JP3713948B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3713948B2
JP3713948B2 JP08081198A JP8081198A JP3713948B2 JP 3713948 B2 JP3713948 B2 JP 3713948B2 JP 08081198 A JP08081198 A JP 08081198A JP 8081198 A JP8081198 A JP 8081198A JP 3713948 B2 JP3713948 B2 JP 3713948B2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerator
closing means
refrigerant
communication pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08081198A
Other languages
Japanese (ja)
Other versions
JPH11281248A (en
Inventor
宣之 磯島
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08081198A priority Critical patent/JP3713948B2/en
Publication of JPH11281248A publication Critical patent/JPH11281248A/en
Application granted granted Critical
Publication of JP3713948B2 publication Critical patent/JP3713948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可燃性冷媒を用いた冷蔵庫に関する。
【0002】
【従来の技術】
近年、オゾン層保護の観点から、冷凍サイクルに現在多く使用されている塩素原子を含むCFC(クロロフルオロカーボン)−12やHCFC(ハイドロクロロフルオロカーボン)−22といった冷媒の使用が規制されてきている。このCFC−12が使用されていた冷凍サイクルの代替冷媒としては、オゾン層破壊能力が無く沸点の近いHFC(ハイドロフルオロカーボン)−134aが現在使用されている。しかし、この冷媒も温暖化係数が高いため、次世代の代替冷媒としてオゾン層破壊能力が無く温暖化係数も極めて小さいHC(ハイドロカーボン)系の冷媒が考えられている。特にプロパンとイソブタンを混合した冷媒はCFC−12に沸点が近く、プロパンが40から60質量%の混合冷媒では冷凍能力もCFC−12に近い。
【0003】
【発明が解決しようとする課題】
しかし、このHC系冷媒は可燃性を有し、火災や爆発の危険性があるため、取り扱いに注意を要する。特に,冷蔵庫庫内は密閉空間であり,少量の冷媒漏れであってもHC系冷媒の可燃下限濃度に達するため,冷媒が漏れた場合,冷蔵庫庫外に排気する方法が必要である。
【0004】
また,プロパン単一冷媒及び,プロパンの組成割合の高いプロパン/イソブタンの混合冷媒を用いる場合には,冷蔵庫運転中であっても蒸発器内部の圧力は大気圧以上となり,蒸発器が破損した場合には,冷蔵庫庫内に冷媒漏れが生じる。
【0005】
イソブタン単一冷媒及び,イソブタンの組成割合の高いプロパン/イソブタンの混合冷媒を用いる場合については, 物性から冷蔵庫運転中には蒸発器内部の圧力が大気圧以下になるため,運転中に蒸発器が破損しても,庫内側に漏れることはない。しかしながら,除霜時にヒータ等で蒸発器を加熱した場合,或いは運搬時などで冷蔵庫の通電が長時間行われていない場合には,蒸発器内部の圧力が大気圧以上となるため,蒸発器が破損した場合には冷蔵庫庫内に冷媒漏れが生じる。
【0006】
冷蔵庫庫内に漏れた冷媒を庫外に排気するには,庫内と庫外を結ぶ通気機構が必要であるが,冷媒漏れ時以外には,前記通気機構によって庫内への熱漏洩が増加し,冷蔵庫の消費電力が増加するため,熱漏洩の少ない通気機構が必要である。
【0007】
本発明の目的は、可燃性冷媒を用いた冷蔵庫庫内に冷媒漏れが生じても,庫外に漏れ冷媒を排気でき,安全性を確保するとともに,冷媒漏れ時以外には,庫内への熱漏洩を抑え,消費電力の増加を抑えた冷蔵庫を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本願発明は、外箱と内箱の間に断熱材を挿入してなる断熱箱体と、少なくとも圧縮機、凝縮器、減圧装置、蒸発器を接続し、冷媒としてイソブタンが封入されて構成された冷凍サイクルとを備え、前記蒸発器を前記断熱箱体内に有する冷蔵庫において、蒸発器下方に開口された孔と、この孔と前記断熱箱体外部とを連通する連通路とを備え、前記連通路が、冷蔵庫運転時で庫内温度が低下している場合に閉となり、前記蒸発器の温度が予め設定された温度以上で 又は 前記蒸発器の除霜を行うヒータが通電したときに開となり、前記蒸発器の下方が前記断熱箱体外部と連通するものである。さらに、前記蒸発器の温度を検出する検出手段を備え、この検出手段からの検出結果に基づき前記連通路の開閉手段を開閉するものである。
【0009】
さらには、庫内に設けられ冷媒の漏れを検知する検知手段を備え、前記検知手段が漏れを検知した際に、前記連通路の開閉手段が開くものである。また、蒸発器の下方に設けられ庫内の空気が流通する通気路を開閉する通気路開閉手段を備え、前記連通路の開閉手段が開状態である間は、通気路の開閉手段が閉状態であることを特徴とするものである。
【0010】
また、前記蒸発器の除霜して生じる除霜水を溜める貯留部を備え、前記連通パイプの前記断熱箱体外部側の開口部が前記貯留部の上方に設けられたものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。◆
図1は冷蔵庫の断面を示す図である。図1において、1は断熱箱体であり、前面は冷凍室2、冷蔵室3のそれぞれの開閉扉4,5となっている。6は圧縮機、7は凝縮器、9は蒸発器である。蒸発器9は前記断熱箱体1の内部に備えられている。図1には明確に図示されていないが、図2に示すように、前記圧縮機6、凝縮器7、減圧装置8、蒸発器9が接続され、一連の冷凍サイクルが構成される。作動媒体としてはプロパンやイソブタンなどの可燃性冷媒を用いる。
【0012】
10は庫内ファン、11は除霜ヒータ、12は連通パイプ、13は蒸発皿、14は蒸発器温度検知器、15は冷蔵室冷気戻り通路、16は連通パイプ開閉手段、17は連通パイプ出口である。
【0013】
冷蔵室内の空気は、冷蔵室冷気戻り通路15から前記蒸発器9に流入し冷却され、庫内ファン10により前記冷凍室2に送風され、あるいは図示していないが冷気通路を通して前記冷蔵室3に送風される。このようにして、冷凍室2内部及び、冷蔵室3内部が冷却される。
【0014】
上記の如く構成した冷蔵庫の蒸発器から庫内に漏れた冷媒の排気について以下に述べる。
【0015】
最初に、イソブタン単一冷媒及び、イソブタンの組成割合の高いプロパン/イソブタンの混合冷媒を作動媒体として用いる場合について、第1の構成を説明する。まず、連通パイプ開閉手段16は、蒸発器温度検知機14の検知する蒸発器温度Tevpが、所定の温度以上となると開状態となるように設定されている。望ましくは、大気圧と冷媒の飽和圧力が等しくなる温度Tatm以上では開状態であるように設定されているものである。このような構成では、通電前の状態においては、冷蔵庫の庫内温度は室温と同程度まで上昇しており、連通パイプ開閉手段16は開いている。蒸発器9が破損して可燃性の冷媒が漏れていれば、漏れた冷媒により冷蔵庫庫内の圧力は大気圧に比べ幾分高くなるため、連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。冷蔵庫運転時で庫内を充分に冷却された冷気が循環し温度が低下して場合には、連通パイプ開閉手段16が閉じているため、連通パイプ開閉手段16からの熱漏洩を抑えることができる。すなわち、冷却運転時には連通パイプ開閉手段16は閉状態となっているように、この開閉手段16の開閉切り替え温度は設定されるものである。
【0016】
次に除霜運転時およびその終了後の排気について説明する。除霜のためヒーター11の加熱により蒸発器9の温度Tevpが上昇し、Tevpが予め設定されたTatmより低い温度より高くなると、連通パイプ開閉手段16が開状態となり、連通パイプ12を通じて庫内と庫外は連通する。蒸発器9が破損して可燃性の冷媒が漏れていれば、通電前の場合と同様に、連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。除霜終了後、 蒸発器9の温度Tevpが低下し、Tevpが予め設定された温度より低くなると連通パイプ開閉手段16は閉状態になり、連通パイプ開閉手段16からの冷蔵庫外部への熱漏洩を抑えることができる。冷蔵庫への通電が止まった場合には、庫内の冷却が行われないため、徐々に庫内温度及び,蒸発器温度Tevpは上昇し、やがてTevpは上記予め設定された温度以上になり、連通パイプ開閉手段16が開き、連通パイプ12を通じて庫内と庫外は連通する。この状態で蒸発器9が破損して可燃性の冷媒が漏れたとしても、通電前の場合と同様に、連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。
【0017】
ここで、連通パイプ開閉手段の開閉は、蒸発器温度検知機14には感温筒を、連通パイプ開閉手段16は機械式のダンパーをそれぞれ用い、配管で結合した蒸発器検知機14と連通パイプ開閉手段16の開閉を蒸発器温度に応じて行う。感温筒は、内部に冷媒を有しており、この冷媒が温度に応じて体積を変化させ、この変化により上記機械式ダンパーを駆動する。すなわち、温度検出手段14が、連通パイプ開閉手段16の駆動手段を兼ねている。もちろん、これら検出手段と駆動手段とを別体としても、本実施例の奏する作用効果は変わらないことは言うまでもない。
【0018】
また、図示しないが蒸発器温度を検知する代りにバイメタルを用いて連通パイプ開閉手段16を作成し連通パイプ12の入口周囲温度に応じて開閉するダンパーを用いてもよい。また好ましくは、図3に示すように、蒸発器9より下側に位置する冷蔵室冷気戻り通路15に開閉手段18を設け、連通パイプ開閉手段16が開状態である間には開閉手段18を閉状態とし、連通パイプ開閉手段が閉状態である間には開閉手段18を開状態とすることで、空気より重いイソブタンやプロパンが漏れたとしても、蒸発器9より下側の冷蔵室3に流入させることなく、連通パイプ12から効果的に排気を行うことが望ましい。
【0019】
冷蔵室冷気戻り通路開閉手段18には連通パイプ開閉手段16と同様の機械式のダンパーを用い、蒸発器温度検知機14と配管で結合し、蒸発器温度に応じた開閉を行う。また更に好ましくは、連通パイプ12の出口17がドレン蒸発皿13に通じる構成として、連通パイプ12をドレン排水に利用することが望ましい。
【0020】
次に、図4に示す冷蔵庫について、図5に示す流れ図に沿って説明する。図4において19は制御装置である。
【0021】
先ず、初期状態で連通パイプ開閉手段16は開状態である。蒸発器9が破損して可燃性の冷媒が漏れていれば、漏れ冷媒により冷蔵庫庫内の圧力は大気圧に比べ幾分高くなるため、庫内と庫外を連通した連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。温度検知機14は所定時間t1間隔で蒸発器9の温度Tevpを検知する。制御装置19はTevpと、予め設定された開閉切り替え温度とを比較する。望ましくは、この切り替え温度は、冷媒の大気圧での飽和温度Tatmより低い温度に設定される。蒸発器温度が低下し、Tevpが上記予め設定された開閉切り替え温度以下となった場合に、制御装置19は連通パイプ開閉手段16を閉とする命令を出す。その後、所定時間t1後再度Tevpを検知し、Tevpが予め設定された温度より低い状態であれば連通パイプ開閉手段16は閉状態のままである。
【0022】
ここで、除霜のためヒーター11の加熱により蒸発器9の温度Tevpが上昇し、Tevpが開閉切り替え温度より高くなった場合、制御装置19は連通パイプ開閉手段16を開とする命令を出し、閉じた状態を解除し連通パイプ12を通じて庫内と庫外は連通する。蒸発器9が破損して可燃性の冷媒が漏れていれば、漏れ冷媒により冷蔵庫庫内の圧力は大気圧に比べ幾分高くなるため、連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。その後は所定時間t1毎にTevpを検知し、Tevp>開閉切り替え温度の間は連通パイプ開閉手段16は開状態であり、除霜終了後、蒸発器9の温度Tevpが低下し、Tevp<開閉切り替え温度となったところで、制御装置19が連通パイプ開閉手段16を閉じるように指令する。
【0023】
冷蔵庫への通電が止まった場合には、連通パイプ開閉手段16を初期状態である開に戻すように、制御装置19が指令するべく設定しても良い。運搬時等で冷蔵庫の通電が長時間行われていない時は、連通パイプ開閉手段16が開であるため、前述した除霜時の場合と同様に、連通パイプ開閉手段16から漏れ冷媒を庫外に排気することができる。
【0024】
また、冷蔵庫運転時で庫内温度が低下している場合には、連通パイプ開閉手段16が閉じているため、連通パイプ開閉手段16からの熱漏洩を抑えることができる。蒸発器温度検知機14には、除霜終了温度検知機を利用してもよい。また蒸発器9の温度を検知する代りに、ヒーター11への通電を検知して連通パイプ開閉手段16が開く構成としてもよい。
【0025】
更に好ましくは、第一の方法と同様に、蒸発器9より下側に位置する冷蔵室冷気戻り通路15に開閉手段18を設け、連通パイプ開閉手段16が開状態である間には開閉手段18を閉状態とし、連通パイプ開閉手段が閉状態の間には開閉手段18を開状態とすることで、連通パイプ12から効果的に排気を行うこと及び、連通パイプ12の出口17がドレン蒸発皿13に通じる構成として、連通パイプ12をドレン排水に利用することが望ましい。
【0026】
ここで、上述のTatmの決定方法について説明する。大気圧と冷媒の飽和圧力が等しくなる温度Tatmは、単一冷媒と、混合冷媒とでその特性が異なっている。例えば単一冷媒の場合、上記のようなイソブタンを例として挙げると、ある飽和圧力に対してその圧力での冷媒の飽和温度は物性から一義的に決定される。例えば、標準大気圧1atmを飽和圧力とした場合には、イソブタン単一冷媒の飽和温度は−11.6℃となる。よって、連通パイプ開閉手段16を閉状態から開状態へ切り替える温度は、このTatm−11.6℃以下の値とするのが望ましい。
【0027】
次に、イソブタンとプロパン混合冷媒の場合は、非共沸混合冷媒であることから、単一冷媒の場合とは異なり、ある飽和圧力に対して、その圧力での飽和温度は物性から一義的に定義は出来ず、乾き度によって一定の範囲内の値となる。イソブタン/プロパン(90/10重量%)の場合を考えると、標準大気圧1atmを飽和圧力としたときに、乾き度0、1の場合の飽和蒸気の飽和温度は、前者が−18.0℃、後者が−14.1℃となる。乾き度が0と1の間の値を取るときには飽和温度も上記2つの値の間の値となる。
【0028】
以上の議論では、基準とする大気圧を標準大気圧1atmとしたが、冷蔵庫の庫外の圧力は気象条件により異なるものであり、飽和温度Tatmも変動する。イソブタン単一冷媒の場合を考えると、冷蔵庫が設置される地域で遭遇すると考えられる大気圧の変化を考慮しても、飽和温度Tatmの変動量は2℃内外である。そこで、連通パイプ開閉手段16を閉状態から開状態へ切り替える温度としては、標準大気圧を基準として決定される値より2℃程度低い値とすることで、大気圧の変化に対応することが出来ると考えられる。
【0029】
このような連通パイプ開閉手段16を閉状態から開状態へ切り替える温度は、大気圧を検出する手段を冷蔵庫に設けて、この検出結果に基づいて制御装置においてTatmとTevpとを判定しても良い。一方、冷蔵庫が設置される前に予め定められた値として、制御装置に組み込んだり、機械的に動作するように予め設定しても良く、この場合には、大気圧検出手段もこのメンテナンスも不要となり、コストも低くできるので、より現実的である。
【0030】
第三の方法として図6に示す冷蔵庫について、流れ図7に沿って説明する。図6において、19は制御装置、20は冷媒漏れ検知機である。非通電時の初期状態では連通パイプ開閉手段16は開とする。蒸発器9が破損して可燃性の冷媒が漏れていれば、漏れ冷媒により冷蔵庫庫内の圧力は大気圧に比べ幾分高くなるため、連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。
【0031】
通電時には冷媒漏れ検知機20が庫内への冷媒漏れを検知する。冷媒漏れが無い場合には制御装置19は連通パイプ開閉手段16を閉じ、連通パイプ開閉手段16からの熱漏洩を抑えることができる。冷媒漏れ検知時には、制御装置19は連通パイプ開閉手段16を開とする命令を出し、閉じた状態を解除し連通パイプ12を通じて庫内と庫外は連通する。漏れ冷媒により冷蔵庫庫内の圧力は大気圧に比べ幾分高くなるため、連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。
【0032】
運搬時等で冷蔵庫の通電が長時間行われていない時は、連通パイプ開閉手段16を開とするように設定すれば、前述した除霜時の場合と同様に、連通パイプ開閉手段16から漏れ冷媒を庫外に排気することができる。
【0033】
更に好ましくは、第一の方法と同様に、蒸発器9より下側に位置する冷蔵室冷気戻り通路15に開閉手段18を設け、連通パイプ開閉手段16が開状態である間には開閉手段18を閉状態とし、連通パイプ開閉手段が閉状態である間は開閉手段18を開状態とすることで、連通パイプ12から効果的に排気を行うこと及び、連通パイプ12の出口17がドレン蒸発皿13に通じる構成として、連通パイプ12をドレン排水に利用することが望ましい。
【0034】
プロパン単一冷媒及び、プロパンの組成割合の高いプロパン/イソブタンの混合冷媒を作動媒体として用いる場合については、冷蔵庫運転中であっても蒸発器内部の圧力は大気圧以上となるため、前述した第三の方法により漏れ冷媒を庫外排気するとともに、連通パイプ開閉手段16からの熱漏洩を抑えることができる。
【0035】
第四の方法として図8に示す冷蔵庫について,流れ図9に沿って説明する。◆
図8において,19は制御装置,20は冷媒漏れ検知機である。非通電時の初期状態では連通パイプ開閉手段16は開とする。蒸発器9が破損して可燃性の冷媒が漏れていれば,漏れ冷媒により冷蔵庫庫内の圧力は大気圧に比べ幾分高くなるため,連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。
【0036】
通電時には冷媒漏れ検知機20が庫内への冷媒漏れを検知する。冷媒漏れが無い場合には制御装置19は連通パイプ開閉手段16を閉じ,連通パイプ開閉手段16からの熱漏洩を抑えることができる。冷媒漏れ検知時には,制御装置19は連通パイプ開閉手段16を開とする命令を出し,閉じた状態を解除し連通パイプ12を通じて庫内と庫外は連通する。漏れ冷媒により冷蔵庫庫内の圧力は大気圧に比べ幾分高くなるため,連通パイプ12から漏れ冷媒を自然に庫外に流出させることができる。
【0037】
運搬時等で冷蔵庫の通電が長時間行われていない時は,連通パイプ開閉手段16が開であるため,前述した除霜時の場合と同様に,連通パイプ開閉手段16から漏れ冷媒を庫外に排気することができる。
【0038】
更に好ましくは,第一の方法と同様に,蒸発器9より下側に位置する蒸発器吸入ダクト15に開閉手段18を設け,連通パイプ開閉手段16が開時には開閉手段18を閉じ,連通パイプ開閉手段が閉時には開閉手段18を開くことで,連通パイプ12から効果的に排気を行うこと及び,連通パイプ12の出口17がドレン蒸発皿13に通じる構成として,連通パイプ12をドレン排水に利用することが望ましい。プロパン単一冷媒及び,プロパンの組成割合の高いプロパン/イソブタンの混合冷媒を作動媒体として用いる場合については,冷蔵庫運転中であっても蒸発器内部の圧力は大気圧以上となるため,前述した第四の方法により漏れ冷媒を庫外排気するとともに,連通パイプ開閉手段16からの熱漏洩を抑えることができる。
【0039】
上記した課題の解決手段は,冷凍室2を上段に設けた構成の冷蔵庫を例として,記載しているが,図10に示すように冷凍室2を最下段に設けた構成の冷蔵庫或いは,図11に示すように冷凍室2を中段に設けた構成の冷蔵庫についても同様に適用することができる。図10及び図11に示すように,冷凍室2と熱源となる圧縮機6,凝縮器7とが隣接して熱漏洩が増加しやすい構造に対して,上記の実施例における通気機構からの熱漏洩の低減効果が特に大きくなる。また、図10では、制御装置が図示されていないが、図11と同様に開閉手段16及び18の開閉を調節する制御装置を設けてもよいことはいうまでもない。
【0040】
【発明の効果】
本発明によれば、可燃性冷媒を用いた冷蔵庫庫内に冷媒漏れが生じても,庫外に漏れ冷媒を排気でき,安全性を確保するとともに,冷媒漏れ時以外には,庫内への熱漏洩を抑え,消費電力の増加を抑えた冷蔵庫を提供できる。
【図面の簡単な説明】
【図1】本願発明にかかる冷蔵庫の断面図である。
【図2】冷蔵庫の冷凍サイクルを表す図である。
【図3】本願発明にかかる冷蔵庫の断面図である。
【図4】本願発明にかかる冷蔵庫の断面図である。
【図5】本願発明にかかる制御を示す流れ図である。
【図6】本願発明にかかる冷蔵庫の断面図である。
【図7】本願発明にかかる制御を示す流れ図である。
【図8】本願発明にかかる冷蔵庫の断面図である。
【図9】本願発明にかかる制御を示す流れ図である。
【図10】本願発明にかかる冷蔵庫の断面図である。
【図11】本願発明にかかる冷蔵庫の断面図である。
【符号の説明】
1…断熱箱体、2…冷凍室、3…冷蔵室、4…冷凍室扉、5…冷蔵室扉,6…圧縮機、7…凝縮器、8…減圧装置、9…蒸発器、10…庫内ファン、11…除霜ヒーター、12…連通パイプ、13…ドレン蒸発皿、14…蒸発器温度検知機、15…蒸発器吸入ダクト、16…連通パイプ開閉手段、17…連通パイプ出口、18…蒸発器吸入ダクト開閉手段、18…制御装置、20…冷媒漏れ検知機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator using a combustible refrigerant.
[0002]
[Prior art]
In recent years, from the viewpoint of protecting the ozone layer, the use of refrigerants such as CFC (chlorofluorocarbon) -12 and HCFC (hydrochlorofluorocarbon) -22 containing chlorine atoms, which are currently widely used in refrigeration cycles, has been regulated. As an alternative refrigerant for the refrigeration cycle in which CFC-12 has been used, HFC (hydrofluorocarbon) -134a having no ozone depletion capability and a near boiling point is currently used. However, since this refrigerant also has a high global warming potential, an HC (hydrocarbon) based refrigerant that has no ozone depletion ability and an extremely low global warming potential is considered as a next-generation alternative refrigerant. In particular, a refrigerant in which propane and isobutane are mixed has a boiling point close to that of CFC-12, and a mixed refrigerant having propane in the range of 40 to 60% by mass has a refrigerating capacity close to CFC-12.
[0003]
[Problems to be solved by the invention]
However, since this HC refrigerant is flammable and there is a risk of fire or explosion, it needs to be handled with care. In particular, the inside of the refrigerator compartment is a closed space, and even if a small amount of refrigerant leaks, the flammable lower limit concentration of the HC refrigerant is reached. Therefore, when the refrigerant leaks, a method of exhausting it outside the refrigerator compartment is necessary.
[0004]
Also, when using a single propane refrigerant or a propane / isobutane mixed refrigerant with a high propane composition ratio, the pressure inside the evaporator will exceed atmospheric pressure even when the refrigerator is operating, and the evaporator will be damaged. In some cases, refrigerant leaks in the refrigerator.
[0005]
When using a single isobutane refrigerant or a mixed propane / isobutane refrigerant with a high composition ratio of isobutane, the internal pressure of the evaporator will be below atmospheric pressure during operation of the refrigerator due to its physical properties. Even if it breaks, it will not leak into the cabinet. However, when the evaporator is heated with a heater during defrosting or when the refrigerator is not energized for a long time, such as during transportation, the pressure inside the evaporator will exceed atmospheric pressure, so the evaporator In case of damage, refrigerant leaks in the refrigerator.
[0006]
In order to exhaust the refrigerant leaking into the refrigerator cabinet to the outside of the cabinet, a ventilation mechanism that connects the inside and outside of the cabinet is necessary. However, when the refrigerant leaks, the ventilation mechanism increases the heat leakage into the cabinet. However, since the power consumption of the refrigerator increases, a ventilation mechanism with less heat leakage is required.
[0007]
The purpose of the present invention is to ensure that safety can be exhausted to the outside of the refrigerator even if the refrigerant leaks in the refrigerator using the flammable refrigerant. The purpose is to provide a refrigerator that suppresses heat leakage and suppresses an increase in power consumption.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention connects a heat insulating box body in which a heat insulating material is inserted between an outer box and an inner box, and at least a compressor, a condenser, a decompression device, and an evaporator, and serves as a refrigerant. In a refrigerator having a refrigeration cycle configured to contain isobutane and having the evaporator inside the heat insulation box, a hole opened below the evaporator and a communication communicating the hole with the outside of the heat insulation box. A passage, and the communication passage is closed when the refrigerator temperature is low and the temperature of the evaporator is equal to or higher than a preset temperature. Or It opens when the heater for defrosting the evaporator is energized, and the lower part of the evaporator communicates with the outside of the heat insulation box . Further comprising a detection means for detecting a temperature of said evaporator, to open or close the closing means of the communicating path based on the detection result from the detecting means.
[0009]
It may further include a detecting means for detecting a leak of the refrigerant provided in the refrigerator, when the detection means detects the leakage, closing means of the communicating path in which to open. The air passage opening / closing means is provided below the evaporator and opens / closes the air passage through which the air in the warehouse flows, and the air passage opening / closing means is closed while the communication passage opening / closing means is open. It is characterized by being.
[0010]
Moreover, the storage part which accumulates the defrost water produced by defrosting of the said evaporator is provided, and the opening part of the said heat insulation box exterior side of the said communication pipe is provided above the said storage part.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. ◆
FIG. 1 is a cross-sectional view of a refrigerator. In FIG. 1, reference numeral 1 denotes a heat insulating box, and the front surfaces are open / close doors 4 and 5 of the freezer compartment 2 and the refrigerator compartment 3, respectively. 6 is a compressor, 7 is a condenser, and 9 is an evaporator. The evaporator 9 is provided inside the heat insulating box 1. Although not clearly shown in FIG. 1, as shown in FIG. 2, the compressor 6, the condenser 7, the decompression device 8, and the evaporator 9 are connected to constitute a series of refrigeration cycles. A flammable refrigerant such as propane or isobutane is used as the working medium.
[0012]
10 is an internal fan, 11 is a defrosting heater, 12 is a communication pipe, 13 is an evaporating dish, 14 is an evaporator temperature detector, 15 is a refrigeration chamber cold air return passage, 16 is a communication pipe opening / closing means, and 17 is a communication pipe outlet. It is.
[0013]
The air in the refrigerator compartment flows into the evaporator 9 from the refrigerator return air passage 15 to be cooled, and is blown to the freezer compartment 2 by the internal fan 10, or although not shown, enters the refrigerator compartment 3 through the cold passage. Be blown. In this way, the inside of the freezer compartment 2 and the inside of the refrigerator compartment 3 are cooled.
[0014]
The exhaust of the refrigerant leaking from the evaporator of the refrigerator configured as described above into the cabinet will be described below.
[0015]
First, the first configuration will be described for the case where an isobutane single refrigerant and a mixed refrigerant of propane / isobutane having a high isobutane composition ratio are used as a working medium. First, the communication pipe opening / closing means 16 is set to be in an open state when the evaporator temperature Tevp detected by the evaporator temperature detector 14 exceeds a predetermined temperature. Desirably, it is set to be in an open state at a temperature Tatm or higher at which the atmospheric pressure and the saturation pressure of the refrigerant are equal. In such a configuration, in the state before energization, the refrigerator internal temperature has risen to about the same as the room temperature, and the communication pipe opening / closing means 16 is open. If the evaporator 9 is broken and flammable refrigerant leaks, the leaked refrigerant will cause the pressure in the refrigerator cabinet to be somewhat higher than the atmospheric pressure, so the leaked refrigerant will naturally flow out of the cabinet through the communication pipe 12. Can be made. When cold air that has been sufficiently cooled circulates in the refrigerator during operation of the refrigerator and the temperature drops, the communication pipe opening and closing means 16 is closed, so that heat leakage from the communication pipe opening and closing means 16 can be suppressed. . That is, the open / close switching temperature of the opening / closing means 16 is set so that the communication pipe opening / closing means 16 is closed during the cooling operation.
[0016]
Next, exhaust during and after the defrosting operation will be described. When the temperature Tevp of the evaporator 9 rises due to the heating of the heater 11 for defrosting and the Tevp becomes higher than a temperature lower than the preset Tatm, the communication pipe opening / closing means 16 is opened, and the communication pipe 12 The outside communicates. If the evaporator 9 is damaged and the flammable refrigerant leaks, the leaked refrigerant can be naturally flowed out of the storage pipe 12 from the communication pipe 12 as before the energization. After the defrosting is completed, when the temperature Tevp of the evaporator 9 decreases and Tevp becomes lower than a preset temperature, the communication pipe opening / closing means 16 is closed, and heat leakage from the communication pipe opening / closing means 16 to the outside of the refrigerator is prevented. Can be suppressed. When the power supply to the refrigerator is stopped, the interior is not cooled, so the interior temperature and the evaporator temperature Tevp gradually increase, and eventually Tevp becomes equal to or higher than the preset temperature. The pipe opening / closing means 16 is opened, and the inside and outside of the storage communicate with each other through the communication pipe 12. Even if the evaporator 9 is damaged in this state and the flammable refrigerant leaks, the leaked refrigerant can naturally flow out of the storage through the communication pipe 12 as in the case before the energization.
[0017]
Here, the communication pipe opening / closing means is opened / closed by using a temperature sensing cylinder for the evaporator temperature detector 14 and a mechanical damper for the communication pipe opening / closing means 16, respectively. The opening / closing means 16 is opened / closed according to the evaporator temperature. The temperature sensing cylinder has a refrigerant inside, and the refrigerant changes its volume according to the temperature, and the mechanical damper is driven by this change. That is, the temperature detecting means 14 also serves as a driving means for the communication pipe opening / closing means 16. Of course, it goes without saying that even if the detection means and the drive means are separated, the operational effects of the present embodiment are not changed.
[0018]
Although not shown, a damper that opens and closes the communication pipe 12 according to the inlet ambient temperature of the communication pipe 12 by using the bimetal instead of detecting the evaporator temperature may be used. Preferably, as shown in FIG. 3, an opening / closing means 18 is provided in the cold room return passage 15 located below the evaporator 9, and the opening / closing means 18 is provided while the communication pipe opening / closing means 16 is open. Even when isobutane or propane heavier than air leaks, the refrigerating chamber 3 below the evaporator 9 is opened by opening and closing the opening and closing means 18 while the communication pipe opening and closing means is closed. It is desirable to exhaust air effectively from the communication pipe 12 without flowing in.
[0019]
The refrigeration chamber cold air return passage opening / closing means 18 uses a mechanical damper similar to the communication pipe opening / closing means 16, and is connected to the evaporator temperature detector 14 by piping to perform opening / closing according to the evaporator temperature. More preferably, it is desirable to use the communication pipe 12 for drainage as a configuration in which the outlet 17 of the communication pipe 12 communicates with the drain evaporating dish 13.
[0020]
Next, the refrigerator shown in FIG. 4 is demonstrated along the flowchart shown in FIG. In FIG. 4, 19 is a control device.
[0021]
First, the communication pipe opening / closing means 16 is open in the initial state. If the evaporator 9 is damaged and the flammable refrigerant leaks, the leaked refrigerant causes the pressure in the refrigerator compartment to be somewhat higher than the atmospheric pressure. Can naturally flow out of the cabinet. The temperature detector 14 detects the temperature Tevp of the evaporator 9 at predetermined time intervals t1. The control device 19 compares Tevp with a preset switching temperature. Desirably, this switching temperature is set to a temperature lower than the saturation temperature Tatm at the atmospheric pressure of the refrigerant. When the evaporator temperature decreases and Tevp becomes equal to or lower than the preset switching temperature, the control device 19 issues a command to close the communication pipe opening / closing means 16. Thereafter, Tevp is detected again after a predetermined time t1, and if Tevp is lower than a preset temperature, the communication pipe opening / closing means 16 remains closed.
[0022]
Here, when the temperature Tevp of the evaporator 9 rises due to the heating of the heater 11 for defrosting, and Tevp becomes higher than the switching temperature, the control device 19 issues a command to open the communication pipe switching means 16, The closed state is released, and the inside and outside of the storage communicate with each other through the communication pipe 12. If the evaporator 9 is damaged and the flammable refrigerant leaks, the leaked refrigerant causes the pressure in the refrigerator cabinet to be somewhat higher than the atmospheric pressure, so the leaked refrigerant naturally flows out of the cabinet through the communication pipe 12. be able to. Thereafter, Tevp is detected every predetermined time t1, and the communication pipe opening / closing means 16 is in an open state between Tevp> opening / closing switching temperature. After the defrosting, the temperature Tevp of the evaporator 9 decreases, and Tevp <opening / closing switching. When the temperature is reached, the control device 19 instructs the communication pipe opening / closing means 16 to close.
[0023]
When energization to the refrigerator is stopped, the control device 19 may be set to instruct the communication pipe opening / closing means 16 to return to the initial state of opening. When the refrigerator is not energized for a long time such as during transportation, the communication pipe opening / closing means 16 is open, so that the leakage refrigerant is removed from the communication pipe opening / closing means 16 outside the warehouse as in the case of the defrosting described above. Can be exhausted.
[0024]
Further, when the internal temperature is lowered during the refrigerator operation, the communication pipe opening / closing means 16 is closed, so that heat leakage from the communication pipe opening / closing means 16 can be suppressed. A defrosting end temperature detector may be used as the evaporator temperature detector 14. Moreover, it is good also as a structure which detects the electricity supply to the heater 11 instead of detecting the temperature of the evaporator 9, and the communicating pipe opening / closing means 16 opens.
[0025]
More preferably, as in the first method, the open / close means 18 is provided in the cold room return passage 15 located below the evaporator 9, and the open / close means 18 is provided while the communication pipe open / close means 16 is open. Is closed, and the open / close means 18 is opened while the communication pipe opening / closing means is closed, so that exhaust is effectively performed from the communication pipe 12 and the outlet 17 of the communication pipe 12 is connected to the drain evaporating dish. As a configuration leading to 13, it is desirable to use the communication pipe 12 for drainage.
[0026]
Here, the method for determining Tatm will be described. The temperature Tatm at which the atmospheric pressure and the saturation pressure of the refrigerant are equal differs in characteristics between the single refrigerant and the mixed refrigerant. For example, in the case of a single refrigerant, taking isobutane as described above as an example, the saturation temperature of the refrigerant at that pressure is uniquely determined from the physical properties with respect to a certain saturation pressure. For example, when the standard atmospheric pressure of 1 atm is used as the saturation pressure, the saturation temperature of the isobutane single refrigerant is −11.6 ° C. Therefore, the temperature at which the communication pipe opening / closing means 16 is switched from the closed state to the open state is preferably set to a value of Tatm-11.6 ° C. or lower.
[0027]
Next, since isobutane and propane mixed refrigerants are non-azeotropic mixed refrigerants, unlike a single refrigerant, the saturation temperature at a certain pressure is uniquely determined from the physical properties. It cannot be defined, and the value is within a certain range depending on the dryness. Considering the case of isobutane / propane (90/10% by weight), when the standard atmospheric pressure is 1 atm and the saturation pressure, the saturation temperature of saturated steam when the dryness is 0 and 1 is −18.0 ° C. The latter is -14.1 ° C. When the dryness takes a value between 0 and 1, the saturation temperature also takes a value between the two values.
[0028]
In the above discussion, the reference atmospheric pressure is the standard atmospheric pressure of 1 atm, but the pressure outside the refrigerator varies depending on weather conditions, and the saturation temperature Tatm also varies. Considering the case of isobutane single refrigerant, even if the change in atmospheric pressure, which is considered to be encountered in the area where the refrigerator is installed, is considered, the variation amount of the saturation temperature Tatm is 2 ° C. or outside. Therefore, the temperature at which the communication pipe opening / closing means 16 is switched from the closed state to the open state can be adapted to changes in atmospheric pressure by setting a value about 2 ° C. lower than the value determined with reference to the standard atmospheric pressure. it is conceivable that.
[0029]
The temperature at which the communication pipe opening / closing means 16 is switched from the closed state to the open state may be determined by providing a means for detecting atmospheric pressure in the refrigerator and determining Tatm and Tevp in the control device based on the detection result. . On the other hand, as a predetermined value before the refrigerator is installed, it may be incorporated into the control device or preset so as to operate mechanically. In this case, neither the atmospheric pressure detection means nor this maintenance is required. Since the cost can be reduced, it is more realistic.
[0030]
A refrigerator shown in FIG. 6 as a third method will be described with reference to the flowchart 7. In FIG. 6, 19 is a control device, and 20 is a refrigerant leak detector. The communication pipe opening / closing means 16 is opened in the initial state when no power is supplied. If the evaporator 9 is damaged and the flammable refrigerant leaks, the leaked refrigerant causes the pressure in the refrigerator cabinet to be somewhat higher than the atmospheric pressure, so the leaked refrigerant naturally flows out of the cabinet through the communication pipe 12. be able to.
[0031]
When energized, the refrigerant leak detector 20 detects refrigerant leak into the cabinet. When there is no refrigerant leakage, the control device 19 can close the communication pipe opening / closing means 16 and suppress heat leakage from the communication pipe opening / closing means 16. When the refrigerant leak is detected, the control device 19 issues a command to open the communication pipe opening / closing means 16, releases the closed state, and communicates the inside and outside of the warehouse through the communication pipe 12. Since the pressure inside the refrigerator is somewhat higher than the atmospheric pressure due to the leaked refrigerant, the leaked refrigerant can naturally flow out of the cabinet from the communication pipe 12.
[0032]
When the refrigerator is not energized for a long time, such as during transportation, if the communication pipe opening / closing means 16 is set to open, it will leak from the communication pipe opening / closing means 16 as in the case of defrosting described above. The refrigerant can be exhausted to the outside.
[0033]
More preferably, as in the first method, the open / close means 18 is provided in the cold room return passage 15 located below the evaporator 9, and the open / close means 18 is provided while the communication pipe open / close means 16 is open. Is closed, and the open / close means 18 is opened while the communication pipe opening / closing means is closed, so that the exhaust from the communication pipe 12 can be effectively exhausted, and the outlet 17 of the communication pipe 12 is connected to the drain evaporating dish. As a configuration leading to 13, it is desirable to use the communication pipe 12 for drainage.
[0034]
In the case of using a propane single refrigerant and a propane / isobutane mixed refrigerant having a high propane composition ratio as the working medium, the pressure inside the evaporator is equal to or higher than the atmospheric pressure even during the operation of the refrigerator. The leaked refrigerant is exhausted outside by the third method, and heat leakage from the communication pipe opening / closing means 16 can be suppressed.
[0035]
As a fourth method, the refrigerator shown in FIG. 8 will be described with reference to the flowchart 9. ◆
In FIG. 8, 19 is a control device, and 20 is a refrigerant leak detector. The communication pipe opening / closing means 16 is opened in the initial state when no power is supplied. If the evaporator 9 is broken and flammable refrigerant leaks, the leaked refrigerant will cause the pressure in the refrigerator compartment to be somewhat higher than the atmospheric pressure, so that the leaked refrigerant will naturally flow out of the compartment from the communication pipe 12. be able to.
[0036]
When energized, the refrigerant leak detector 20 detects refrigerant leak into the cabinet. When there is no refrigerant leakage, the control device 19 can close the communication pipe opening / closing means 16 and suppress heat leakage from the communication pipe opening / closing means 16. When the refrigerant leak is detected, the control device 19 issues a command to open the communication pipe opening / closing means 16, releases the closed state, and communicates the inside and outside of the warehouse through the communication pipe 12. Since the pressure inside the refrigerator is somewhat higher than the atmospheric pressure due to the leaked refrigerant, the leaked refrigerant can naturally flow out of the refrigerator from the communication pipe 12.
[0037]
When the refrigerator is not energized for a long time, such as during transportation, the communication pipe opening / closing means 16 is open. Therefore, as in the case of the defrosting described above, leakage refrigerant is removed from the communication pipe opening / closing means 16 outside the refrigerator. Can be exhausted.
[0038]
More preferably, as in the first method, an opening / closing means 18 is provided in the evaporator suction duct 15 located below the evaporator 9, and when the communication pipe opening / closing means 16 is open, the opening / closing means 18 is closed to open / close the communication pipe. When the means is closed, the open / close means 18 is opened to effectively exhaust air from the communication pipe 12, and the communication pipe 12 is used for drainage as a configuration in which the outlet 17 of the communication pipe 12 communicates with the drain evaporating dish 13. It is desirable. In the case of using a propane single refrigerant and a propane / isobutane mixed refrigerant with a high propane composition ratio as the working medium, the pressure inside the evaporator is higher than the atmospheric pressure even during refrigerator operation. According to the fourth method, the leaking refrigerant is exhausted outside the chamber, and heat leakage from the communication pipe opening / closing means 16 can be suppressed.
[0039]
The means for solving the above-described problem has been described by taking a refrigerator having a structure in which the freezer compartment 2 is provided in the upper stage as an example. However, as shown in FIG. 11, the same can be applied to a refrigerator having a structure in which the freezer compartment 2 is provided in the middle stage. As shown in FIGS. 10 and 11, the heat from the ventilation mechanism in the above embodiment is compared with the structure in which the freezer 2 and the compressor 6 and the condenser 7 that are heat sources are adjacent to each other and heat leakage is likely to increase. The effect of reducing leakage is particularly great. In FIG. 10, the control device is not shown, but it goes without saying that a control device for adjusting the opening and closing of the opening and closing means 16 and 18 may be provided as in FIG.
[0040]
【The invention's effect】
According to the present invention, even if a refrigerant leak occurs in the refrigerator cabinet using the flammable refrigerant, the leaked refrigerant can be exhausted outside the cabinet, ensuring safety, and when the refrigerant leaks, A refrigerator that suppresses heat leakage and suppresses increase in power consumption can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view of a refrigerator according to the present invention.
FIG. 2 is a diagram illustrating a refrigeration cycle of a refrigerator.
FIG. 3 is a cross-sectional view of a refrigerator according to the present invention.
FIG. 4 is a cross-sectional view of a refrigerator according to the present invention.
FIG. 5 is a flowchart showing control according to the present invention.
FIG. 6 is a cross-sectional view of a refrigerator according to the present invention.
FIG. 7 is a flowchart showing control according to the present invention.
FIG. 8 is a cross-sectional view of a refrigerator according to the present invention.
FIG. 9 is a flowchart showing control according to the present invention.
FIG. 10 is a cross-sectional view of a refrigerator according to the present invention.
FIG. 11 is a cross-sectional view of a refrigerator according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Thermal insulation box, 2 ... Freezer compartment, 3 ... Refrigeration compartment, 4 ... Freezer compartment door, 5 ... Refrigeration compartment door, 6 ... Compressor, 7 ... Condenser, 8 ... Decompression device, 9 ... Evaporator, 10 ... Inside fan, 11 ... defrost heater, 12 ... communication pipe, 13 ... drain evaporating dish, 14 ... evaporator temperature detector, 15 ... evaporator intake duct, 16 ... communication pipe opening / closing means, 17 ... communication pipe outlet, 18 ... Evaporator suction duct opening / closing means, 18 ... control device, 20 ... refrigerant leak detector.

Claims (5)

外箱と内箱の間に断熱材を挿入してなる断熱箱体と、少なくとも圧縮機、凝縮器、減圧装置、蒸発器を接続し、冷媒としてイソブタンが封入されて構成された冷凍サイクルとを備え、前記蒸発器を前記断熱箱体内に有する冷蔵庫において、蒸発器下方に開口された孔と、この孔と前記断熱箱体外部とを連通する連通路とを備え、
前記連通路は、冷蔵庫運転時で庫内温度が低下している場合に閉となり、前記蒸発器の温度が予め設定された温度以上で 又は 前記蒸発器の除霜を行うヒータが通電したときに開となり、前記蒸発器の下方が前記断熱箱体外部と連通することを特徴とする冷蔵庫。
A heat insulating box formed by inserting a heat insulating material between an outer box and an inner box, and a refrigeration cycle configured by connecting at least a compressor, a condenser, a pressure reducing device, and an evaporator and enclosing isobutane as a refrigerant. A refrigerator having the evaporator in the heat insulation box, and a hole opened below the evaporator, and a communication path communicating the hole and the outside of the heat insulation box ,
The communication path is closed when the refrigerator temperature is low and the temperature of the evaporator is equal to or higher than a preset temperature. Or The refrigerator opened when the heater for defrosting the evaporator is energized, and the lower part of the evaporator communicates with the outside of the heat insulating box .
前記蒸発器の温度を検出する検出手段を備え、この検出手段からの検出結果に基づき前記連通路の開閉手段を開閉する請求項1記載の冷蔵庫。Wherein a detection means for detecting the temperature of the evaporator, the refrigerator according to claim 1, wherein the opening and closing the closing means of the communicating path based on the detection result from the detecting means. 庫内に設けられ冷媒の漏れを検知する検知手段を備え、前記検知手段が漏れを検知した際に、前記連通路の開閉手段が開く請求項1又は2記載の冷蔵庫。Comprising a detection means for detecting leakage of coolant provided in the refrigerator, when the detection means detects the leakage, refrigerator according to claim 1 or 2, wherein the opening and closing means of the communicating passage is opened. 蒸発器の下方に設けられ庫内の空気が流通する通気路を開閉する通気路開閉手段を備え、前記連通路の開閉手段が開状態である間は、通気路の開閉手段が閉状態である請求項2または、請求項3記載の冷蔵庫。It includes a vent passage opening and closing means for air in the provided box to open and close the air passage which flows below the evaporator, during opening and closing means of the communicating path is open, the closing means of the vent passage is in a closed state The refrigerator of Claim 2 or Claim 3. 前記蒸発器の除霜して生じる除霜水を溜める貯留部を備え、前記連通の前記断熱箱体外部側の開口部が前記貯留部の上方に設けられた請求項1ないし4のいずれかに記載の冷蔵庫。Comprising a reservoir for storing the defrosted water produced by defrosting of the evaporator, either 4 to the opening of the insulating box body outer side of the communication path claims 1 provided above the reservoir Refrigerator.
JP08081198A 1998-03-27 1998-03-27 refrigerator Expired - Fee Related JP3713948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08081198A JP3713948B2 (en) 1998-03-27 1998-03-27 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08081198A JP3713948B2 (en) 1998-03-27 1998-03-27 refrigerator

Publications (2)

Publication Number Publication Date
JPH11281248A JPH11281248A (en) 1999-10-15
JP3713948B2 true JP3713948B2 (en) 2005-11-09

Family

ID=13728860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08081198A Expired - Fee Related JP3713948B2 (en) 1998-03-27 1998-03-27 refrigerator

Country Status (1)

Country Link
JP (1) JP3713948B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441443B2 (en) * 2009-03-02 2014-03-12 ホシザキ電機株式会社 refrigerator
JP5591678B2 (en) * 2010-12-15 2014-09-17 ホシザキ電機株式会社 Storage

Also Published As

Publication number Publication date
JPH11281248A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
KR100586576B1 (en) Refrigerator
KR100687934B1 (en) Refrigerator and controlling method for the same
JP3443785B2 (en) refrigerator
CN102997558A (en) Refrigerator
KR100569891B1 (en) Method for control operation of pan in refrigerator
JPH11211293A (en) Refrigerator
JP4303062B2 (en) refrigerator
JP2003042655A (en) Refrigerator
JP3484131B2 (en) Freezer refrigerator
JP3713948B2 (en) refrigerator
CN106839608A (en) The condensation prevention control method of refrigerator and refrigerator with antifogging function
JP3733661B2 (en) refrigerator
JP2002188878A (en) Refrigerator
JP2003194446A (en) Refrigerator
JP3404313B2 (en) refrigerator
JP4476522B2 (en) Evaporator with defrost heater and refrigerator using the evaporator
JP2000097530A (en) Cooling storage shed
JP2709890B2 (en) Cooling system
JP2004144364A (en) Refrigerator
KR100569895B1 (en) Method for control temperature of refrigerator
KR100628126B1 (en) Defrosting Apparatus of Refrigerator and Method for Controlling the same
KR20090074292A (en) Refrigerator and method for controlling the same
KR100376787B1 (en) Structure For Preventing Dew From Forming Of Kimchi Storage
JP2001355955A (en) Refrigerator
US20220205698A1 (en) Refrigerator and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees