JP3713559B2 - Manufacturing method of inner diameter enlarged bearing in inner hole - Google Patents

Manufacturing method of inner diameter enlarged bearing in inner hole Download PDF

Info

Publication number
JP3713559B2
JP3713559B2 JP33255195A JP33255195A JP3713559B2 JP 3713559 B2 JP3713559 B2 JP 3713559B2 JP 33255195 A JP33255195 A JP 33255195A JP 33255195 A JP33255195 A JP 33255195A JP 3713559 B2 JP3713559 B2 JP 3713559B2
Authority
JP
Japan
Prior art keywords
sizing
diameter
end side
core
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33255195A
Other languages
Japanese (ja)
Other versions
JPH09151942A (en
Inventor
陽二 竹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PORITE CORPORATION
Original Assignee
PORITE CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PORITE CORPORATION filed Critical PORITE CORPORATION
Priority to JP33255195A priority Critical patent/JP3713559B2/en
Publication of JPH09151942A publication Critical patent/JPH09151942A/en
Application granted granted Critical
Publication of JP3713559B2 publication Critical patent/JP3713559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は内径中間部空洞状軸受およびその製造方法に係り、内孔中間部が内挿された軸材と接摺しない空洞状部軸受機構を形成すると共に軸受機能の精度を高め、しかも軸受サイジングに対する設定を容易化することのできる内径中間部空洞状軸受およびその好ましい製造方法を提供しようとするものである。
【0002】
【従来の技術】
回転軸の軸受を的確化するためにはそれなりに長い範囲に亘って支承することが好ましいが、このために図3に示すように内径の数倍以上のように長い長大軸受31を軸30に対して適用することが必要である。然しこのように長い軸受はその長さと共に増大する軸受面積に比例して摺動摩擦抵抗が増大し、回転駆動力の摩擦抵抗によるロスが大であると共に軸受時における発熱量なども大とならざるを得ない。また成程成形製作の容易な圧粉成形焼結金属体であるとしても長大軸受は原料粉末の金型への充填性が悪いためその製作が容易でない。
【0003】
そこで回転軸30の一端側を図4に示すようにハウジング35に用いられた複数の短小軸受32、32で支承することが考えられ、このようにすると各支承32は短小なものでよいことになり、製作も容易となる。然しこの場合においては軸受32、32において同軸度を得ることが非常に困難であって適正な同軸度が得られないものは軸受け機能において甚だしく劣ったものとなり、また適正な同軸精度をもった設定をなすための工数が非常に大きいこととなる。
【0004】
上記したような図3および図4によるものの不利を避けるべく図5に示すように焼結金属多孔質筒体40の中間部内側を穿削工具によって空洞状の穿削加工41して両端部に軸材30に対する接摺部を形成することが考えられ、このような穿削加工部41により軸材30が回転した場合における摩擦抵抗を大幅に低減し得る。
【0005】
また特開昭58−84222においては、段差形状の型孔を持つ上型および下型と下型の型孔中心を貫通するサイジングコアとを備える金型を用い、筒状焼結体の内径面、上下両端面および外径両端部を拘束した状態で軸方向に圧縮してその外径中央部を膨出せしめ、それに伴う塑性流動により内径中央部を拡張させることを特徴とする機械加工によらない逃げを有する焼結含油軸受の製造方が提案されている。
【0006】
更に本出願人側においても特開平2−8302において、図6に示すような構成を提案している。即ち、回転軸30に対し軸受33の内外端部に形成された接摺部34、35で接合支持するようにしたもので、その製造は図7(A)のように上下パンチ36、37を有すると共に下パンチ37に段つきコア38を挿入セットしたダイ39内に原料粉体45を装入して圧粉成形してからサイジング工程に移して同図(B)(C)(D)のようにサイジングするものである。
【0007】
即ち、内孔53に段部52の形成された圧粉成形体51は図7(B)のようなコア54を有する下パンチ55と、コア56を有する上パンチ57をもったサイジング58によってサイジング処理する。つまり中間に段部58aを形成したサイジングダイ58に圧粉成形体51を図8(C)のように圧入サイジングし、外径がストレートである圧粉成形体51の下部を前記段部58aで絞り込み、上パンチ57のコア56に対し下端側を縮径した同図(D)のような接摺部59となし、上下に回転軸30に対する接摺部59、59aをもった完成軸受体30を得るものである。
【0008】
【発明が解決しようとする課題】
前記した図5のものは軸材30に対する接摺部が少くて摩擦抵抗を大幅に低減し得るし、ハウジングに対する取付けについても従来一般のものと同様であるが、その穿削加工部41の形成に当っては圧粉成形焼結によるものより著しく莫大な工数を必要とし、必然的に相当に高価なものとならざるを得ない。
【0009】
特開昭58−84222によるものにおいては穿削加工することなしに目的の製品を得ることができ、また含油軸受として給油操作する必要はないが、軸方向圧縮によって外径中央部に膨出部分が形成されることが基本であって、それに伴う内径中央部の拡張による逃げは必然的に限定されたものとなる。しかも機器ハウジングに設定した場合には前記した外径中央部の膨出部分によってハウジングとの間に空隙が発生せざるを得ず、ハウジングに対する取付けが困難で安定しない不利がある。
【0010】
更に前記した特開平2−8302によるものは焼結軸受材の内径中間部に適切な非接触部をもった製品として得ることができ、回転軸の回転時における摺動摩擦抵抗が少く、しかも同軸度を持った軸受部を形成し得るが、軸受体の長さ方向における外径が異っているのでハウジングにセットした場合に空隙を残すこととなり、やはりその設定状態が安定しない不利がある。また軸の回転により発生する油圧が外径側空隙部分に逃げるため油膜厚さが薄くなって金属接触となり易い。
【0011】
【課題を解決するための手段】
本発明は上記したような従来技術によるものの不利、欠点を解消することについて検討を重ね、量産的且つ低コストに得ることができると共に含油軸受であってしかも給油を必要としない軸受において設定されるハウジングとの間に実質的な空隙を残すことのない設定を得しめ、且つ軸材との間における充分な摩擦低減を図ると共に軸心確保も適切に得しめるようにしたものであって、以下の如くである。
【0014】
) 一端側の外径を中間部ないし他端側外径より大径状として圧粉成形した中間成形体を焼結してからサイジング型の下パンチ上に他端側を支持せしめてセットし、該中間成形体を先端側が小径とされた段つきコアを有する上パンチによりサイジング型内に圧入するに当り、該上パンチにおけるコアの段部をサイジング型内に進入せしめた状態で前記中間成形体の他端側をサイジングして中間部内孔を大径状に成形し、次いで前記コア段部をサイジング型の成形域から引き抜いた状態で該中間成形体端側の外径大径状部分をサイジングして外径ストレート状とすると共に上記コアの先端側小径部により一端側内径を上記した他端側内径と同径状にサイジングすることを特徴とした内孔中間部拡径軸受の製造方法。
【0015】
) 一端側の外径を中間部ないし他端側外径より大径状として圧粉成形した中間成形体を焼結してから前記大径状端側を大径状のまま受入るようにされた第1のサイジング型における下パンチ上に前記中間成形体の他端側をセットし、先端側を小径とした段つきコアを有する上パンチのコア段部を上記第1サイジング型内に進入せしめた状態で第1段のサイジングをなし、次いでその大径状外径部を受入れてガイド成形するダイにおいて上パンチにより第2の圧下サイジングして大径状外径部を絞り込み、外径を同径化ストレート形状とすると同時に大径状内径部の絞り込みにより縮径された内径部および他端側内径部をサイジングコアにより仕上げ軸材接摺部とすることを特徴とした内孔中間部拡径軸受の製造方法。
【0016】
【発明の実施の形態】
上記したような本発明によるものの具体的な実施態様を添附図面に示すものについて説明すると、本発明による軸受は鉄系や銅系およびこれに固形その他の金属粉末による圧粉成形焼結体であって、図1の(F)または図2の(G)に示すような構成を有しており、即ち外面はストレート状の圧粉成形体1であって、内径中間部が軸材に接摺しないように大径化された空洞部2とされると共に該空洞部2の両端側に夫々軸材接摺部3、3を形成した筒状焼結多孔組織体であって、該圧粉成形筒状焼結多孔組織体1の外周面がストレート状面4とされ、しかもその軸方向長さが内径、即ち前記軸材接摺部3の内径の5倍以上とされたものである。
【0017】
上記したような本発明によるものの製造過程についてはそれぞれ図1と図2に示されている如くであって、先ず図1のものは圧粉成形された中空成形体5に対してサイジングすることにより単一のサイジング過程で内孔の中間部を拡径して空洞部2とすると共に一端部を縮径して軸材接摺部3となし、次いで圧粉成形中空筒体の他端部における肉厚全般を縮径して外径ストレートでしかも他端部内径を小径化してもう1つの軸材接摺部3としたものである。
【0018】
その仔細を説明すると、圧粉成形は、図1の(A)に示すようにコア8を挿通した下パンチ7をセットした成形ダイ10に金属粉末または金属粉末に対し適宜潤滑剤を添加した圧粉用原材料を装入し、前記コア8をガイドして内孔9を有する上パンチ6を圧下し、同図(B)のように圧粉成形する。即ち中空成形体5は上端側が大径状に張出した大径状部5aとして成形され、このように成形されたものは下パンチ7を上昇せしめて中空成形体5を取出す。
【0019】
上記のようにして取出された中空成形体5は焼結処理され、次いで図1の(C)に示すようにサイジングダイ11に移され、その下パンチ17のコア18をガイドとして該下パンチ17上に挿入セットされたものに対して先端部を細径部13aとしたコア13を備えた上パンチ16を対設し、中空成形体5をサイジングダイ11に圧入してサイジングする。即ちサイジングダイ11の開口部には絞り成形部14が形成されていて上パンチ16で圧入される中空成形体5は該成形部14でサイジングされるが斯うしたサイジングに際しては上パンチ16のコア13が先ず降下し図1の(D)に示すように下パンチ17のコア孔17aに挿入された状態で図1の(D)(E)のように上パンチ16が圧下されることにより上パンチ16の的確なサイジングダイ11内への圧下と、該圧下によるサイジングが行われる。
【0020】
つまり上パンチ16の降下ないし中空成形体5に対するサイジングは前記上パンチコア13の段部13bが図1の(D)に示すようにサイジングダイ11中に適度に進入し、中空成形体5の内孔を拡径した状態として行われ、次いでコア13を同図(E)のように引抜くと共に上パンチ16を圧下したサイジングを行うもので、斯うしてサイジングを終えたものはその内孔5aにおける中間部に前記コア13における段部13bより上方の大径部分で成形された空洞状部2の形成されたものとなる。即ちその後上パンチ16のコア13を上昇せしめると共に上パンチ16を同図(E)のように圧下して成形体3をサイジングすることにより図1の(F)に示すような空洞状部2を有し、外面ストレート4を備えた断面構造の製品1を得ることができる。
【0021】
前記した図1のものは単一のサイジング工程で目的の軸受を得しめるようにしたものであるが、図2には本発明により2段のサイジング工程を経て目的の製品を得しめる場合が示されている。即ちこの図2のものにおいて、その(A)(B)のような過程で得られる中空成形体5は図1に示した場合と全く同様であり、更に同図(C)のサイジングスタート状態も図1のものと同じであるが、サイジングダイ11における絞り成形部14はその上方にストレート部19が形成されたものとしてサイジングし、サイジング上パンチ16を圧下すると共にそのコア13における段部13bをダイ11内に進入させて図1の(D)のように成形することにより空洞状部2を形成することができる。
【0022】
上記のようにして空洞状部2の形成された中間成形体20は更に図2の(E)に示す如く第2の絞り部24のみを有する第2のサイジングダイ21に移され、下パンチ27に対し上パンチ26を圧下して空洞状部2の上端側を同図(F)のように上パンチコア23に対して圧下サイジングするならば図1のものと同様な図2(F)の如き圧粉成形体1を得ることができる。
【0023】
上記したような本発明によるものは筒状に成形された圧粉成形焼結体を軸方向において順次にサイジングし中間部の大径化された空洞状部の両端部に夫々軸材接摺部を形成することにより圧粉成形焼結体の軸方向においてサイジングによる強度性を適切に形成し、特に中間部を大径化された空洞状部とすることによっても該焼結体の内面において好ましい強度性を得しめて比較的長い軸受体の全般において安定した強度を確保する。
【0024】
一端側外径を中間部ないし他端側の外径より大径状態として圧粉成形した中間成形筒体とすることにより一端側をサイジングで縮径するのに適した形態となし、該中間成形筒体を焼結してからサイジングするに当り、前記中間成形筒体の他端側内孔を軸受孔部とすると共に中間部を拡径して空洞部となし、次いで前記のように大径状態とされた一端側の内外径を縮径して全体の外径をストレート状とすると共に一端側内孔を軸受孔部とすることにより外径がストレートで中間部に空洞部を形成し、しかも両端部に軸受孔部をそれぞれ形成した軸受を適切に得しめる。
【0025】
一端側の外径を中間部ないし他端側外径より大径状として圧粉成形した中間成形体を焼結してからサイジング型の下パンチ上に他端側を支持せしめてセットし、該中間成形体を先端側が小径とされた段つきコアを有する上パンチによりサイジング型内に圧入するに当り、該上パンチにおけるコアの段部をサイジング型内に進入せしめた状態で前記中間成形体の他端側をサイジングして中間部内孔を大径状に成形したことにより中間部内径を大径化空洞部とした成形体を形成する。
【0026】
上記のようにして中間部内孔を大径状に成形したものを、次いで前記コア段部をサイジング型の成形域から引き抜いた状態で該中間成形体他端側の外径大径状部分をサイジングして外径ストレート状とすると共に上記コアの先端側小径部により一端側内径を上記した他端側内径と同径状にサイジングすることにより単一のサイジング機構によって中間部内孔を大径状とし、しかも両端部内孔を軸受孔とし、外径ストレート状の軸受を適切に得しめる。
【0027】
一端側の外径を中間部ないし他端側外径より大径状として圧粉成形した中間成形体を焼結してから前記大径状他端側を大径状のまま受入るようにされた第1のサイジング型における下パンチ上に前記中間成形体の他端側をセットし、先端側を小径とした段つきコアを有する上パンチのコア段部を上記第1サイジング型内に進入せしめた状態で第1段のサイジングをなすことにより中間的サイジング状態を能率的に実施せしめ得る。
【0028】
上記のように第1段サイジングしたものを次いでその大径状外径部を受入れてガイド成形するダイにおいて上パンチにより第2の圧下サイジングして大径状外径部を絞り込み、外径を同径化ストレート形状とすると同時に大径状内径部の絞り込みにより縮径された内径部および他端側内径部をサイジングコアにより仕上げ軸材接摺部とすることにより能率的にサイジングして中間部内径が大径状であり、両端側が軸受孔であって、しかも外径がストレート状の軸受体を量産的且つ的確に得しめる。
【0029】
【発明の効果】
以上説明したような本発明によるときは内孔中間部が挿入された軸材と接摺することのない空洞状軸受を得しめて軸受機能の高精度化と軸受時における摩擦抵抗の低減を得しめると共に軸受ハウジングに対する設定を容易化した軸受部体を平易且つ安定して提供し得るものであるから工業的にその効果の大きい発明である。
【図面の簡単な説明】
【図1】本発明による製造過程の1つを順次に示した説明図である。
【図2】本発明によるもう1つの製造過程を示した図1と同様な説明図である。
【図3】従来のそれなりに長い範囲に亘って支承するようにした軸受の基本的構成についての断面図である。
【図4】その分割された軸受による支承構成の断面的説明図である。
【図5】同じく従来の穿削加工による軸受の断面的説明図である。
【図6】本出願人により提案された軸受の断面図である。
【図7】図6に示したものの製造過程を示した説明図である。
【符号の説明】
1 圧粉成形体
2 空洞部
3 軸材接摺部
4 ストレート状外周面
5 中空成形体
5a その大径部
6 上パンチ
7 下パンチ
8 そのコア
9 内孔(上パンチ6の)
10 成形ダイ
11 サイジングダイ
12 その絞り成形部
13 上パンチコア
13a その細径部
13b その段部
14 絞り部
15 上パンチ断面
16 上パンチ(サイジング用)
17 下パンチ(サイジング用)
17a コア孔
18 下パンチコア
19 ストレート部
20 中間成形体
21 第2サイジングダイ
23 上パンチコア
24 第2サイジングダイの絞り部
25 上パンチ端面
26 その上パンチ
27 その下パンチ
28 下パンチコア
30 従来の軸
31 その軸受
32 従来の短小軸受
33 軸受
34 接摺部
35 接摺部
36 上パンチ
37 下パンチ
38 段つきコア
39 ダイ
40 焼結金属多孔質筒体
41 空洞状穿削加工
[0001]
[Industrial application fields]
The present invention relates to an inner diameter intermediate portion hollow bearing and a method of manufacturing the same, and forms a hollow portion bearing mechanism that does not contact with a shaft member in which an inner hole intermediate portion is inserted, improves the accuracy of the bearing function, and further provides bearing sizing. It is an object of the present invention to provide an inner diameter intermediate portion hollow bearing capable of facilitating the setting for and a preferred manufacturing method thereof.
[0002]
[Prior art]
In order to make the bearing of the rotary shaft accurate, it is preferable to support it over a relatively long range. For this reason, as shown in FIG. 3, a long and large bearing 31 that is several times larger than the inner diameter is attached to the shaft 30. It is necessary to apply to this. However, in such a long bearing, the sliding frictional resistance increases in proportion to the bearing area that increases with the length, and the loss due to the frictional resistance of the rotational driving force is large and the amount of heat generated during the bearing does not increase. I do not get. Even if it is a compacted and sintered metal body that is easy to form and manufacture, the long bearing is not easy to manufacture because the raw material powder is poorly filled into the mold.
[0003]
Therefore, it is conceivable that one end side of the rotary shaft 30 is supported by a plurality of short bearings 32, 32 used in the housing 35 as shown in FIG. 4, and in this way, each support 32 may be short. It is easy to manufacture. However, in this case, it is very difficult to obtain the coaxiality in the bearings 32 and 32, and those in which the appropriate coaxiality cannot be obtained are extremely inferior in the bearing function, and are set with appropriate coaxial accuracy. The man-hours for achieving this will be very large.
[0004]
In order to avoid the disadvantages of FIG. 3 and FIG. 4 as described above, as shown in FIG. 5, the inside of the intermediate portion of the sintered metal porous cylindrical body 40 is hollow drilled 41 with a drilling tool at both ends. It is conceivable to form a contact portion with the shaft member 30, and the frictional resistance when the shaft member 30 is rotated by such a drilling portion 41 can be greatly reduced.
[0005]
In Japanese Patent Laid-Open No. 58-84222, an inner diameter surface of a cylindrical sintered body is used by using a die having an upper die having a step-shaped die hole and a lower die and a sizing core penetrating the center of the lower die hole. According to machining, characterized in that both the upper and lower end faces and both ends of the outer diameter are compressed in the axial direction to bulge the outer diameter central section, and the inner diameter central section is expanded by the plastic flow associated therewith. A method of manufacturing a sintered oil-impregnated bearing having no relief has been proposed.
[0006]
Further, the applicant also proposes a configuration as shown in FIG. That is, the rotary shaft 30 is joined and supported by the contact portions 34 and 35 formed at the inner and outer end portions of the bearing 33, and the manufacture of the upper and lower punches 36 and 37 is performed as shown in FIG. The raw material powder 45 is placed in a die 39 having a stepped core 38 inserted and set in the lower punch 37 and compacted, and then transferred to a sizing process, as shown in FIGS. Sizing is like that.
[0007]
That is, the green compact 51 in which the step 52 is formed in the inner hole 53 is sized by a sizing 58 having a lower punch 55 having a core 54 and an upper punch 57 having a core 56 as shown in FIG. To process. In other words, the compacted body 51 is press-fitted and sized as shown in FIG. 8C into a sizing die 58 having a stepped portion 58a in the middle, and the lower portion of the compacted compact 51 having a straight outer diameter is the stepped portion 58a. The finished bearing body 30 is formed with a contact portion 59 as shown in FIG. 6D, which is narrowed down and reduced in diameter on the lower end side with respect to the core 56 of the upper punch 57, and has contact portions 59, 59a with respect to the rotary shaft 30 up and down. Is what you get.
[0008]
[Problems to be solved by the invention]
The above-mentioned FIG. 5 has few sliding portions with respect to the shaft member 30 and can greatly reduce the frictional resistance, and the attachment to the housing is the same as the conventional one, but the formation of the drilling portion 41 is performed. In this case, the number of man-hours is remarkably enormous as compared with that obtained by compacting and sintering, and it is inevitably expensive.
[0009]
In Japanese Patent Laid-Open No. 58-84222, the desired product can be obtained without drilling, and it is not necessary to operate as an oil-impregnated bearing. Is basically formed, and the escape due to the expansion of the central portion of the inner diameter is inevitably limited. In addition, when the device housing is set, there is a disadvantage that an air gap must be generated between the housing and the bulging portion of the central portion of the outer diameter, and the mounting to the housing is difficult and unstable.
[0010]
Further, according to the above-mentioned Japanese Patent Laid-Open No. 2-8302 can be obtained as a product having an appropriate non-contact part at the inner diameter intermediate part of the sintered bearing material, and the sliding frictional resistance during rotation of the rotary shaft is small, and the coaxiality is obtained. However, since the outer diameter in the length direction of the bearing body is different, a gap is left when set in the housing, and there is a disadvantage that the setting state is not stable. Further, since the hydraulic pressure generated by the rotation of the shaft escapes to the outer diameter side gap portion, the oil film thickness becomes thin and metal contact is likely to occur.
[0011]
[Means for Solving the Problems]
The present invention has been studied in order to eliminate the disadvantages and disadvantages of the prior art as described above, and is set in a bearing that can be obtained in mass production and at low cost, and is an oil-impregnated bearing that does not require lubrication. A setting that does not leave a substantial gap between the housing and the shaft material is obtained, and a sufficient friction reduction with the shaft material is ensured and the shaft center is appropriately secured. It is like this.
[0014]
( 1 ) After sintering the green compact formed by compacting the outer diameter on the one end side larger than the outer diameter on the other end side, the other end side is supported on the lower punch of the sizing die and set When the intermediate molded body is press-fitted into the sizing die by the upper punch having a stepped core having a small diameter at the tip side, the intermediate portion is inserted in the sizing die while the stepped portion of the core in the upper punch is entered into the sizing die. the other end of the molded article sized molding the intermediate portion bore to the large径状, then the outer large diameter径状of the intermediate molded body one end side in a state of pulling from the molding zone of the sizing type the core stage portion An inner bore intermediate diameter expanded bearing characterized by sizing a portion to have a straight outer diameter and sizing the inner diameter at one end to the same diameter as the inner diameter at the other end by the small diameter portion at the distal end side of the core. Production method.
[0015]
(2) while the outer diameter of one end of the powder molded preform from the middle portion to the other end side outer diameter as large径状after sintering the large径状one end side of the large径状accept A core step portion of the upper punch having a stepped core with the other end side of the intermediate molded body set on the lower punch in the first sizing die and having a small diameter at the tip side is disposed in the first sizing die. The first stage sizing is made in the state of entering, and then the large-diameter outer diameter portion is received and the second die is sized by the upper punch in the die for guide molding to narrow down the large-diameter outer diameter portion. Inner hole middle, characterized in that the inner diameter part reduced in diameter by narrowing down the larger inner diameter part and the inner diameter part on the other end side are finished shaft contact parts with a sizing core Method for manufacturing a partially expanded bearing.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A specific embodiment of the present invention as described above will be described with reference to the accompanying drawings. A bearing according to the present invention is a compacted sintered body made of iron, copper, solid or other metal powder. 1 (F) or FIG. 2 (G), that is, the outer surface is a straight powder compact 1, and the intermediate portion of the inner diameter is in contact with the shaft. A cylindrical sintered porous structure in which the diameter of the cavity portion 2 is increased so as not to be formed, and shaft member contact portions 3 and 3 are formed on both ends of the cavity portion 2, respectively. The outer peripheral surface of the cylindrical sintered porous structure 1 is a straight surface 4, and the axial length thereof is an inner diameter, that is, five times or more the inner diameter of the shaft material contacting portion 3.
[0017]
The manufacturing process of the present invention as described above is as shown in FIGS. 1 and 2, respectively. First, the thing of FIG. 1 is obtained by sizing the compacted hollow molded body 5. In a single sizing process, the middle part of the inner hole is enlarged to form the cavity part 2 and the one end part is reduced in diameter to form the shaft material sliding part 3, and then the other end part of the compacted hollow cylinder The overall wall thickness is reduced to a straight outer diameter, and the inner diameter at the other end is reduced to form another shaft contact portion 3.
[0018]
Describing the details, the compacting is performed by compacting metal powder or metal powder with an appropriate lubricant added to a molding die 10 in which a lower punch 7 inserted through a core 8 is set as shown in FIG. Raw material for powder is charged, the core 8 is guided, the upper punch 6 having the inner hole 9 is pressed down, and compacted as shown in FIG. That is, the hollow molded body 5 is molded as a large-diameter portion 5a with the upper end projecting into a large diameter, and the molded body thus formed raises the lower punch 7 and takes out the hollow molded body 5.
[0019]
The hollow molded body 5 taken out as described above is sintered, and then transferred to the sizing die 11 as shown in FIG. 1C. The lower punch 17 is guided by the core 18 of the lower punch 17 as a guide. An upper punch 16 provided with a core 13 having a small-diameter portion 13a at the tip end portion is set on the one inserted and set above, and the hollow molded body 5 is press-fitted into the sizing die 11 and sized. In other words, the drawing part 14 is formed in the opening of the sizing die 11, and the hollow molded body 5 press-fitted by the upper punch 16 is sized by the molding part 14. In such sizing, the core of the upper punch 16 is used. 13 is first lowered and inserted into the core hole 17a of the lower punch 17 as shown in FIG. 1D, and the upper punch 16 is pressed down as shown in FIGS. The punch 16 is accurately pressed into the sizing die 11 and sizing is performed by the pressing.
[0020]
In other words, when the upper punch 16 is lowered or the hollow molded body 5 is sized, the step portion 13b of the upper punch core 13 appropriately enters the sizing die 11 as shown in FIG. Is then expanded, and then the core 13 is pulled out as shown in FIG. 5E and the upper punch 16 is squeezed, and thus the sizing is completed in the inner hole 5a. The hollow portion 2 is formed in the middle portion with a large diameter portion above the step portion 13b in the core 13. That is, the core 13 of the upper punch 16 is then lifted and the upper punch 16 is squeezed down as shown in FIG. 5E to size the molded body 3, thereby forming the hollow portion 2 as shown in FIG. The product 1 having a cross-sectional structure having the outer straight 4 can be obtained.
[0021]
In FIG. 1, the target bearing is obtained in a single sizing process, but FIG. 2 shows the case where the target product is obtained through two sizing processes according to the present invention. Has been. That is, in FIG. 2, the hollow molded body 5 obtained in the process of (A) and (B) is exactly the same as the case shown in FIG. 1, and the sizing start state of FIG. 1 is the same as that in FIG. 1, but the drawing portion 14 in the sizing die 11 is sized as a straight portion 19 formed thereon, and the sizing upper punch 16 is squeezed and the step portion 13b in the core 13 is formed. The hollow portion 2 can be formed by entering the die 11 and forming it as shown in FIG.
[0022]
The intermediate molded body 20 in which the hollow portion 2 is formed as described above is further transferred to the second sizing die 21 having only the second narrowed portion 24 as shown in FIG. On the other hand, if the upper punch 26 is squeezed down and the upper end side of the hollow portion 2 is squeezed down with respect to the upper punch core 23 as shown in FIG. 2F, the same as FIG. The green compact 1 can be obtained.
[0023]
As described above, according to the present invention, the powder compacted sintered body formed into a cylindrical shape is sequentially sized in the axial direction, and the shaft material sliding portions are respectively provided at both ends of the hollow portion having a large diameter at the intermediate portion. In the axial direction of the powder compacted sintered body, the strength by sizing is appropriately formed, and the inner part of the sintered body is also preferable in particular by making the middle part a hollow-shaped part. By obtaining strength, a stable strength is ensured for a relatively long bearing body in general.
[0024]
By adopting an intermediate molded cylinder that is compacted with the outer diameter of the one end side being larger than the outer diameter of the intermediate part or the other end side, the form suitable for reducing the diameter by sizing is achieved. In sizing after sintering the cylindrical body, the inner hole on the other end side of the intermediate molded cylinder is used as a bearing hole, and the intermediate part is enlarged to form a hollow part. By reducing the inner and outer diameters on the one end side in a state to make the entire outer diameter straight and making the one end side inner hole a bearing hole portion, the outer diameter is straight and a hollow portion is formed in the intermediate portion, In addition, a bearing having bearing holes formed at both ends can be obtained appropriately.
[0025]
After sintering the green compact formed by compacting the outer diameter on the one end side to be larger than the outer diameter on the intermediate part or the other end side, set the other end side supported on the lower punch of the sizing mold, When the intermediate molded body is press-fitted into the sizing mold by the upper punch having a stepped core having a small diameter at the tip side, the intermediate molded body is inserted into the sizing mold in a state where the step portion of the core in the upper punch is entered into the sizing mold. By sizing the other end side, the intermediate part inner hole was formed into a large diameter, thereby forming a molded body having an intermediate part inner diameter having a larger diameter.
[0026]
Sizing the outer diameter large diameter part on the other end side of the intermediate molded body in the state where the intermediate part inner hole is molded in a large diameter as described above, and then the core step part is pulled out from the molding area of the sizing mold The inner diameter of the intermediate portion is made large by a single sizing mechanism by sizing the outer diameter straight and sizing the inner diameter of the one end to the same diameter as the inner diameter of the other end. In addition, the inner holes at both ends are used as bearing holes, and an outer diameter straight bearing can be obtained appropriately.
[0027]
After sintering the green compact formed by compacting the outer diameter on the one end side to be larger than the outer diameter on the intermediate part or the other end side, the other end side on the large diameter side is received in a large diameter form. The other end side of the intermediate molded body is set on the lower punch in the first sizing die, and the core step portion of the upper punch having a stepped core having a small diameter at the tip side is caused to enter the first sizing die. The intermediate sizing state can be efficiently performed by performing the first stage sizing in the above state.
[0028]
In the die that receives the large-diameter outer diameter portion as described above and then receives the large-diameter outer diameter portion and guide-molds it, the second punch is sized by the upper punch to narrow down the large-diameter outer diameter portion, and the outer diameter is the same. Efficiently sizing the inner diameter of the intermediate part by making the inner diameter part reduced by narrowing the large diameter inner diameter part and the inner diameter part on the other end side into the finished shaft material sliding part with the sizing core. Has a large diameter, both ends are bearing holes, and a straight outer diameter bearing body can be mass-produced and accurately obtained.
[0029]
【The invention's effect】
According to the present invention as described above, a hollow bearing that does not come into contact with the shaft member into which the inner hole intermediate portion is inserted can be obtained, and the accuracy of the bearing function can be improved and the frictional resistance during the bearing can be reduced. At the same time, it is an invention that is industrially highly effective because it can provide a bearing body that can be easily and stably set to the bearing housing.
[Brief description of the drawings]
FIG. 1 is an explanatory view sequentially showing one of manufacturing processes according to the present invention.
FIG. 2 is an explanatory view similar to FIG. 1 showing another manufacturing process according to the present invention.
FIG. 3 is a cross-sectional view of a basic configuration of a bearing that is supported over a conventional long range.
FIG. 4 is a cross-sectional explanatory view of a support structure using the divided bearings.
FIG. 5 is a cross-sectional explanatory view of a bearing similarly formed by conventional drilling.
FIG. 6 is a cross-sectional view of a bearing proposed by the present applicant.
7 is an explanatory view showing a manufacturing process of what is shown in FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compacting body 2 Cavity part 3 Shaft material contact part 4 Straight outer peripheral surface 5 Hollow molded object 5a The large diameter part 6 Upper punch 7 Lower punch 8 The core 9 Inner hole (of upper punch 6)
DESCRIPTION OF SYMBOLS 10 Forming die 11 Sizing die 12 The draw forming part 13 Upper punch core 13a The thin diameter part 13b The step part 14 The drawing part 15 The upper punch cross section 16 The upper punch (for sizing)
17 Lower punch (for sizing)
17a Core hole 18 Lower punch core 19 Straight portion 20 Intermediate formed body 21 Second sizing die 23 Upper punch core 24 Second sizing die constriction portion 25 Upper punch end surface 26 Upper punch 27 Lower punch 28 Lower punch core 30 Conventional shaft 31 Bearing 32 Conventional short bearing 33 Bearing 34 Contact portion 35 Contact portion 36 Upper punch 37 Lower punch 38 Stepped core 39 Die 40 Sintered metal porous cylindrical body 41 Hollow drilling

Claims (2)

一端側の外径を中間部ないし他端側外径より大径状として圧粉成形した中間成形体を焼結してからサイジング型の下パンチ上に他端側を支持せしめてセットし、該中間成形体を先端側が小径とされた段つきコアを有する上パンチによりサイジング型内に圧入するに当り、該上パンチにおけるコアの段部をサイジング型内に進入せしめた状態で前記中間成形体の他端側をサイジングして中間部内孔を大径状に成形し、次いで前記コア段部をサイジング型の成形域から引き抜いた状態で該中間成形体端側の外径大径状部分をサイジングして外径ストレート状とすると共に上記コアの先端側小径部により一端側内径を上記した他端側内径と同径状にサイジングすることを特徴とした内孔中間部拡径軸受の製造方法。Sintering the green compact with the outer diameter of one end side larger than the outer diameter of the intermediate portion or the other end side, and then setting the other end side supported on the lower punch of the sizing mold, When the intermediate molded body is press-fitted into the sizing mold by the upper punch having a stepped core having a small diameter at the tip side, the intermediate molded body is inserted into the sizing mold in a state where the step portion of the core in the upper punch is inserted into the sizing mold. and sizing the other end molding the intermediate portion bore to the large径状, then sizing the outer large diameter径状portion of the intermediate molded body one end side in a state of pulling from the molding zone of the sizing type the core stage portion A method of manufacturing an inner-hole intermediate-part enlarged-diameter bearing, wherein the outer diameter is straight, and the inner diameter of one end is sized to be the same as the inner diameter of the other end by the small diameter part on the tip side of the core. 一端側の外径を中間部ないし他端側外径より大径状として圧粉成形した中間成形体を焼結してから前記大径状端側を大径状のまま受入るようにされた第1のサイジング型における下パンチ上に前記中間成形体の他端側をセットし、先端側を小径とした段つきコアを有する上パンチのコア段部を上記第1サイジング型内に進入せしめた状態で第1段のサイジングをなし、次いでその大径状外径部を受入れてガイド成形するダイにおいて上パンチにより第2の圧下サイジングして大径状外径部を絞り込み、外径を同径化ストレート形状とすると同時に大径状内径部の絞り込みにより縮径された内径部および他端側内径部をサイジングコアにより仕上げ軸材接摺部とすることを特徴とした内孔中間部拡径軸受の製造方法。Is the outer diameter of one end side to the middle portion or the intermediate molded body compacted as a large径状from the other end side outer diameter after sintering large径状one end side remains large径状accept so The other end side of the intermediate molded body is set on the lower punch in the first sizing die, and the core step portion of the upper punch having a stepped core having a small diameter at the tip side is caused to enter the first sizing die. Sizing in the first stage, and then receiving the large-diameter outer diameter portion, and then sizing the second large-diameter outer diameter portion by the second punch with the upper punch in the die for guide molding, and the same outer diameter. Inner diameter expansion of the inner hole, characterized in that the inner diameter part reduced by narrowing the large diameter inner diameter part and the inner diameter part on the other end side are finished shaft contact parts by a sizing core. Manufacturing method of bearing.
JP33255195A 1995-11-29 1995-11-29 Manufacturing method of inner diameter enlarged bearing in inner hole Expired - Lifetime JP3713559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33255195A JP3713559B2 (en) 1995-11-29 1995-11-29 Manufacturing method of inner diameter enlarged bearing in inner hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33255195A JP3713559B2 (en) 1995-11-29 1995-11-29 Manufacturing method of inner diameter enlarged bearing in inner hole

Publications (2)

Publication Number Publication Date
JPH09151942A JPH09151942A (en) 1997-06-10
JP3713559B2 true JP3713559B2 (en) 2005-11-09

Family

ID=18256192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33255195A Expired - Lifetime JP3713559B2 (en) 1995-11-29 1995-11-29 Manufacturing method of inner diameter enlarged bearing in inner hole

Country Status (1)

Country Link
JP (1) JP3713559B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175381A (en) * 2018-10-12 2019-01-11 常州格瑞特粉末冶金有限公司 A kind of hollow oiliness bearing of powder metallurgy and moulding process

Also Published As

Publication number Publication date
JPH09151942A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
JP2005040842A (en) Method of forming hollow stepped shaft
JP3347451B2 (en) Molding apparatus for green compaction and molding method
JP3713559B2 (en) Manufacturing method of inner diameter enlarged bearing in inner hole
JPH07116490B2 (en) Manufacturing method of sintered bearing material
JPH07332363A (en) Inside diameter intermediate cavity shaped bearing and manufacture thereof
JP2004082141A (en) Method and apparatus for manufacturing hollow stepped shaft
JP2001121241A (en) Hollow shaft and producting method thereof
JP2007083259A (en) Roller for roller bearing and producing method therefor
JP2743240B2 (en) Inner diameter spline molding method
JP2934470B2 (en) Manufacturing method of sintered oil-impregnated bearing
JPS6123545A (en) Working method of valve-shaped forming body
JP2002045998A (en) Press forming machine
JP2841190B2 (en) Sintered bearing material and its manufacturing method
JPH0788521B2 (en) Sintered oil-impregnated bearing manufacturing method
JPH0289533A (en) Forming method for synchronous joint
JPH086124B2 (en) Manufacturing method of sintered bearing material
JP3507666B2 (en) Manufacturing method of sintered oil-impregnated bearing with internal groove
JPH10122240A (en) Bearing of inner diameter intermediate part with hollow shape
JP2003073715A (en) Method for manufacturing oil-impregnated sintered bearing
JPH06511432A (en) How to form the housing of a universal joint
JP3810261B2 (en) Method for manufacturing sintered bearing with inner groove and groove processing apparatus
JP4095215B2 (en) Manufacturing method of bearing
JP3232900B2 (en) Manufacturing method of bulge nipple
JP2002295475A (en) Bearing and manufacturing method therefor
JP2002241804A (en) Method for manufacturing bearing with inside- diametrically hollowed intermediate portion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term