをパンチングメタルなどの芯材に塗着し、乾燥およびプレスを行ったのちに所定のサイズに切断することによって形成できる。
【0019】
次に、一端が開口された角形のケースに上記極板群を挿入する(工程(ii))。極板群の両端に位置する負極は、ケースと接触する。ケースには、実施形態1で説明した、ケース11を用いることができる。
【0020】
次に、正極端子として機能する封口板でケースの一端(開口部)を封口する(工程(iii))。封口は、実施形態1で説明した方法で行うことができる。通常、封口の前に正極端子に接続された金属製のタブを、封口板に接続する工程を行う。
【0021】
最後に、ケース11のガス抜き穴11hから電解液を注液したのち、ケース11の他端にキャップ部12を形成することによって電池が得られる。なお、電解液の注液、およびキャップ部を形成する工程は、必ずしも最後の工程で行う必要はない。
【0022】
実施形態2の製造方法によれば、実施形態1で説明した角形アルカリ蓄電池を容易に製造できる。この製造方法では、封口板をレーザー溶接することによって封口する従来の製造方法とは異なり、熱による封口部の変形などの影響を受けない電池を製造できる。
【0023】
【実施例】
以下に、本発明の一例として、角形のニッケル−水素蓄電池を製造した一例について説明する。
【0024】
正極板は以下の方法で作製した。まず、水酸化ニッケル100質量部(重量部)と、結着剤であるカルボキシメチルセルロース0.2質量部とに、全ペーストの25質量%となるように水を加えて練合し、ペースト状正極活物質を作製した。このペースト状活物質をニッケルのスポンジ状基板に充填して乾燥した後、プレスして充填密度を高め、幅15mm、厚さ0.8mm、長さ55mmに切断加工して正極板を作製した。その後、この正極板に超音波を印加して極板上部の活物質を2mm幅で剥離した後、剥離部に、厚さ80μmのタブ(ニッケルリード)を溶接した。このようにして、タブ21が接続された正極板22を作製した。この正極板22は、タブ21を出した状態で、ポリプロピレンを主成分とするセパレータ23で覆い、その外周端部を熱溶着でシールした。このようにして、セパレータ23で両面を被覆した正極板22を作製した。
【0025】
負極板24は、水素吸蔵合金の粉末を含むペーストをパンチングメタルからなる芯材に塗着し、幅15mm、厚さ0.2mm、長さ113mmに切断することによって作製した。この負極板24を2つに折り曲げて、その間に、セパレータ23でシールされた正極板22を挟み込み、極板群25を作製した。
【0026】
この極板群を、図2(a)に示すように、ガス抜き穴26hを有するケース26に挿入した。ケース26には、ニッケルメッキした鉄からなり断面楕円状の角形ケース(外形寸法:横17mm、縦65mm、厚さ4mm)を用いた。
【0027】
その後、図2(b)に示すように、極板群の下方に樹脂製の枠体27と正極端子を兼ねた平板(封口体)28とを挿入したのち、開口部をかしめて封口した。平板28は外周部が樹脂で被覆されており、封口する前にタブ21と平板28とを溶接した。封口は、図3(a)のように端部が加工された開口部26aを、図3(b)に示すようにケース26のガス抜き穴26h側からダイス31を用いてしごき、図3(c)のようにケース端部をくの字状に折り曲げることによって行った。
【0028】
その後、ケース26のガス抜き穴26hからアルカリ電解液を真空注液したのち、図2(c)に示すようにゴム弁体29bが挿入してあるキャップ29aをケース26のガス抜き穴26hの周囲に抵抗溶接した。このようにして、HF17/67サイズで公称容量800mAhの本発明の角形ニッケル−水素蓄電池(以下、電池Aという場合がある)を作製した。
【0029】
一方、比較例として、従来の封口方法を用いて角形のニッケル−水素蓄電池(以下、電池Bという場合がある)を作製した。電池Bは、底部が開口されていない従来の電池ケースを用いており、図4に示すように、ケース41の開口部が、ガス排出機構を有する従来の封口板42で封口されている。封口は、正極板と封口板42とをニッケルリードで接続したのち、ケース41に封口板42をレーザー溶接することによって行った。
【0030】
上記本発明の電池Aと比較例の電池Bとを比較するため、それぞれを50個ずつ作製した。電池Aと電池Bのそれぞれについて初期の充放電を施した後に、耐漏液性を確認するために温度65℃、湿度90%の恒温槽に放置し、高温加湿した状態で長期信頼性試験を行なった。この結果を図5に示す。
【0031】
図5から明らかなように、比較例の電池Bでは、放置開始から約2週間後に漏液反応が2%、35日後に6%確認された。これに対して、本発明の電池Aでは放置後35日経っても漏液反応が見られる電池は確認されなかった。
【0032】
漏液反応が確認された比較例の電池Bを調査すると、封口部の絶縁物の溶解が観察され、この部位から漏液反応が確認された。この比較例では、封口板をレーザーで溶接する際に、正極端子を絶縁するガスケットがレーザーの熱の影響によって溶解して機密性が損なわれていた。また、レーザー溶接時に電池ケースと蓋体とを接続するナゲットの径を小さくすると、逆にピンホールが発生し、レーザー溶接条件の設定変更ではピンホールの発生を抑制できなかった。
【0033】
実施例の電池Aでは、レーザーを使用していないために上記比較例の電池Bに見られる弊害はなく、また信頼性については、長期信頼性試験の結果からみても、電池Bと比較して漏液反応がなく機密性が大幅に向上していた。これは、電池Aでは、くの字にかしめられたケース端部と絶縁物で被覆した平板との圧縮率が維持されており、特に、電池ケースを断面楕円状にすることによってコーナー部位におけるケースと絶縁物との密着性が強化されているため、機密性が比較例の電池Bよりも大幅に向上したものと考えられる。
【0034】
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。
【0035】
【発明の効果】
以上のように本発明の角形アルカリ蓄電池およびその製造方法では、負極端子側にガス排出機構を設けて凸端子部とし、平板状の封口板で封口を行っている。その結果、ガス排出機構を備える従来の封口板に比べて部品数を大幅に削減でき、設計変更が容易で安価に製造できる電池が得られる。また、本発明の電池は、封口の際にレーザーを用いた熱溶接を必要としないため、封口が容易であるとともに、レーザーの熱による封口板の損傷を防止できる。
【0036】
したがって、本発明によれば、従来の角形アルカリ蓄電池にないレベルの厚さ(6mm以下)まで薄型化することが容易であり、リチウムイオン主体の市場でも差別化できる安価で長期信頼性が高い薄型の角形アルカリ蓄電池を提供できる。
【図面の簡単な説明】
【図1】 本発明の角形アルカリ蓄電池について一例を示す模式断面図である。
【図2】 本発明の角形アルカリ蓄電池の製造方法について一例を模式的に示す斜視図である。
【図3】 図2に示した製造方法の一工程の一例を示す模式断面図である。
【図4】 比較例の角形アルカリ蓄電池の斜視図である。
【図5】 本発明および比較例の角形アルカリ蓄電池について長期信頼性試験の結果を示すグラフである。
【符号の説明】
10 角形アルカリ蓄電池
11、26 ケース
11a 一端
11h、26h ガス抜き穴
12 キャップ部
12a、29a キャップ
12b、29b ゴム弁体
13、25 極板群
14 封口板
14a 樹脂
14b 平板
15、21 タブ
16、27 枠体
22 正極板
23 セパレータ
24 負極板
28 平板(封口体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a prismatic alkaline storage battery and a method for manufacturing the same, and more particularly to a thin prismatic alkaline storage battery and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, with the rapid progress of portable and cordless devices, there is an increasing demand for secondary batteries that are small, lightweight, and have high energy density. In particular, in the audio market using a square battery as a main power source, particularly an MD player, the playback time exceeds a maximum of 100 hours, and it is not important to further increase the capacity of the battery. In the future, thinning of the battery will be particularly important, and the spread of lithium secondary batteries that can be easily thinned is promoted.
[0003]
However, if the alkaline storage battery represented by nickel-hydrogen storage battery or nickel-cadmium storage battery can be made thin like a square lithium ion battery, it will take advantage of its low cost and high reliability, and the lithium secondary battery will be used in the market. Differentiation from the secondary battery can be achieved. In these alkaline storage batteries, in consideration of the balance between the positive electrode capacity and the negative electrode capacity and the battery characteristics, the negative electrode plate disposed outside the electrode plate group is brought into contact with the battery case.
[0004]
[Problems to be solved by the invention]
However, since the conventional prismatic alkaline storage battery is provided with a gas discharge mechanism on the positive electrode terminal side, the structure of the sealing plate on the positive electrode terminal side is complicated and is composed of many parts (generally eight or more points). For this reason, if a new metal mold is produced for each component of the sealing plate in order to make the battery thinner, a great investment is generated, and the design change of the battery is not easy.
[0005]
Further, in the conventional prismatic alkaline storage battery, the sealing plate on the positive electrode side is sealed by laser welding. However, since the area of the upper part of the battery is not sufficient when performing laser welding, a gasket or the like containing nylon as a main component is used. The insulating material may be deformed by the influence of laser heat. For this reason, there is a possibility that the electrolytic solution leaks from a gap generated by the deformation of the sealing insulator during charging and discharging of the battery.
[0006]
In order to solve the above-described problems, an object of the present invention is to provide a low-cost and highly reliable thin prismatic alkaline storage battery and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a prismatic alkaline storage battery according to the present invention includes a prismatic case having one open end, a cap formed on the other end opposite to the one end of the case, A prismatic alkaline storage battery comprising an arranged electrode plate group and a sealing plate that seals the one end, the electrode plate group comprising a positive electrode plate, a negative electrode plate, and a separator, wherein the negative electrode and the case are in contact with each other. The cap portion includes a gas exhaust port and a safety valve and functions as a negative electrode terminal. The sealing plate and the positive electrode plate are electrically connected to each other, and the sealing plate is coated with a resin at the outer periphery. The case is sealed by caulking the case at a portion where the sealing plate is disposed, and the one end is bent in a dogleg shape toward the resin. . In the present specification, “rectangular alkaline storage battery” means an alkaline storage battery using a rectangular parallelepiped case or a rectangular parallelepiped case with rounded corners.
[0008]
Moreover, the manufacturing method of the prismatic alkaline storage battery of the present invention is as follows.
(I) producing an electrode plate group comprising a positive electrode plate and a negative electrode plate that are alternately stacked with a separator interposed therebetween so that the negative electrode plate is positioned at both ends;
(Ii) inserting the electrode plate group into a rectangular case whose one end is an open end having a stepped portion ;
( Iii ) placing a metal sealing plate functioning as a positive electrode terminal, the outer peripheral portion of which is coated with a resin, on the stepped portion;
( IV ) sealing the one end with the sealing plate by bending the one end of the case into a U -shape toward the resin while squeezing a portion protruding by the step portion on the outer surface of the case ;
Forming a cap portion having a gas exhaust port and a safety valve at the other end opposite to the one end of the case and functioning as a negative electrode terminal.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
(Embodiment 1)
Embodiment 1 demonstrates an example about the prismatic alkaline storage battery of this invention. A schematic cross-sectional view of the prismatic alkaline storage battery 10 of Embodiment 1 is shown in FIG.
[0011]
The prismatic alkaline storage battery 10 includes a case 11, a cap portion 12, an electrode plate group 13 (illustration of a cross section is omitted), and a sealing plate 14.
[0012]
The case 11 has a rectangular shape (a rectangular parallelepiped shape or a rectangular parallelepiped shape with rounded corners). The case 11 is usually made of a conductive metal. One end 11a of the case 11 is opened. Further, a gas vent hole 11h is formed at the other end of the case 11 opposite to the one end 11a. In the case 11, it is preferable that the shape of the cross section perpendicular to the longitudinal direction (the direction connecting the positive electrode terminal and the negative electrode terminal) is a rectangular shape with rounded corners (hereinafter sometimes referred to as an oval cross section). . By using the case having such a shape, the reliability when the case 11 is caulked and sealed can be improved.
[0013]
The cap portion 12 is formed in the gas vent hole 11 h of the case 11. The cap unit 12 includes a cap 12a formed with a gas exhaust port (not shown) and a safety valve. When the internal pressure of the battery rises above a certain value, the gas inside the battery is released through the gas vent hole 11h and the gas exhaust port 12. Although FIG. 1 shows a case where the safety valve is a rubber valve body 12b as an example, the structure of the safety valve is not limited to this. The cap 12a is formed of a conductive metal, and the cap portion 12 functions as a negative electrode terminal.
[0014]
The electrode plate group 13 includes a positive electrode plate, a negative electrode plate, and a separator. The positive electrode plate and the negative electrode plate are laminated with the separator interposed therebetween so that the negative electrode plate is located at both ends. Such a laminated body can be formed, for example, by alternately laminating positive and negative plates that are coated with separators on both sides. The laminate may be formed by bending a negative electrode plate that is twice as long as the positive electrode plate and placing the positive electrode plate therebetween. The negative electrode plates disposed at both ends of the electrode plate group are electrically connected to the cap portion 12 which is a negative electrode terminal by contacting the case 11. The positive electrode plate, the negative electrode plate, and the separator are selected according to a battery to be manufactured (for example, a nickel-cadmium storage battery or a nickel-hydrogen storage battery), and can be manufactured using a known material.
[0015]
The sealing plate 14 seals one end 11 a of the case 11. FIG. 1 shows a case where a sealing plate 14 made of a metal flat plate 14b whose outer peripheral portion is coated with a resin 14a is used as an example of the sealing method. In this case, the case 11 can be sealed by caulking the case 11 at the portion where the sealing plate 14 is disposed. The sealing plate 14 and the positive electrode plate are electrically connected by a metal tab 15. As shown in FIG. 1, an insulating frame 16 is preferably disposed between the electrode plate group 13 and the sealing plate 14 so that the electrode plate group 13 and the sealing plate 14 do not contact each other. The sealing method is not limited to the method shown in FIG. For example, the outer periphery of the one end 11a of the case 11 may be covered with a resin, and the case 11 may be crimped by placing a sealing plate on a portion where the resin is formed.
[0016]
In the prismatic alkaline storage battery of Embodiment 1, the number of components of the sealing plate can be reduced because the gas discharge mechanism is not formed in the portion that seals the case. Further, in this battery, the negative electrode terminal can be formed by welding a cap into which a valve body functioning as a safety valve is inserted into the case. Furthermore, in this battery, sealing can be easily performed by caulking the case in which the sealing plate is inserted. For this reason, the prismatic alkaline storage battery of the first embodiment can be easily changed in design and manufactured at low cost with high productivity. In addition, unlike the conventional prismatic alkaline storage battery that seals by laser welding, this prismatic alkaline storage battery has no damage to the sealing part due to heat, so that liquid leakage does not occur even after repeated charge and discharge cycles, In addition, the reliability when stored for a long time can be improved.
[0017]
(Embodiment 2)
Embodiment 2 demonstrates an example about the manufacturing method of the square alkaline storage battery of this invention. In addition, what was demonstrated in Embodiment 1 can be used for the structural member of the battery used in Embodiment 2. FIG.
[0018]
In the manufacturing method of Embodiment 2, first, an electrode plate group including a positive electrode plate and a negative electrode plate that are alternately stacked with separators interposed therebetween so that the negative electrode plate is positioned at both ends is prepared (step (i)). Specifically, for example, after covering both surfaces of the positive electrode plate with a separator, the negative electrode plate and the positive electrode plate may be alternately laminated. The positive electrode plate is, for example, an active material made of a metal oxide and kneaded with water and a water-soluble binder to produce an active material paste, and a strip-like sponge-like metal having a space in which the paste is three-dimensionally connected. It can be formed by filling a porous body, drying and pressing, and then cutting it into a predetermined size. The negative electrode plate can be formed, for example, by applying a paste containing a hydrogen storage alloy to a core material such as a punching metal, drying and pressing, and then cutting to a predetermined size.
[0019]
Next, the electrode plate group is inserted into a rectangular case with one end opened (step (ii)). The negative electrodes located at both ends of the electrode plate group are in contact with the case. As the case, the case 11 described in the first embodiment can be used.
[0020]
Next, one end (opening) of the case is sealed with a sealing plate that functions as a positive electrode terminal (step (iii)). Sealing can be performed by the method described in the first embodiment. Usually, a step of connecting a metal tab connected to the positive electrode terminal to the sealing plate before the sealing is performed.
[0021]
Finally, after injecting an electrolytic solution from the degassing hole 11h of the case 11, a battery is obtained by forming the cap portion 12 at the other end of the case 11. The step of injecting the electrolytic solution and forming the cap portion is not necessarily performed in the last step.
[0022]
According to the manufacturing method of Embodiment 2, the prismatic alkaline storage battery described in Embodiment 1 can be easily manufactured. In this manufacturing method, unlike a conventional manufacturing method in which sealing is performed by laser welding of a sealing plate, a battery that is not affected by deformation of the sealing portion due to heat can be manufactured.
[0023]
【Example】
Hereinafter, an example of manufacturing a prismatic nickel-hydrogen storage battery will be described as an example of the present invention.
[0024]
The positive electrode plate was produced by the following method. First, 100 parts by weight (parts by weight) of nickel hydroxide and 0.2 parts by weight of carboxymethyl cellulose as a binder were added with water so as to be 25% by weight of the total paste, and kneaded to obtain a paste-like positive electrode An active material was prepared. The paste-like active material was filled into a nickel sponge substrate and dried, and then pressed to increase the packing density, and cut into a width of 15 mm, a thickness of 0.8 mm, and a length of 55 mm to produce a positive electrode plate. Thereafter, ultrasonic waves were applied to the positive electrode plate to peel off the active material on the upper side of the electrode plate with a width of 2 mm, and then a tab (nickel lead) having a thickness of 80 μm was welded to the peeled portion. Thus, the positive electrode plate 22 to which the tab 21 was connected was produced. This positive electrode plate 22 was covered with a separator 23 mainly composed of polypropylene with the tab 21 extended, and its outer peripheral end was sealed by thermal welding. In this way, a positive electrode plate 22 whose both surfaces were coated with the separator 23 was produced.
[0025]
The negative electrode plate 24 was produced by applying a paste containing a hydrogen storage alloy powder to a core material made of punching metal and cutting it to a width of 15 mm, a thickness of 0.2 mm, and a length of 113 mm. The negative electrode plate 24 was folded in two, and the positive electrode plate 22 sealed with the separator 23 was sandwiched between them to produce an electrode plate group 25.
[0026]
As shown in FIG. 2A, the electrode plate group was inserted into a case 26 having a gas vent hole 26h. As the case 26, a rectangular case made of nickel-plated iron and having an elliptical cross section (outer dimensions: horizontal 17 mm, vertical 65 mm, thickness 4 mm) was used.
[0027]
Thereafter, as shown in FIG. 2B, a resin frame 27 and a flat plate (sealing body) 28 also serving as a positive electrode terminal were inserted below the electrode plate group, and then the opening was crimped to seal. The outer periphery of the flat plate 28 is covered with resin, and the tab 21 and the flat plate 28 are welded before sealing. The sealing is performed by squeezing the opening 26a whose end is processed as shown in FIG. 3 (a) using a die 31 from the degassing hole 26h side of the case 26 as shown in FIG. 3 (b). As shown in c), the case end was bent into a dogleg shape.
[0028]
Thereafter, after alkaline electrolyte solution is vacuum-injected from the gas vent hole 26h of the case 26, the cap 29a having the rubber valve element 29b inserted therein is placed around the gas vent hole 26h of the case 26 as shown in FIG. Resistance welded. In this way, a rectangular nickel-hydrogen storage battery of the present invention (hereinafter also referred to as battery A) having an HF17 / 67 size and a nominal capacity of 800 mAh was produced.
[0029]
On the other hand, as a comparative example, a rectangular nickel-hydrogen storage battery (hereinafter also referred to as battery B) was produced using a conventional sealing method. The battery B uses a conventional battery case whose bottom is not opened. As shown in FIG. 4, the opening of the case 41 is sealed with a conventional sealing plate 42 having a gas discharge mechanism. Sealing was performed by laser welding the sealing plate 42 to the case 41 after connecting the positive electrode plate and the sealing plate 42 with a nickel lead.
[0030]
In order to compare the battery A of the present invention with the battery B of the comparative example, 50 pieces of each were produced. After the initial charge and discharge for each of the battery A and battery B, in order to confirm the leakage resistance, the battery A and the battery B are left in a constant temperature bath at a temperature of 65 ° C. and a humidity of 90%, and a long-term reliability test is performed in a high temperature humidified state It was. The result is shown in FIG.
[0031]
As is clear from FIG. 5, in the battery B of the comparative example, the leakage reaction was confirmed 2% after about 2 weeks from the start of standing, and 6% after 35 days. On the other hand, in the battery A of the present invention, a battery in which a liquid leakage reaction was observed even after 35 days from standing was not confirmed.
[0032]
When the battery B of the comparative example in which the liquid leakage reaction was confirmed was investigated, dissolution of the insulator in the sealing portion was observed, and the liquid leakage reaction was confirmed from this site. In this comparative example, when the sealing plate was welded with a laser, the gasket that insulates the positive electrode terminal was melted by the influence of the heat of the laser and the confidentiality was impaired. Moreover, when the diameter of the nugget connecting the battery case and the lid body was reduced during laser welding, a pinhole was generated conversely, and the generation of the pinhole could not be suppressed by changing the setting of the laser welding conditions.
[0033]
In the battery A of the example, since no laser is used, there is no harmful effect seen in the battery B of the comparative example, and the reliability is also compared with the battery B from the result of the long-term reliability test. There was no leakage reaction and the confidentiality was greatly improved. This is because, in the battery A, the compressibility of the case end that is crimped to the square shape and the flat plate covered with the insulator is maintained, and in particular, the case at the corner portion by making the battery case elliptical in cross section. It is considered that the secrecy is significantly improved as compared with the battery B of the comparative example.
[0034]
Although the embodiments of the present invention have been described above by way of examples, the present invention is not limited to the above-described embodiments, and can be applied to other embodiments based on the technical idea of the present invention.
[0035]
【The invention's effect】
As described above, in the prismatic alkaline storage battery and the manufacturing method thereof according to the present invention, a gas discharge mechanism is provided on the negative electrode terminal side to form a convex terminal portion, and sealing is performed with a flat sealing plate. As a result, the number of components can be greatly reduced as compared with a conventional sealing plate having a gas discharge mechanism, and a battery that can be easily changed in design and manufactured at low cost is obtained. Further, since the battery of the present invention does not require thermal welding using a laser at the time of sealing, sealing is easy and damage to the sealing plate due to the heat of the laser can be prevented.
[0036]
Therefore, according to the present invention, it is easy to reduce the thickness to a level (6 mm or less) that does not exist in a conventional prismatic alkaline storage battery, and it is a low-cost and long-term reliable thin that can be differentiated even in a lithium ion-based market. Can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a prismatic alkaline storage battery of the present invention.
FIG. 2 is a perspective view schematically showing an example of a method for producing a prismatic alkaline storage battery of the present invention.
3 is a schematic cross-sectional view showing an example of a step of the manufacturing method shown in FIG. 2. FIG.
FIG. 4 is a perspective view of a prismatic alkaline storage battery of a comparative example.
FIG. 5 is a graph showing the results of long-term reliability tests for the prismatic alkaline storage batteries of the present invention and comparative examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Square alkaline storage battery 11, 26 Case 11a One end 11h, 26h Gas vent hole 12 Cap part 12a, 29a Cap 12b, 29b Rubber valve body 13, 25 Electrode plate group 14 Sealing plate 14a Resin 14b Flat plate 15, 21 Tab 16, 27 Frame Body 22 Positive electrode plate 23 Separator 24 Negative electrode plate 28 Flat plate (sealing body)

Claims (4)

一端が開口している角形のケースと、前記ケースの前記一端とは反対側の他端に形成されたキャップ部と、前記ケース内に配置された極板群と、前記一端を封口する封口板とを備える角形アルカリ蓄電池であって、
前記極板群は正極板と負極板とセパレータとを備え、
前記負極と前記ケースとが接触しており、
前記キャップ部はガス排気口と安全弁とを備え且つ負極端子として機能し、
前記封口板と前記正極板とが電気的に接続されており、
前記封口板は、外周部が樹脂で被覆された金属製の平板であり、
前記封口板が配置された部分で前記ケースをかしめることによって前記ケースが封口されており、
前記一端は、前記樹脂に向かってくの字状に折り曲げられている角形アルカリ蓄電池。
A rectangular case having one end opened, a cap portion formed on the other end opposite to the one end of the case, an electrode plate group disposed in the case, and a sealing plate for sealing the one end A prismatic alkaline storage battery comprising:
The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator,
The negative electrode and the case are in contact with each other;
The cap portion includes a gas exhaust port and a safety valve and functions as a negative electrode terminal,
The sealing plate and the positive electrode plate are electrically connected ;
The sealing plate is a metal flat plate whose outer periphery is coated with a resin,
The case is sealed by caulking the case at a portion where the sealing plate is disposed,
The one end is a prismatic alkaline storage battery that is bent in a dogleg shape toward the resin .
前記正極板と前記負極板とは、前記負極が両端に位置するように前記セパレータを挟んで交互に積層されている請求項1に記載の角形アルカリ蓄電池。  2. The prismatic alkaline storage battery according to claim 1, wherein the positive electrode plate and the negative electrode plate are alternately stacked with the separator interposed therebetween so that the negative electrode is located at both ends. 前記封口板と前記正極板とが金属製のタブで電気的に接続されている請求項1又は2に記載の角形アルカリ蓄電池。The prismatic alkaline storage battery according to claim 1 or 2 , wherein the sealing plate and the positive electrode plate are electrically connected by a metal tab. (i)負極板が両端に位置するようにセパレータを挟んで交互に積層された正極板と負極板とを備える極板群を作製する工程と、
(ii)一端が段差部を有する開口端である角形のケースに前記極板群を挿入する工程と、
iii )外周部が樹脂で被覆された、正極端子として機能する金属製の封口板を前記段差部に載置する工程と、
iV )前記ケースの外面における前記段差部によって突出した部分をしごきながら、前記ケースの前記一端を前記樹脂に向かってくの字状に折り曲げることによって、前記封口板で前記一端を封口する工程と、
前記ケースの前記一端とは反対側の他端に、ガス排気口と安全弁とを備え負極端子として機能するキャップ部を形成する工程とを備える角形アルカリ蓄電池の製造方法。
(I) producing an electrode plate group comprising a positive electrode plate and a negative electrode plate that are alternately stacked with a separator interposed therebetween so that the negative electrode plate is positioned at both ends;
(Ii) inserting the electrode plate group into a rectangular case whose one end is an open end having a stepped portion ;
( Iii ) placing a metal sealing plate functioning as a positive electrode terminal, the outer peripheral portion of which is coated with a resin, on the stepped portion;
( IV ) sealing the one end with the sealing plate by bending the one end of the case into a U -shape toward the resin while squeezing a portion protruding by the step portion on the outer surface of the case ;
A method of manufacturing a prismatic alkaline storage battery, comprising: forming a cap portion having a gas exhaust port and a safety valve at the other end opposite to the one end of the case and functioning as a negative electrode terminal.
JP2002025838A 2002-02-01 2002-02-01 Square alkaline storage battery and method for manufacturing the same Expired - Fee Related JP3715243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025838A JP3715243B2 (en) 2002-02-01 2002-02-01 Square alkaline storage battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025838A JP3715243B2 (en) 2002-02-01 2002-02-01 Square alkaline storage battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003229097A JP2003229097A (en) 2003-08-15
JP3715243B2 true JP3715243B2 (en) 2005-11-09

Family

ID=27747869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025838A Expired - Fee Related JP3715243B2 (en) 2002-02-01 2002-02-01 Square alkaline storage battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3715243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565862B2 (en) * 2004-03-09 2010-10-20 三洋電機株式会社 Electrolyte supply method

Also Published As

Publication number Publication date
JP2003229097A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP3819785B2 (en) Battery
JP4990975B2 (en) Pouch-type secondary battery with unsealed residue
JP4440850B2 (en) Secondary battery
JP3815774B2 (en) Electrochemical element including electrolyte
JP4020781B2 (en) Coin battery
JP7205050B2 (en) Sealed power storage device
US20040126656A1 (en) Secondary battery and method of manufacturing same
JP4564663B2 (en) High utilization electrochemical cell and assembly method
JP2000164259A (en) Flat nonaqueous electrolyte battery and its manufacture
JP4554148B2 (en) Manufacturing method of secondary battery
WO2022113989A1 (en) All-solid-state battery with case
CN110190340A (en) Secondary cell
CN209401784U (en) Secondary cell
KR100329855B1 (en) Lithium ion secondary battery and manufacturing method thereof
WO2021212625A1 (en) Leak-preventing soldering method for button battery, soldered structure, and use therefor
JP2004171980A (en) Alkaline battery and its manufacturing method
JP3584656B2 (en) Method of manufacturing sealing plate for prismatic nonaqueous electrolyte battery
JP4284719B2 (en) Battery with spiral electrode and method for manufacturing the same
JP2007141774A (en) Manufacturing method of storage element
JP2003151527A (en) Non-aqueous electrolytic solution battery and its manufacturing method
JP5224336B2 (en) Film exterior electrochemical device
JP3715243B2 (en) Square alkaline storage battery and method for manufacturing the same
JPH10308206A (en) Cylindrical non-aqueous electrolyte battery
JP2004303739A (en) Rectangular non-aqueous electrolyte battery
KR101264461B1 (en) Cap assembly and rechargeable battery using this same and assembly method of cap assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees