JP3712456B2 - Gas insulated disconnect switch - Google Patents

Gas insulated disconnect switch Download PDF

Info

Publication number
JP3712456B2
JP3712456B2 JP00446096A JP446096A JP3712456B2 JP 3712456 B2 JP3712456 B2 JP 3712456B2 JP 00446096 A JP00446096 A JP 00446096A JP 446096 A JP446096 A JP 446096A JP 3712456 B2 JP3712456 B2 JP 3712456B2
Authority
JP
Japan
Prior art keywords
electrode
insulating cylinder
insulating
fixed
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00446096A
Other languages
Japanese (ja)
Other versions
JPH09200915A (en
Inventor
哲雄 吉田
勝 宮川
修 阪口
信男 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00446096A priority Critical patent/JP3712456B2/en
Publication of JPH09200915A publication Critical patent/JPH09200915A/en
Application granted granted Critical
Publication of JP3712456B2 publication Critical patent/JP3712456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス絶縁断路器に関する。
【0002】
【従来の技術】
代表的なガス絶縁スイッチギヤの構成図を図6に示す。同図において、外周を軟鋼板で気密に囲まれた箱体1の内部は、図示左方の前面寄りに縦に設けられた隔壁2で前方の遮断器室1aと後方の母線室1bに仕切られ、各室1a、1bには六フッ化硫黄ガス(以下、絶縁ガスと略す)がほぼ大気圧のガス圧力で封入され密封されている。
【0003】
このうち、遮断器室1aの内部には真空インタラプタ3aを装着した遮断器3が収納され、隔壁2の図示しない貫通穴に取り付けられた絶縁スペーサ9に遮断器3が連結されている。この絶縁スペーサ9は、上下で同様な構造である。
【0004】
また、母線室1bの天井部には断路器4Aが取り付けられ、一方の端子が接続導体8を介して上側の絶縁スペーサ9に接続され、他方の端子が接続導体8を介して後方のがいし6に固定された母線5に接続されている。この母線5により、隣接盤との相互接続がされている。
【0005】
一方、母線室1bの底部には、断路器4Aと同形の断路器4Bが取り付けられ、一方の端子が接続導体8を介して下側の絶縁スペーサ9に接続され、他方の端子が接続導体8を介して、底板の後方に縦に取り付けられたケーブルヘッド7の上部端子に接続されている。なお、このケーブルヘッド7に接続されたケーブル7aにより受電されている。
【0006】
ここで、同形状の断路器4A、4bの一方を図5に示す。箱体1に取り付けられたベース板10には可動側と固定側の支持がいし11a、11bが固定され、支持がいし11a、11bには各々次のような電極が固定されている。すなわち、電極には金属シールド12a、12bが取り付けられており、所定の耐電圧特性を有するようになっている。ここで、長い方の金属シールド12aには操作板13が取り付けられ、可動接触導体14の水平移動により開閉を行ってる。なお、接触板14、15は、金属シールド12a、12b内に設けられた接点とで開閉を行う接地開閉器の電極である。
これら断路器と接地開閉器の操作は、図示しない箱体1の外部に設けた操作機構部で行われている。
【0007】
【発明が解決しようとする課題】
これらの構成において、断路器4A(または、4B)の電極など絶縁ガス中で用いられるものは、例えば特開昭60-128807 に開示されているとおり、丸みを持たせた金属製のシールドで構成されている。これは、丸みを持たせることにより電界強度が抑制されるためである。つまり、電極の曲率半径が大きい程、電界強度が低下して耐電圧特性が向上する。特に、絶縁ガスの破壊電圧は、電界強度に依存するので、この電界強度の抑制が耐電圧特性の向上につながる。
【0008】
しかし、電極の曲率半径を大きくしていくと、それに伴って電界強度が低下するが、電極自体が大形化してしまう。従って、電極と対地間および電極相互間、即ち相間のガスギャップが狭くなる。このため、耐電圧特性が逆に低下することになる。
【0009】
更に、電極が大形化になると、接続される接続導体などの配置を電極と接触させないよう迂回させなくてはならない。これにより、各電気機器の配置が制限され、全体形状が大形化する。これは、最近の趨勢である縮小化に逆行するものである。
【0010】
本発明の目的は、電極部に電界緩和手段を設けて全体形状の縮小化を図ったガス絶縁断路器を提供することにある。
また、電極が移動するための空間を最小限として全体形状の縮小化を図ったガス絶縁断路器及びガス絶縁断路器の接地装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために本発明のガス絶縁断路器は、固定電極が収納され、軸方向及び対向面にそれぞれ開口部が設けられた一対の絶縁筒が略平行するように箱体の取付板に取り付けられ、絶縁筒の内面にはそれぞれ導電層を形成すると共に、一方の絶縁筒の固定電極に可動可能なように固定され、他方の絶縁筒の固定電極と対向面開口部を介して開閉する可動電極を設け、固定電極と可動電極が開極するときは一方の絶縁筒の軸方向開口部に可動電極を収納させるようにしたことを要旨とする。
【0012】
このような構成において、対向する一対の絶縁層の導電層を設けて両者を同電位とすることにより、電極部の電界緩和が図れる。また、絶縁層が絶縁ガスと接する外側は、ガス側での最大電界強度を持つ部分であるが、絶縁層の誘電率の影響により電界強度が抑制され、更に電極と同電位である導電層からの電子放出が抑制され、同形状の金属シールドに比べて破壊電圧が向上する。
【0013】
ここで、導電層の端部となる絶縁層は、内側に向かうような湾曲部を設けて導電層を形成させるようにすれば、導電層端部の電界緩和を図れ、絶縁層の曲率半径を湾曲部の曲率半径より大きくなるようにすれば、更なる電界緩和を図れるので、破壊電圧が向上する。
【0017】
【発明の実施の形態】
以下、本発明の一実施例を図面を参照して説明する。
図1は本発明の一実施例を示すガス絶縁スイッチギヤの断路器の断面図である。同図において、固定電極側では、接地側が略円筒状の中空であって、主回路側に開口部を持った絶縁筒16に固定され、接地側にはスペーサ17aに固定され、接触子17bを貫通した接地用電極18が設けられている。また、主回路側には、接地用電極18が接触する接触子17c、外部導体19aを接続する接触子20a、接触子20を固定する電極21a、更に電極21aと一体になった固定側電極21bが取り付けられている。なお、固定側電極21bなどは、絶縁筒16のほぼ中間部に埋め込まれた埋め込み電極22aにボルト23aで固定されている。
【0018】
また、接地側は、取り付け板24に固定されたスペーサ25を介して絶縁筒16に埋め込まれた埋め込み電極22bにボルト23bで固定されている。26は操作機構部であり、27は気密を保つガスシール部である。なお、絶縁筒16の接地側には、開口部16aが設けられている。
【0019】
また、絶縁筒16の主回路側は、固定側電極21bや接触子20aの部分が開口されている。つまり、2枚に絶縁層が略平行して構成されている形状である。
可動側電極は、固定側電極と同様の構成であるが、可動電極28を固定電極21bにボルト23cで可動できる状態で固定している。可動電極28のほぼ中間部には、絶縁棒29が操作棒30に連結されており、操作機構部26とでは接地用電極18と同様なガスシール部27を設けている。
【0020】
また、固定電極21cには、接触子20aと対向するように同様の接触子20bが取り付けられ、外部導体19bが接地されている。これらの固定側電極と可動側電極は離隔され、略平行に配置されている。
【0021】
このような構成において、接地用電極18の水平移動により主回路の接地ができる。また、同様に操作棒30の水平移動により可動電極28が円運動して、断路器の開閉動作が行われる。つまり、接地用電極18と操作棒30の運動は、いずれも同一方向である。
【0022】
ここで、絶縁筒16端部の要部拡大図を図2に示す。絶縁層31の端部の外側は曲率半径R2 とし、内側は曲率半径R1 として、内面には例えば導電塗料を塗布した導電層32を湾曲部33まで形成させている。ここで、これらの曲率半径は、R1 <R2 としている。つまり、絶縁層31の方の曲率半径を大きくしている。これらの構成は、可動側電極と固定側電極で同様である。
【0023】
また、断路器が開極したときの断面図を図3に示す。操作棒30が紙面右方向に移動して、絶縁棒29に接結された可動電極28が可動電極側の絶縁筒16に収納される。この状態は断路器の開極であり、接地電位である操作棒30が断路器の極間に位置する。この場合、可動電極28は、絶縁筒16と絶縁筒16の内面に設けられた導電層32で電界緩和が行われている。
【0024】
このような構成において、内面に導電層32を設けた絶縁筒16と、絶縁筒16と同形状の金属電極を用いて、本発明者らが求めたインパルスフラッシオーバ電圧特性を図4に示す。ここで、絶縁筒16の曲率半径R2 は15mm、湾曲部の曲率半径R1 は4mmとし、R2 とR1 の比をほぼ4倍にしている。この比は大きくなるほど絶縁層31先端の電界強度が低下する。
【0025】
図4より、絶縁筒16の特性(イ)は、同形状の金属電極の特性(ロ)と比べて約50%向上することが分かる。これは、電界解析による計算値と実測値で同様の傾向である。
【0026】
このように、フラッシオーバ電圧が上昇する要因として、絶縁層31の比誘電率が絶縁ガスの比誘電率約1と比べて大きいため、電界強度が抑制されたことが挙げられる。なお、絶縁層31の比誘電率は約5としている。また、絶縁層31により電極からの電子放出が抑制され、絶縁破壊のための初期電子の形成が遅れたことなどがある。
【0027】
これらのことから、絶縁層31と湾曲部33の曲率半径の比R2 /R1 を大きくすると、電界強度が更に低下するのでフラッシオーバ電圧の向上が望める。つまり、絶縁層31の周囲のスペースに余裕がある場合には、R2 を大きくして絶縁層31自体を大きくすれば大幅な電界強度の抑制が図れる。ここでは、R2 /R1 は5以上が好ましいと考えられる。
【0028】
以上のことから、絶縁層31の大きさを適切に選び、電界強度の抑制を行うことにより、断路器の小形化が図れる。更に、断路器が小形化すれば、導体配置などに自由度が増して全体形状の小形化が図れる。
【0029】
また、接地用電極18と操作棒30の運動が同一方向の直線運動であるので、両者の配置関係を最小にすることができ、断路器の小形化が図れる。
また、絶縁筒16の接地側に筒状の開口部を設け、接地のための電極18を貫通させているので、接地装置としての小形化が図れる。つまり、接地用電極18は絶縁筒16の中を直線的に移動するので、接地用電極18が移動するための空間が最小範囲となる。従って、ガス絶縁断路器の接地装置として、絶縁ガス中での全体形状の小形化を図ることができる。
【0030】
一方、断路器の開極した場合、絶縁棒29に連結された接地電位の操作棒30が極間のほぼ中央に位置するようにしたことから、万が一予期せぬ過電圧が侵入して絶縁破壊が生じたときには極間で破壊せず、操作棒30の対地間の破壊となる。つまり、極間の破壊では負荷回路への過電圧の侵入となるが、対地間では過電圧が抑制されることになる。更に、極間>対地間の絶縁耐力比となるので、絶縁協調を図ることができる。
【0031】
なお、他の実施例として、絶縁層31の内側に塗布する導電層32の代わりに、例えばカーボンが混入された抵抗塗料の抵抗層やアンチモンなどを混入させた半導電層を形成させれば、絶縁層の表面抵抗率より小さい抵抗となり電界緩和の効果がある。また、断路器の開極時に発生するアークが抵抗層などに拡散した場合には、アーク電流が絞られるので絶縁層の損傷を抑えることができる。
【0032】
【発明の効果】
以上のように本発明によれば、固定電極が収納され、軸方向及び対向面にそれぞれ開口部が設けられた一対の絶縁筒が略平行するように箱体の取付板に取り付けられ、絶縁筒の内面にはそれぞれ導電層を形成すると共に、一方の絶縁筒の固定電極に可動可能なように固定され、他方の絶縁筒の固定電極と対向面開口部を介して開閉する可動電極を設け、固定電極と可動電極が開極するときは一方の絶縁筒の軸方向開口部に可動電極を収納させるようにしたので、電極部の電界緩和が図れ、全体形状の縮小化を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すガス絶縁断路器の全体構成を示す断面図。
【図2】[図1]の絶縁筒16の要部拡大断面図。
【図3】[図1]のガス絶縁断路器の開極状態を示す断面図。
【図4】ガス圧力とインパルスフラッシオーバ電圧の関係を示す特性図。
【図5】従来のガス絶縁断路器の側面図。
【図6】代表的なガス絶縁スイッチギヤの構成図。
【符号の説明】
16…絶縁筒、17、20…接触子、18…接地用電極、21…固定側電極、28…可動電極、29…絶縁棒、30…操作棒、31…絶縁層、32…導電層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas insulated disconnector .
[0002]
[Prior art]
A configuration diagram of a typical gas-insulated switchgear is shown in FIG. In the same figure, the inside of the box 1 whose outer periphery is hermetically surrounded by mild steel plates is partitioned into a front breaker chamber 1a and a rear busbar chamber 1b by a partition wall 2 which is provided vertically near the front side on the left side of the figure. In each of the chambers 1a and 1b, sulfur hexafluoride gas (hereinafter abbreviated as insulating gas) is sealed and sealed at a gas pressure of approximately atmospheric pressure.
[0003]
Among these, the circuit breaker 3 fitted with a vacuum interrupter 3a is housed in the circuit breaker chamber 1a, and the circuit breaker 3 is connected to an insulating spacer 9 attached to a through hole (not shown) of the partition wall 2. The insulating spacer 9 has a similar structure at the top and bottom.
[0004]
Further, the disconnector 4A is attached to the ceiling portion of the bus bar room 1b, one terminal is connected to the upper insulating spacer 9 through the connection conductor 8, and the other terminal is connected to the rear insulator 6 through the connection conductor 8. Is connected to a bus bar 5 fixed to. The bus 5 is connected to the adjacent board.
[0005]
On the other hand, a disconnector 4B having the same shape as the disconnector 4A is attached to the bottom of the bus bar chamber 1b, one terminal is connected to the lower insulating spacer 9 via the connecting conductor 8, and the other terminal is connected to the connecting conductor 8. And is connected to the upper terminal of the cable head 7 which is vertically installed behind the bottom plate. The power is received by the cable 7 a connected to the cable head 7.
[0006]
Here, one of the disconnectors 4A and 4b having the same shape is shown in FIG. Support bases 11a and 11b on the movable side and the fixed side are fixed to the base plate 10 attached to the box 1, and the following electrodes are fixed to the support bases 11a and 11b, respectively. That is, metal shields 12a and 12b are attached to the electrodes so as to have predetermined withstand voltage characteristics. Here, the operation plate 13 is attached to the longer metal shield 12a, and is opened and closed by the horizontal movement of the movable contact conductor. The contact plates 14 and 15 are electrodes of a ground switch that opens and closes with contacts provided in the metal shields 12a and 12b.
The operation of the disconnector and the earthing switch is performed by an operation mechanism provided outside the box 1 (not shown).
[0007]
[Problems to be solved by the invention]
In these configurations, the one used in the insulating gas such as the electrode of the disconnector 4A (or 4B) is constituted by a rounded metal shield as disclosed in, for example, JP-A-60-128807. Has been. This is because the electric field strength is suppressed by providing roundness. That is, the greater the radius of curvature of the electrode, the lower the electric field strength and the higher the withstand voltage characteristics. In particular, since the breakdown voltage of the insulating gas depends on the electric field strength, the suppression of the electric field strength leads to improvement of the withstand voltage characteristics.
[0008]
However, as the radius of curvature of the electrode is increased, the electric field strength is reduced accordingly, but the electrode itself is enlarged. Accordingly, the gas gap between the electrode and the ground and between the electrodes, that is, between the phases is narrowed. For this reason, a withstand voltage characteristic will fall conversely.
[0009]
Furthermore, when the electrode becomes larger, the arrangement of connection conductors to be connected must be detoured so as not to contact the electrode. Thereby, arrangement | positioning of each electric equipment is restrict | limited and the whole shape enlarges. This goes against the recent trend of shrinking.
[0010]
An object of the present invention is to provide a gas insulation disconnector in which an electric field relaxation means is provided in an electrode part to reduce the overall shape.
It is another object of the present invention to provide a gas-insulated disconnector and a grounding device for the gas-insulated disconnector that reduce the overall shape while minimizing the space for electrodes to move.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the gas insulated disconnector according to the present invention is a box mounting plate in which a fixed electrode is housed and a pair of insulating cylinders each having an opening in the axial direction and facing surface are substantially parallel. A conductive layer is formed on the inner surface of each insulating cylinder, and is fixed so as to be movable to the fixed electrode of one insulating cylinder, and is opened and closed through the fixed electrode of the other insulating cylinder and the opening on the opposite surface The gist is that the movable electrode is provided, and when the fixed electrode and the movable electrode are opened, the movable electrode is accommodated in the axial opening of one insulating cylinder .
[0012]
In such a configuration, the electric field of the electrode portion can be reduced by providing the conductive layers of a pair of opposing insulating layers and setting them to the same potential. The outside where the insulating layer is in contact with the insulating gas is a portion having the maximum electric field strength on the gas side, but the electric field strength is suppressed by the influence of the dielectric constant of the insulating layer, and further from the conductive layer having the same potential as the electrode. Electron emission is suppressed, and the breakdown voltage is improved as compared with a metal shield of the same shape.
[0013]
Here, if the insulating layer serving as the end of the conductive layer is provided with a curved portion directed inward to form the conductive layer, the electric field at the end of the conductive layer can be reduced, and the radius of curvature of the insulating layer can be increased. If the radius of curvature is larger than the radius of curvature of the curved portion, further electric field relaxation can be achieved, so that the breakdown voltage is improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a disconnector of a gas insulated switchgear showing an embodiment of the present invention. In the figure, on the fixed electrode side, the ground side is a substantially cylindrical hollow, and is fixed to an insulating cylinder 16 having an opening on the main circuit side, fixed to a spacer 17a on the ground side, and a contact 17b. A grounding electrode 18 penetrating therethrough is provided. Further, on the main circuit side, a contact 17c with which the grounding electrode 18 contacts, a contact 20a for connecting the external conductor 19a, an electrode 21a for fixing the contact 20, and a fixed side electrode 21b integrated with the electrode 21a. Is attached. The fixed-side electrode 21b and the like are fixed to the embedded electrode 22a embedded in the substantially middle portion of the insulating cylinder 16 with a bolt 23a.
[0018]
The grounding side is fixed to the embedded electrode 22b embedded in the insulating cylinder 16 with a bolt 23b through a spacer 25 fixed to the mounting plate 24. 26 is an operation mechanism part, and 27 is a gas seal part which keeps airtight. Note that an opening 16 a is provided on the grounding side of the insulating cylinder 16.
[0019]
Further, on the main circuit side of the insulating cylinder 16, the fixed electrode 21b and the contact 20a are opened. That is, the two insulating layers are substantially parallel to each other.
The movable side electrode has the same configuration as the fixed side electrode, but the movable electrode 28 is fixed to the fixed electrode 21b so as to be movable by a bolt 23c. An insulating rod 29 is connected to the operation rod 30 at almost the middle portion of the movable electrode 28, and the operation mechanism portion 26 is provided with a gas seal portion 27 similar to the grounding electrode 18.
[0020]
Further, a similar contact 20b is attached to the fixed electrode 21c so as to face the contact 20a, and the external conductor 19b is grounded. The fixed side electrode and the movable side electrode are spaced apart and arranged substantially in parallel.
[0021]
In such a configuration, the main circuit can be grounded by the horizontal movement of the grounding electrode 18. Similarly, the movable electrode 28 moves circularly by the horizontal movement of the operation rod 30, and the disconnecting device is opened and closed. That is, the movements of the grounding electrode 18 and the operating rod 30 are in the same direction.
[0022]
Here, the principal part enlarged view of the insulation cylinder 16 edge part is shown in FIG. The outside of the end portion of the insulating layer 31 has a curvature radius R 2 , the inside has a curvature radius R 1 , and a conductive layer 32 coated with, for example, a conductive paint is formed on the inner surface up to the curved portion 33. Here, these radii of curvature satisfy R 1 <R 2 . That is, the radius of curvature of the insulating layer 31 is increased. These configurations are the same for the movable side electrode and the fixed side electrode.
[0023]
FIG. 3 shows a cross-sectional view when the disconnector is opened. The operating rod 30 moves to the right in the drawing, and the movable electrode 28 connected to the insulating rod 29 is accommodated in the insulating tube 16 on the movable electrode side. This state is an open circuit of the disconnector, and the operating rod 30, which is a ground potential, is located between the poles of the disconnector. In this case, the movable electrode 28 is subjected to electric field relaxation by the insulating cylinder 16 and the conductive layer 32 provided on the inner surface of the insulating cylinder 16.
[0024]
FIG. 4 shows the impulse flashover voltage characteristics obtained by the present inventors using the insulating cylinder 16 having the conductive layer 32 on the inner surface and the metal electrode having the same shape as the insulating cylinder 16 in such a configuration. Here, the radius of curvature R 2 of the insulating cylinder 16 is 15 mm, the radius of curvature R 1 of the curved portion is 4 mm, and the ratio of R 2 and R 1 is almost quadrupled. As this ratio increases, the electric field strength at the tip of the insulating layer 31 decreases.
[0025]
FIG. 4 shows that the characteristic (a) of the insulating cylinder 16 is improved by about 50% compared with the characteristic (b) of the metal electrode having the same shape. This is the same tendency between the calculated value by the electric field analysis and the actually measured value.
[0026]
As described above, the cause of the increase in the flashover voltage is that the electric field strength is suppressed because the relative dielectric constant of the insulating layer 31 is larger than the relative dielectric constant of about 1 of the insulating gas. The dielectric constant of the insulating layer 31 is about 5. In addition, emission of electrons from the electrode is suppressed by the insulating layer 31, and formation of initial electrons for dielectric breakdown is delayed.
[0027]
For these reasons, when the ratio R 2 / R 1 of the curvature radii between the insulating layer 31 and the curved portion 33 is increased, the electric field strength is further reduced, so that the flashover voltage can be improved. That is, if there is sufficient space around the insulating layer 31, thereby suppression of significant field strength by increasing greatly to the insulating layer 31 itself R 2. Here, it is considered that R 2 / R 1 is preferably 5 or more.
[0028]
From the above, it is possible to reduce the size of the disconnector by appropriately selecting the size of the insulating layer 31 and suppressing the electric field strength. Furthermore, if the disconnector is miniaturized, the degree of freedom in the conductor arrangement and the like is increased, and the overall shape can be miniaturized.
[0029]
Further, since the ground electrode 18 and the operating rod 30 are linearly moved in the same direction, the positional relationship between the two can be minimized, and the disconnector can be miniaturized.
In addition, since a cylindrical opening is provided on the grounding side of the insulating tube 16 and the electrode 18 for grounding is passed through, the size of the grounding device can be reduced. That is, since the grounding electrode 18 moves linearly in the insulating cylinder 16, the space for the grounding electrode 18 to move becomes the minimum range. Therefore, the overall shape of the insulating gas can be reduced as a grounding device for the gas insulating disconnector.
[0030]
On the other hand, when the disconnector is opened, the grounding potential control rod 30 connected to the insulation rod 29 is positioned almost at the center between the poles. When it occurs, it does not break between the poles, but breaks between the operation rod 30 and the ground. In other words, the breakdown between the electrodes causes the penetration of the overvoltage into the load circuit, but the overvoltage is suppressed between the ground. Furthermore, since the dielectric strength ratio between the poles and the ground is satisfied, insulation coordination can be achieved.
[0031]
As another example, instead of the conductive layer 32 applied to the inside of the insulating layer 31, for example, a resistance layer of a resistance paint mixed with carbon or a semiconductive layer mixed with antimony is formed. The resistance becomes smaller than the surface resistivity of the insulating layer, and there is an effect of electric field relaxation. Further, when the arc generated when the disconnector is opened spreads to the resistance layer or the like, the arc current is reduced, so that damage to the insulating layer can be suppressed.
[0032]
【The invention's effect】
As described above, according to the present invention, the fixed electrode is housed, and the pair of insulating cylinders each having the opening in the axial direction and the opposing surface are attached to the mounting plate of the box body so as to be substantially parallel, and the insulating cylinder In addition to forming a conductive layer on each inner surface, a movable electrode fixed to the fixed electrode of one insulating cylinder so as to be movable, and a movable electrode that opens and closes through a fixed electrode of the other insulating cylinder and an opening on the opposite surface, When the fixed electrode and the movable electrode are opened, the movable electrode is accommodated in the axial opening of one of the insulating cylinders, so that the electric field of the electrode portion can be relaxed and the overall shape can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the overall configuration of a gas insulation disconnector showing an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of an insulating cylinder 16 in FIG.
FIG. 3 is a cross-sectional view showing an open state of the gas insulation disconnector of FIG.
FIG. 4 is a characteristic diagram showing the relationship between gas pressure and impulse flashover voltage.
FIG. 5 is a side view of a conventional gas insulation disconnector.
FIG. 6 is a configuration diagram of a typical gas-insulated switchgear.
[Explanation of symbols]
16 ... Insulating cylinder, 17, 20 ... Contact, 18 ... Ground electrode, 21 ... Fixed electrode, 28 ... Movable electrode, 29 ... Insulating rod, 30 ... Operation rod, 31 ... Insulating layer, 32 ... Conductive layer.

Claims (8)

固定電極が収納され、軸方向及び対向面にそれぞれ開口部が設けられた一対の絶縁筒が略平行するように箱体の取付板に取り付けられ、前記絶縁筒の内面にはそれぞれ導電層を形成すると共に、前記一方の絶縁筒の固定電極に可動可能なように固定され、前記他方の絶縁筒の固定電極と対向面開口部を介して開閉する可動電極を設け、前記固定電極と可動電極が開極するときは前記一方の絶縁筒の軸方向開口部に前記可動電極を収納させるようにしたことを特徴とするガス絶縁断路器。 A fixed electrode is housed, and a pair of insulating cylinders each having an opening in the axial direction and on the opposing surface are attached to the mounting plate of the box body so as to be substantially parallel, and a conductive layer is formed on the inner surface of the insulating cylinder. In addition, a movable electrode fixed to the fixed electrode of the one insulating cylinder and movably fixed to the other insulating cylinder via a facing surface opening is provided, and the fixed electrode and the movable electrode are A gas-insulated disconnector characterized in that the movable electrode is housed in the axial opening of the one insulating cylinder when the electrode is opened . 前記絶縁筒端部の内面に湾曲部を形成させ、前記導電層をこの湾曲部の曲率が終わる領域までの内面に設けたことを特徴とする請求項1記載のガス絶縁断路器。    The gas insulation disconnector according to claim 1, wherein a curved portion is formed on an inner surface of the end portion of the insulating cylinder, and the conductive layer is provided on an inner surface up to a region where the curvature of the curved portion ends. 前記絶縁筒の先端の曲率半径R2は、前記導電層端部の湾曲部の曲率半径R1より大きいことを特徴とする請求項2記載のガス絶縁断路器。    The gas insulation disconnector according to claim 2, wherein a radius of curvature R2 of the tip of the insulating cylinder is larger than a radius of curvature R1 of the curved portion of the end portion of the conductive layer. 前記曲率半径の比R2/R1を5以上としたことを特徴とする請求項3記載のガス絶縁断路器。    The gas insulation disconnector according to claim 3, wherein the curvature radius ratio R2 / R1 is 5 or more. 固定電極が収納され、軸方向及び対向面にそれぞれ開口部が設けられた一対の絶縁筒が略平行するように箱体の取付板に取り付けられ、前記絶縁筒の内面にはそれぞれ抵抗層を形成すると共に、前記一方の絶縁筒の固定電極に可動可能なように固定され、前記他方の絶縁筒の固定電極と対向面開口部を介して開閉する可動電極を設け、前記固定電極と可動電極が開極するときは前記一方の絶縁筒の軸方向開口部に前記可動電極を収納させるようにしたことを特徴とするガス絶縁断路器。 A fixed electrode is housed, and a pair of insulating cylinders , each having an opening in the axial direction and on the opposing surface, are attached to the mounting plate of the box so as to be substantially parallel, and a resistance layer is formed on the inner surface of the insulating cylinder. In addition, a movable electrode fixed to the fixed electrode of the one insulating cylinder and movably fixed to the other insulating cylinder via a facing surface opening is provided, and the fixed electrode and the movable electrode are A gas-insulated disconnector characterized in that the movable electrode is housed in the axial opening of the one insulating cylinder when the electrode is opened . 前記絶縁筒端部の内面に湾曲部を形成させ、前記抵抗層または半導電層のいずれか一方をこの湾曲部の曲率が終わる領域までの内面に設けたことを特徴とする請求項5記載のガス絶縁断路器。  6. A curved portion is formed on the inner surface of the end portion of the insulating cylinder, and either the resistance layer or the semiconductive layer is provided on the inner surface up to a region where the curvature of the curved portion ends. Gas insulated disconnector. 前記絶縁筒の先端の曲率半径R2は、前記抵抗層端部の湾曲部の曲率半径R1より大きいことを特徴とする請求項6記載のガス絶縁断路器。  The gas insulation disconnector according to claim 6, wherein a radius of curvature R2 of the tip of the insulating cylinder is larger than a radius of curvature R1 of the curved portion of the resistance layer end. 前記曲率半径の比R2/R1を5以上としたことを特徴とする請求項7記載のガス絶縁断路器。  The gas insulation disconnector according to claim 7, wherein the curvature radius ratio R2 / R1 is 5 or more.
JP00446096A 1996-01-16 1996-01-16 Gas insulated disconnect switch Expired - Lifetime JP3712456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00446096A JP3712456B2 (en) 1996-01-16 1996-01-16 Gas insulated disconnect switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00446096A JP3712456B2 (en) 1996-01-16 1996-01-16 Gas insulated disconnect switch

Publications (2)

Publication Number Publication Date
JPH09200915A JPH09200915A (en) 1997-07-31
JP3712456B2 true JP3712456B2 (en) 2005-11-02

Family

ID=11584761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00446096A Expired - Lifetime JP3712456B2 (en) 1996-01-16 1996-01-16 Gas insulated disconnect switch

Country Status (1)

Country Link
JP (1) JP3712456B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860553B2 (en) * 2002-11-19 2006-12-20 三菱電機株式会社 Gas insulated switchgear
JP4429205B2 (en) 2005-05-16 2010-03-10 三菱電機株式会社 Gas insulation equipment
JP4841875B2 (en) * 2005-06-29 2011-12-21 株式会社日立製作所 Vacuum insulated switchgear
JP5324530B2 (en) * 2010-07-02 2013-10-23 株式会社日立製作所 High voltage switchgear

Also Published As

Publication number Publication date
JPH09200915A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP3860553B2 (en) Gas insulated switchgear
JP2000268685A (en) Switchgear
US4460937A (en) Gas-insulated switching apparatus
US11348748B2 (en) Switch device
KR101819063B1 (en) Cubicle-type gas-insulated switching apparatus
JP3712456B2 (en) Gas insulated disconnect switch
WO2023021842A1 (en) Gas-insulated switching device
EP1768149B1 (en) Multi circuit selecting switchgear
JP5408551B2 (en) Gas insulated switchgear
JP4931395B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
US7589295B2 (en) Electrical switchgear
US6506067B2 (en) Disconnector
JP7510395B2 (en) Gas insulated switchgear
JP2772094B2 (en) Barrier in insulating gas
JP7221473B1 (en) gas insulated switchgear
JPH11252721A (en) Gas insulated disconnector
JP2642469B2 (en) Electrical equipment insulation structure
JP2888585B2 (en) Gas insulated disconnector
JPH10308143A (en) Main circuit disconnector
JPS5939395Y2 (en) Insulated operating rod
CN114121541A (en) Gas-insulated medium-or high-voltage switchgear assembly having a blade contact carrier
JP2012138223A (en) Cubicle-type gas insulated switchgear
JPH0224927A (en) Disconnecting switch
JPH0246111A (en) Insulation structure in electrical machinery and apparatus
JPH02117026A (en) Breaker of gas insulating switch device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

EXPY Cancellation because of completion of term