JP3712133B2 - Immunoassay for antibacterial compounds - Google Patents

Immunoassay for antibacterial compounds Download PDF

Info

Publication number
JP3712133B2
JP3712133B2 JP05891894A JP5891894A JP3712133B2 JP 3712133 B2 JP3712133 B2 JP 3712133B2 JP 05891894 A JP05891894 A JP 05891894A JP 5891894 A JP5891894 A JP 5891894A JP 3712133 B2 JP3712133 B2 JP 3712133B2
Authority
JP
Japan
Prior art keywords
added
antigen
fluorine
antibody
alp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05891894A
Other languages
Japanese (ja)
Other versions
JPH07267999A (en
Inventor
久一 松林
良夫 唐澤
Original Assignee
第一製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一製薬株式会社 filed Critical 第一製薬株式会社
Priority to JP05891894A priority Critical patent/JP3712133B2/en
Publication of JPH07267999A publication Critical patent/JPH07267999A/en
Application granted granted Critical
Publication of JP3712133B2 publication Critical patent/JP3712133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、フッ素含有ピリドンカルボン酸類抗菌化合物の抗体およびその製造方法に関するものである。また本発明は、それらの抗体を利用したイムノアッセイ法、例えば、ラジオイムノアッセイおよびエンザイムイムノアッセイ法、並びに抗原の製造に有用な中間体化合物等に関する。
【0002】
【従来の技術】
従来、フッ素含有ピリドンカルボン酸抗菌化合物の定量法としては、励起光を照射して生ずる蛍光を測定する方法(特開平5-203578号、Antimicrob. Agents Chemother. 33: pp.27-29, 1989年等を参照)、または高速液体クロマトグラフィによる方法(Antimicrob. Agents Chemother. 30: pp.325-327, 1986年; 及び特開昭64-13455号公報等を参照)が知られていた。
【0003】
しかし、フッ素含有ピリドンカルボン酸抗菌化合物のイムノアッセイ法は未だ確立されておらず、抗体の産生法やイムノアッセイに用いる抗体についてもわずかな報告があるに過ぎなかった。レボフロキサシンの抗原性を調べる研究の一部として、レボフロキサシンとオバルブミンまたはモルモット血清アルブミンとの結合物を作製したとの報告があるが、抗原の製造方法の詳細は不明であり、開示された抗体もイムノアッセイのために使用できるものではなかった(Arzneim.-Forsch./Drug Res. 42(I), Nr. 3a 385-389, 1992年を参照) 。
【0004】
【発明が解決しようとする課題】
本発明は、フッ素含有ピリドンカルボン酸類抗菌化合物を認識する抗体およびその製造方法を提供することを目的としている。また、本発明の別の目的は、それらの抗体を利用したイムノアッセイ法、例えば、ラジオイムノアッセイおよびエンザイムイムノアッセイ法を提供することにある。さらに本発明の目的は、上記の抗体の製造のために有用な抗原を提供することにある。
【0005】
「ニューキノロン」と総称されるフッ素含有ピリドンカルボン酸抗菌化合物は強力な抗菌作用を有する化合物であり、各種感染症や化膿性疾患等の治療の目的で臨床的に使用されている。これらは、優れた臨床効果を挙げており、あるいは挙げることが期待されている。
フッ素含有ピリドンカルボン酸抗菌化合物の代表的化合物としては、例えば、レボフロキサシン、オフロキサシン、シプロフロキサシン、ノルフロキサシン、エノキサシン、フレロキサシン、ロメフロキサシン、(S)-9-フルオロ-2,3- ジヒドロ-3- メチル-10-(8- アミノ-6- アザスピロ[3.4] オクタン-6- イル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸 (DV-7751)、(-)-7-(7-(S)- アミノ-5- アザスピロ[2.4] ヘプタン-5- イル)-8-クロロ-6- フルオロ-1-[2-(S)-フルオロ-1-(R)- シクロプロピル]-4-オキソ-1,4- ジヒドロキノリン-7- カルボン酸 (DU-6859)、1-シクロプロピル-6- フルオロ-1,4- ジヒドロ-3- メトキシ-4- オキソ-7-(3-メチルピペラジニル)-3-キノリンカルボン酸 (AM-1155)、1-シクロプロピル-6- フルオロ-1,4- ジヒドロ-8- メトキシ-4- オキソ-7-(4-アミノメチルピペリジニル)-3-キノリンカルボン酸 (Q-35) 等を挙げることができる。
【0006】
フッ素含有ピリドンカルボン酸類抗菌化合物の抗原性は極めて低く、これらの化合物自体を抗原として用いても、フッ素含有ピリドンカルボン酸類抗菌化合物を認識する抗体を効率良く製造することはできない。従って、フッ素含有ピリドンカルボン酸類抗菌化合物を認識する抗体を製造するための抗原としては、これらの化合物に蛋白を結合させたものを用いることが適当であると予想される。しかしながら、抗原性に影響を与える官能基、例えばピリジン骨格4位のケトン基や3位のカルボキシル基、あるいはフッ素原子等を損なわずに、フッ素含有ピリドンカルボン酸類抗菌化合物と蛋白とを結合させることが必要である。また、種々のフッ素含有ピリドンカルボン酸類抗菌化合物の測定に共通して使用可能な有用な抗体を産生する抗原が必要とされる場合もある。
【0007】
本発明者は、レボフロキサシン[LVFX: (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid] の10位置換基である4-メチルピペラジンの4-メチル基を化学的に修飾し、この部位に血清アルブミンを結合させることによって上記の目的を達成できる優れた抗原を製造することに成功した。また、上記の抗原を用いることによりフッ素含有ピリドンカルボン酸類抗菌化合物を認識する有用な抗体を提供することができることを見いだし、該抗体を用いイムノアッセイ法によりフッ素含有ピリドンカルボン酸類抗菌化合物を測定する方法を完成させた。本発明は上記の知見に基づいて完成されたものである。
【0008】
【課題を解決するための手段】
従って本発明は、フッ素含有ピリドンカルボン酸類抗菌化合物と蛋白との結合物である抗原、およびその凍結乾燥品を提供するものである。本発明の一態様によれば、オフロキサシンまたはレボフロキサシンの10位置換基である4-メチルピペラジニル基を4-カルボキシメチルピペラジニル基に変換した化合物を蛋白に結合させた抗原が提供される。また、これらの抗原を用いて動物を免疫することによりフッ素含有ピリドンカルボン酸類抗菌化合物を認識する抗体を産生する方法、および該方法により製造された抗体を提供するものである。さらに、これらの抗体を用いイムノアッセイ法によりフッ素含有ピリドンカルボン酸類抗菌化合物を測定する方法を提供するものである。
【0009】
本発明に従いフッ素含有ピリドンカルボン酸類抗菌化合物を認識する抗体を製造するために用いる抗原としては、オフロキサシンまたはレボフロキサシンの10位置換基である4-メチルピペラジニル基を4-カルボキシメチルピペラジニル基に変換した化合物(オフロキサシンの場合には、9-フルオロ-2,3- ジヒドロ-3- メチル-10-(4- カルボキシメチル-1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸)をハプテンとして用い、このカルボキシルメチル基と蛋白等の担体とを結合させることにより製造された抗原を用いるのが適当である。担体として用いる蛋白は、一般に抗体産生に有用とされている種々の蛋白から適宜選択して使用すればよく、また、蛋白とハプテンとの結合はそれ自体公知の方法で行うことができる。例えば、蛋白としてウシ血清アルブミンを用いることができ、蛋白とハプテンとの結合には、ジシクロヘキシルカルボジイミドを使用した縮合反応や活性エステル法を利用することができるが、担体として用いる蛋白や蛋白とハプテンとの結合方法は上記の具体例に限定されることはない。
【0010】
抗体の産生は、それ自体公知の方法で行うことができる。例えば、上記の抗原を適当なアジュバント、例えば、フロイントのアジュバントと混合してウサギ、ヤギ等の動物を免疫し、適宜追加免疫を行った後に血液を採取・分離して抗血清を得れば良い。また、モノクローナル抗体を製造するには、上記の免疫された動物から胸腺等の免疫細胞を分離し、当業者に周知の方法で適宜選択されたミエローマ細胞と細胞融合した後、融合細胞をクローニングすればよい。免疫すべき動物の種類、免疫スケジュール、担体蛋白、アジュバント等については種々の成書、例えば T.Chard 著、 北川、藤原、谷森訳「ラジオイムノアッセイ」(東京化学同人)を参考にすることができる。
【0011】
一方、通常トレーサーと呼ばれる標識フッソ含有ピリドンカルボン酸類抗菌化合物は、放射性同位元素もしくは酵素で標識されたものを用いることができる。これらは、当業者に周知の種々の方法で製造し利用することができる。例えば、トリチウム標識したフッソ含有ピリドンカルボン酸類抗菌化合物、あるいはアルカリホスファターゼ (ALP)またはホースラディシュパーオキシダーゼ (HRP)等の酵素で標識したフッソ含有ピリドンカルボン酸類抗菌化合物をトレーサーとして用いることができる。これらは必要に応じて凍結乾燥品として保存でき、またキットの一部とすることができる。
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されることはない。
【0012】
【実施例】
次の略号を使用する。
RIA:ラジオ・イムノアッセイ
EIA:エンザイム・イムノアッセイ
DMF:ジメチルホルムアミド
BSA:ウシ血清アルブミン
ALP:アルカリフォスファターゼ(alkalinephosphatase)
CDI:1,1 ´- カルボニルイミダゾール
HOSu:N-ヒドロキシスクシンイミド
PB :リン酸緩衝液
PBS:0.01 Mリン酸緩衝生理食塩液(pH 7.4)
コーテイング緩衝液:0.1M炭酸緩衝液(pH 9.5)
洗浄緩衝液-1:0.05% Tween 20を含む50mMトリス塩酸緩衝液 (pH 7.4)
洗浄緩衝液-2:0.1% Tween 20 を含むブロックエース(大日本製薬製)10倍液
EIA緩衝液:0.5 % BSAを含む50mMトリス塩酸緩衝液 (pH 7.4)
【0013】
実施例1:免疫抗原の調製
1.1 (-)-(S)-9,10-ジフルオロ-2,3- ジヒドロ-3- メチル-7- オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸 BF2-キレート 40.0 g およびジメチルアセトアミド 200 ml に無水ピペラジン 12.0 g を攪拌下加え、内温20〜25℃で3時間反応させた。次いでトリエチルアミン 16 mlを氷冷攪拌下加え、さらにブロム酢酸エチル 24.0 g を滴下した。終了後20〜25℃で1時間反応させ、溶媒を減圧留去した。残渣を含水メタノール 1400 mlに溶解させ、トリエチルアミン 40 mlを加えて攪拌下3時間還流反応させた。溶媒を減圧留去し、残渣に水 1200 mlを加えクロロホルム 1200 mlで5回抽出した。クロロホルム層を合して濾過し、水で洗浄し、硫酸ナトリウムで脱水後溶媒を減圧留去して粗晶を得た。
【0014】
上記の粗晶をシリカゲルカラムクロマトに付し、クロロホルム−メタノール (95:5) で溶出させ、濃縮残渣をエタノールから結晶化させて融点 188〜191 ℃の淡黄白色結晶状の (-)-(S)-9- フルオロ-2,3- ジヒドロ-3- メチル-10-(4- エトキシカルボニルメチル-1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸 12.65 gを得た。融点 188〜191 ℃
上記の (4-エトキシカルボニルメチル-1- ピペラジニル) 体 23.9 g に濃塩酸 205 ml を加え、100 ℃の浴上で3時間攪拌して反応させた。室温に戻して濾過し、減圧で約 80 g まで濃縮し、これに水 410mlを加えて析出晶を濾取した。得られた結晶を水、80% エタノール、エタノール、エーテルの順に洗浄して乾燥し、淡黄色微粉末の(-)-(S)-9-フルオロ-2,3- ジヒドロ-3- メチル-10-(4- カルボキシメチル-1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸塩酸塩 (DT-5334・HCl) 22.3 g を得た。融点 250〜252 ℃(分解)。化合物の構造は、元素分析およびNMRによって確認した。
【0015】
1.2 水溶性カルボジイミド法による合成
DT-5334・HCl 124 mgをDMF 5mlに溶解し、BSA 500 mg の水- DMF(1:1) 溶液 50 mlに氷冷下滴下した。4℃で3時間撹枠後、5 % 炭酸水素ナトリウム水溶液を滴下して析出物を溶解させた後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 5.39 g を加えて4℃で一夜攪拌下反応させた。反応後、蒸留水に対して透析したのち、凍結乾燥して DT-5334 -BSA結合物(ロット1)を得た。
【0016】
1.3 活性イミドエステル法による合成
DT-5334・HCl 441 mgをDMF 5 ml に溶解し、氷冷下CDI 178 mg を加えて4℃で一夜攪拌下反応させた。反応後HOSu 126.5 mg を加え4℃で4時間攪拌下反応させた。この反応液をBSA 650 mg の水−DMF(1:1) 溶液 100 ml に約1時間かけて氷冷下滴下したのち、4℃で一夜攪拌下反応させた。反応後、析出物を遠心分離 (1800×g, 4℃, 15分) し、上清を蒸留水に対して透析したのち凍結乾燥し DT-5334 -BSA結合物(ロット2)を得た。
【0017】
1.4 DT-5334 -BSA結合物の薬物結合モル数
調製したDT-5334 - BSA結合物についてアミノ酸分析法により薬物結合モル数を算出した。蛋白質BSA 1モルに対する薬物の結合モル数はロット1およびロット2について、それぞれ 13.2 モルおよび 36.5 モルであった。なお、結合数の算出における対照アミノ酸としてグリシンおよびアラニンを使用し、その平均値を結合数とした。
【0018】
実施例2:抗血清の作製
免疫抗原 1 mg あたり生理食塩水 0.5 ml およびフロイントのコンプリートアジュバント 0.5 ml を加えてホモジナイザーでエマルジョンとした。このエマルジョンを用いてウサギ(日本白色種、雌性、体重 2.5 kg 〜3 kg) 20匹を免疫した。免疫抗原は1回から6回目までロット1を、7回目以降ロット2を用い、抗原量は7回目まで1匹あたり 1 mg (結合物換算) 、8回目以降について 0.5 mg とした。免疫の間隔はおおむね2週間とし、腹部皮内(1〜2回目40個所)、臀部皮内(3回目40個所)、背部皮内(4〜5回目、40個所)および背部皮下(6〜13回目、 4個所)に投与した。途中で抗体の産生を確認したのち13回免疫の10日目に頚動脈より全採血した。採血した血液を遠心分離 (1600×g, 4℃、30分)し、得られた血清を -80℃で保存した。
【0019】
実施例3:トリチウム標識抗原の製造
デスメチルレボフロキサシン [(-)-(S)-9-フルオロ-2,3- ジヒドロ-3- メチル-10-(1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸] 3.5 mgをDMF 1 ml に溶解し、炭酸カリウム 11 mgを加えた。この溶液に、3H- ヨウ化メチル 1.85 GBq.のトルエン溶液を真空移動により加えて 37 ℃で一夜攪拌した。反応後、溶媒を減圧下留去し、残渣をHPLC(ODS, eluent: 1% TEAOAc (pH 4)/CH3CN (85:15))で精製し、トリチウム標識レボフロキサシン (LVFX) 1.22 GBq. を得た。この化合物は標準品レボフロキサシンと比較したクロマトグラフィー(TLC) により同定された。比放射能は 2456.8 GBq (66.4 Ci)/mmolであった。
【0020】
実施例4:RIA系の確立
4.1 抗体価の測定
アッセイチューブに 0.5 %BSAを含むPBS 0.5 ml および 0.5 %BSAを含むPBS 0.1 ml で順次希釈した抗血清 0.1 ml およびトリチウム標識レボフロキサシン (3H-LVFX 、以下トレーサーと略す。約 1×104 dpm/tube) 0.1 mlを加え4℃で一夜インキュベートした。次にデキストラン炭末液(PBS 100mlにデキストラン T-70 (Pharmacia) 100 mgを溶解後、活性炭 1 gを加えたもの) 1 mlを加え、4℃で30分インキュベートしたのち遠心分離 (1600×g, 4℃、15分)し、上清をバイアルにデカントしてシンチレーター (Atomlight:Du pont/NEN Research Product) 10mlを加えたのち、液体シンチレーションカウンター (Packard, 2500 型)で結合型の放射能 (Bo) を測定した。また、非特異的結合量 (N)を求めるために、抗血清の代わりに同一希釈率の正常ウサギ血清(NRSと略す)を用いて同様の操作を行なった。
【0021】
抗血清の希釈率と、抗血清とトレーサーの特異的結合率((Bo-N)/T、 T :総放射能量)との関係を求めた。すべての動物について抗体の産生が認められ、中でも抗血清 R-3には、抗血清希釈率 20,000 倍において特異的結合率 40.01% と高い抗体価が認められた。好ましい抗血清として、希釈率 2,000倍における結合率が40% 以上の7種類の抗血清を選択し、結合率が40% 前後を示す希釈率を各抗血清の至適希釈率として設定した。
さらに上記のRIA系を用いて、各種のフッ素含有ピリドンカルボン酸類抗菌化合物を測定する場合の測定感度を求めた。それぞれのフッ素含有ピリドンカルボン酸類抗菌化合物について上記の方法に準じて標準曲線を作成した。標準曲線の特性は、95% 信頼限界, IC90, およびIC50 (それぞれ、抗血清とトレーサーの結合を 90%又は50% 阻害するのに必要な化合物濃度)で示す(表1)。
【0022】
【表1】

Figure 0003712133
1) DV-7751・1/2 H2O
2) DU-6859・3/2 H2O
3)(+)-(R)-9-フルオロ-2,3- ジヒドロ-3- メチル-10-(4- メチル-1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸
【0023】
実施例5:エンザイム・イムノアッセイ
5.1 酵素標識抗原の調製
5.1.1 DT-5334−ALP標識抗原
免疫抗原の調製に準じて、DT-5334 を用いてALPとの標識抗原を作製した。DT-5334・HCl 4.4 mgをDMF 0.5 ml に溶解し、氷冷下CDI 17.8 mgを加えて4℃で一夜攪拌下反応させた。反応後、HOSu 12.7 mgを加え4℃で4時間攪拌下反応させた。この反応液をALP 65 mgの水:DMF (1:1) 10 ml溶液に約1時間かけて氷冷下滴下したのち、4℃で一夜攪拌下反応させた。反応後、析出物を遠心分離 (1800×g, 4℃, 15分) し、上清を蒸留水に対して透折したのち凍結乾燥して DT-5334−ALP標識抗原を得た。
【0024】
5.1.2 DV-7751a―ALP標識抗原
グルタルアルデヒド法(一段法)により DV-7751a [(S)-9- フルオロ-2,3- ジヒドロ-3- メチル-10-(8- アミノ-6- アザスピロ[3.4] オクタン-6- イル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸] を用いてALPとの標識抗原を作製した。DV-7751a 5 mg を 0.1 M PB (pH 6.8) 2 ml に加え、 0.1 M PB (pH 6.8) 0.2 ml に溶解したALPを加えた。さらに 1% グルタルデヒド 50 μl を加えて室温で2時間攪拌下反応させた。反応後蒸留水に対し透析したのち凍結乾燥してDV-7751a―ALP標識抗原を得た。
【0025】
5.2 標準曲線の作成
レボフロキサシンに対する標準曲線を作成し、DT-5334 −ALP標識抗原および DV-7751a-ALP標識抗原を用い、二種類の酵素標識抗原の性能を比較した。マイクロタイタープレートにコーテイング緩衝液で 20 μg/mlに調整したヤギ抗ウサギ IgGを 100μl 加え、4℃で一夜インキュベートしてプレートに固相した。プレートを洗浄緩衝液-1を用いて3回洗浄 (300 μl/ウェル)した。次に 1% BSAを含むPBSを各ウェルに 300μl 加えてブロッキングした後、プレートを洗浄緩衝液-1で洗浄した。
【0026】
その後、EIA緩衝液で希釈した抗血清を加えて37℃で1時間インキュベートし、プレートを洗浄緩衝液-1で3回洗浄した。さらに、各ウェルにEIA緩衝液で希釈した酵素標識抗原50μl およびEIA緩衝液で系列希釈したLVFX標隼溶液50μl を加えて 37 ℃で1時間インキュベートした。その後、プレートを洗浄緩衝液-1で3回洗浄し、アルカリホスファターゼ基質溶液(ジエタノールアミン緩衝液を蒸留水で5倍に希釈した後、p-ニトロフェニル・ホスフェートを加えたもの:以下基質と略す)100 μl を加え、DT-5334 −ALP標識抗原については室温で2時間、DV-7751a一ALP標識抗原については室温で30分インキュベートした後、1.6 M NaOH 25 μl を加えて反応を停止し、405 nmにおける吸光度を測定した。
2種類の標識抗原とも用量反応(dose responce) を示したが、特にDV-7751a―ALP標識抗原は濃度範囲が3 ng/ml から10ng/ml であり、抗原として適当であることが確認された。
【0027】
5.3 酵素標識抗原の調製法の検討
(一般法)
ALP 1 mg を 1M PB (pH 6.8) 1 mlに溶解し、ALP 1モルに対しそれぞれ 5倍、10倍、20倍および50倍モルの DV-7751a を加え、さらに1%グルタルアルデヒド50μl を加え室温で3時間反応させた。反応終了後、1M DL-リジン 100μl を加えて室温で1時間反応し、さらに蒸留水に対して透析した。透析後の凍結乾燥物を蒸留水 1mlに再溶解して4種類のDV-7751a―ALP標識抗原を得た。
【0028】
(二段法)
ALP 1 mg を 1M PB (pH 6.8) 1 mlに溶解し、 1% グルタルアルデヒド 50 μl を加え室温で 16 時間反応させたのち蒸留水に対して透析した。透析後の凍結乾燥物を 1M PB (pH 6.8) 1 mlに再度溶解し、ALP 1モルに対しそれぞれ 10 倍、20倍、50倍および 100倍モルの DV-7751a を加え、4 ℃で 16 時間反応させた後、蒸留水に対して透析した。透析後の凍結乾燥物を蒸留水 1mlに再溶解して4種類の DV-7751a ―ALP標識抗原を得た。
【0029】
5.4 調製法による酵素標識抗原の活性比較
マイクロタイタープレートに、コーティング緩衝液で 20 μg/mlに調製したヤギ抗ウサギIgG を 100μl 加え、室温で2時間インキュベートしてプレートに固相担体とした後、プレートを洗浄緩衝液-1で洗浄した。次に 1% BSAを含む 50 mMトリス塩酸緩衝液 (pH 7.4) 300 μl を各ウェルに加えて室温で2時間インキュベートした後、プレートを洗浄緩衝液-1で洗浄した。次にEIA緩衝液で系列希釈した抗LVFX血清を加えて室温で2時間インキュベートした後、プレートを洗浄緩衝液-1で3回洗浄した。さらに各ウェルにEIA緩衝液で50倍希釈した酵素標識抗原50μl およびEIA緩衝液50μl を加え、室温で2時間インキュベートした。その後プレートを洗浄緩衝液-1で3回洗浄し、基質を 100μl 加えて室温で30分間インキュベートした後、 1.6M 水酸化ナトリウム溶液 25 μl を加えて反応を停止し、 405 nm における吸光度を測定した。
【0030】
一段法における吸光度はモル比20倍、抗血清希釈率 100倍において 2.338と最大を示し、二段法においてもモル比20倍、抗血清希釈率 100倍において0.878 と最大を示した。両法を比較すると、二段法に比べて一段法における吸光度が高値を示した。この結果によれば、DV-7751a―ALP標識抗原の反応条件を一段法で実施し、ALPに対する薬物のモル比を20倍とすることが好適である。
以上の実施例を参考にすれば、当業者は本発明の抗体を用いて容易にラジオ・イムノアッセイまたエンザイム・イムノアッセイを行うことができ、種々のフッ素含有ピリドンカルボン酸類抗菌化合物の濃度を測定することができる。参考のため、以下に標準的な操作条件を示すが、本発明の測定方法はこれらの条件に限定されることはない。
【0031】
Figure 0003712133
【0032】
Figure 0003712133
【0033】
Figure 0003712133
【0034】
【発明の効果】
本発明により提供される抗体はフッ素含有ピリドンカルボン酸類抗菌化合物を認識する有用な抗体であり、該抗体を用いたイムノアッセイ法により、各種の試料、例えば生体試料中のフッ素含有ピリドンカルボン酸類抗菌化合物の濃度を高感度で測定することができるので有用である。[0001]
[Industrial application fields]
The present invention relates to an antibody of a fluorine-containing pyridonecarboxylic acid antibacterial compound and a method for producing the same. The present invention also relates to immunoassay methods using these antibodies, such as radioimmunoassay and enzyme immunoassay methods, and intermediate compounds useful for the production of antigens.
[0002]
[Prior art]
Conventionally, as a method for quantifying a fluorine-containing pyridonecarboxylic acid antibacterial compound, a method of measuring fluorescence generated by irradiation with excitation light (Japanese Patent Laid-Open No. 5-203578, Antimicrob. Agents Chemother. 33: pp. 27-29, 1989) Or a method by high performance liquid chromatography (see Antimicrob. Agents Chemother. 30: pp.325-327, 1986; and Japanese Patent Application Laid-Open No. 64-13455).
[0003]
However, immunoassay methods for fluorine-containing pyridonecarboxylic acid antibacterial compounds have not yet been established, and there have been only a few reports on antibody production methods and antibodies used in immunoassays. As part of a study to investigate the antigenicity of levofloxacin, it has been reported that a conjugate of levofloxacin and ovalbumin or guinea pig serum albumin was made, but details of the method for producing the antigen are unknown, and the disclosed antibody is also an immunoassay (See Arzneim.-Forsch./Drug Res. 42 (I), Nr. 3a 385-389, 1992).
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an antibody that recognizes a fluorine-containing pyridonecarboxylic acid antibacterial compound and a method for producing the same. Another object of the present invention is to provide an immunoassay method using these antibodies, for example, a radioimmunoassay and an enzyme immunoassay method. A further object of the present invention is to provide an antigen useful for the production of the above antibody.
[0005]
Fluorine-containing pyridone carboxylic acid antibacterial compounds collectively referred to as “new quinolones” are compounds having a strong antibacterial action and are clinically used for the purpose of treating various infectious diseases and purulent diseases. These have or are expected to have excellent clinical effects.
Representative examples of the fluorine-containing pyridonecarboxylic acid antibacterial compound include, for example, levofloxacin, ofloxacin, ciprofloxacin, norfloxacin, enoxacin, fleroxacin, lomefloxacin, (S) -9-fluoro-2,3-dihydro-3-methyl -10- (8-Amino-6-azaspiro [3.4] octane-6-yl) -7-oxo-7H-pyrido [1,2,3-de] [1,4] benzoxazine-6-carboxylic acid (DV -7751), (-)-7- (7- (S) -Amino-5-azaspiro [2.4] heptan-5-yl) -8-chloro-6-fluoro-1- [2- (S) -fluoro -1- (R) -cyclopropyl] -4-oxo-1,4-dihydroquinoline-7-carboxylic acid (DU-6859), 1-cyclopropyl-6-fluoro-1,4-dihydro-3-methoxy -4-oxo-7- (3-methylpiperazinyl) -3-quinolinecarboxylic acid (AM-1155), 1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-4-oxo- 7- (4-Aminomethylpiperi And (dinyl) -3-quinolinecarboxylic acid (Q-35).
[0006]
The antigenicity of fluorine-containing pyridonecarboxylic acids antibacterial compounds is extremely low, and even when these compounds themselves are used as antigens, antibodies that recognize fluorine-containing pyridonecarboxylic acids antibacterial compounds cannot be produced efficiently. Therefore, it is expected that an antigen for producing an antibody that recognizes a fluorine-containing pyridonecarboxylic acid antibacterial compound is an antibody obtained by binding a protein to these compounds. However, it is possible to bind a fluorine-containing pyridonecarboxylic acid antibacterial compound and a protein without impairing a functional group that affects antigenicity, for example, a ketone group at the 4-position of the pyridine skeleton, a carboxyl group at the 3-position, or a fluorine atom. is necessary. In addition, an antigen that produces a useful antibody that can be used in common for measurement of various fluorine-containing pyridonecarboxylic acids antibacterial compounds may be required.
[0007]
The present inventor made levofloxacin [LVFX: (-)-(S) -9-fluoro-2,3-dihydro-3-methyl-10- (4-methyl-1-piperazinyl) -7-oxo-7H-pyrido The 4-methyl group of 4-methylpiperazine, the 10-position substituent of [1,2,3-de] [1,4] benzoxazine-6-carboxylic acid], was chemically modified, and serum albumin was added to this site. The present inventors succeeded in producing an excellent antigen that can achieve the above-mentioned object by binding. In addition, the inventors have found that a useful antibody that recognizes a fluorine-containing pyridonecarboxylic acid antibacterial compound can be provided by using the above-mentioned antigen, and a method for measuring a fluorine-containing pyridonecarboxylic acid antibacterial compound by immunoassay using the antibody. Completed. The present invention has been completed based on the above findings.
[0008]
[Means for Solving the Problems]
Accordingly, the present invention provides an antigen that is a conjugate of a fluorine-containing pyridonecarboxylic acid antibacterial compound and protein, and a freeze-dried product thereof. According to one aspect of the present invention, there is provided an antigen in which a compound obtained by converting a 4-methylpiperazinyl group, which is a 10-position substituent of ofloxacin or levofloxacin, into a 4-carboxymethylpiperazinyl group is bound to a protein. . The present invention also provides a method for producing an antibody that recognizes a fluorine-containing pyridonecarboxylic acid antibacterial compound by immunizing an animal using these antigens, and an antibody produced by the method. Furthermore, the present invention provides a method for measuring fluorine-containing pyridonecarboxylic acid antibacterial compounds by immunoassay using these antibodies.
[0009]
As an antigen used to produce an antibody that recognizes a fluorine-containing pyridonecarboxylic acid antibacterial compound according to the present invention, a 4-methylpiperazinyl group that is a 10-position substituent of ofloxacin or levofloxacin is a 4-carboxymethylpiperazinyl group Converted to (in the case of ofloxacin, 9-fluoro-2,3-dihydro-3-methyl-10- (4-carboxymethyl-1-piperazinyl) -7-oxo-7H-pyrido [1,2, It is appropriate to use an antigen produced by combining 3-de] [1,4] benzoxazine-6-carboxylic acid) as a hapten and binding this carboxylmethyl group to a carrier such as a protein. The protein used as the carrier may be appropriately selected from various proteins generally useful for antibody production, and the protein and hapten can be bound by a method known per se. For example, bovine serum albumin can be used as a protein, and a condensing reaction using dicyclohexylcarbodiimide or an active ester method can be used for binding a protein and a hapten. The bonding method is not limited to the above specific example.
[0010]
Antibody production can be performed by a method known per se. For example, the above antigen may be mixed with a suitable adjuvant, for example, Freund's adjuvant, to immunize animals such as rabbits and goats, and after appropriate booster immunization, blood may be collected and separated to obtain antiserum. . In order to produce a monoclonal antibody, immune cells such as the thymus are separated from the immunized animal and fused with myeloma cells appropriately selected by a method well known to those skilled in the art, and then the fused cells are cloned. That's fine. For various types of animals to be immunized, immunization schedule, carrier protein, adjuvant, etc., various books such as T.Chard, Kitagawa, Fujiwara and Tanimori's "Radioimmunoassay" (Tokyo Kagaku Dojin) can be referred to. .
[0011]
On the other hand, as the labeled fluorine-containing pyridonecarboxylic acid antibacterial compound usually called a tracer, those labeled with a radioisotope or an enzyme can be used. These can be produced and used in various ways well known to those skilled in the art. For example, a tritium-labeled fluorine-containing pyridonecarboxylic acid antibacterial compound or a fluorine-containing pyridonecarboxylic acid antibacterial compound labeled with an enzyme such as alkaline phosphatase (ALP) or horseradish peroxidase (HRP) can be used as a tracer. These can be stored as lyophilized products as needed, or can be part of a kit.
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0012]
【Example】
Use the following abbreviations:
RIA: Radioimmunoassay EIA: Enzyme immunoassay DMF: Dimethylformamide BSA: Bovine serum albumin ALP: Alkalinephosphatase
CDI: 1,1′-carbonylimidazole HOSu: N-hydroxysuccinimide PB: phosphate buffer PBS: 0.01 M phosphate buffered saline (pH 7.4)
Coating buffer: 0.1M carbonate buffer (pH 9.5)
Wash buffer-1: 50 mM Tris-HCl buffer (pH 7.4) containing 0.05% Tween 20
Wash buffer-2: Block Ace (0.15) containing 0.1% Tween 20 EIA buffer: 50 mM Tris-HCl buffer (pH 7.4) containing 0.5% BSA
[0013]
Example 1: Preparation of immune antigen
1.1 (-)-(S) -9,10-Difluoro-2,3-dihydro-3-methyl-7-oxo-7H-pyrido [1,2,3-de] [1,4] benzoxazine-6- 12.0 g of anhydrous piperazine was added to 40.0 g of carboxylic acid BF 2 -chelate and 200 ml of dimethylacetamide with stirring, and the mixture was reacted at an internal temperature of 20 to 25 ° C. for 3 hours. Next, 16 ml of triethylamine was added with stirring under ice cooling, and 24.0 g of ethyl bromoacetate was added dropwise. After completion of the reaction, the mixture was reacted at 20 to 25 ° C. for 1 hour, and the solvent was distilled off under reduced pressure. The residue was dissolved in 1400 ml of aqueous methanol, 40 ml of triethylamine was added, and the mixture was refluxed for 3 hours with stirring. The solvent was distilled off under reduced pressure, 1200 ml of water was added to the residue, and the mixture was extracted 5 times with 1200 ml of chloroform. The chloroform layers were combined, filtered, washed with water, dehydrated with sodium sulfate, and the solvent was distilled off under reduced pressure to obtain crude crystals.
[0014]
The above crude crystal was subjected to silica gel column chromatography, eluted with chloroform-methanol (95: 5), and the concentrated residue was crystallized from ethanol to give pale yellowish white crystalline (-)-( S) -9-Fluoro-2,3-dihydro-3-methyl-10- (4-ethoxycarbonylmethyl-1-piperazinyl) -7-oxo-7H-pyrido [1,2,3-de] [1, 4] 12.65 g of benzoxazine-6-carboxylic acid was obtained. Melting point 188 ~ 191 ℃
Concentrated hydrochloric acid (205 ml) was added to the above (4-ethoxycarbonylmethyl-1-piperazinyl) derivative (23.9 g), and the mixture was reacted on a 100 ° C. bath for 3 hours. The mixture was returned to room temperature, filtered, concentrated to about 80 g under reduced pressure, 410 ml of water was added thereto, and the precipitated crystals were collected by filtration. The obtained crystals were washed with water, 80% ethanol, ethanol and ether in this order and dried to give (-)-(S) -9-fluoro-2,3-dihydro-3-methyl-10 as a pale yellow fine powder. -(4-Carboxymethyl-1-piperazinyl) -7-oxo-7H-pyrido [1,2,3-de] [1,4] benzoxazine-6-carboxylic acid hydrochloride (DT-5334 ・ HCl) 22.3 g Got. Melting point 250-252 ° C (decomposition). The structure of the compound was confirmed by elemental analysis and NMR.
[0015]
1.2 Synthesis by water-soluble carbodiimide method
DT-5334 · HCl (124 mg) was dissolved in DMF (5 ml), and BSA 500 mg in water-DMF (1: 1) solution (50 ml) was added dropwise under ice cooling. After stirring at 4 ° C for 3 hours, 5% aqueous sodium hydrogen carbonate solution was added dropwise to dissolve the precipitate, and then 5.39 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added to the mixture at 4 ° C. And allowed to react overnight with stirring. After the reaction, the mixture was dialyzed against distilled water and then freeze-dried to obtain a DT-5334-BSA conjugate (lot 1).
[0016]
1.3 Synthesis by the active imide ester method
441 mg of DT-5334 · HCl was dissolved in 5 ml of DMF, 178 mg of CDI was added under ice cooling, and the mixture was reacted at 4 ° C. with stirring overnight. After the reaction, 126.5 mg of HOSu was added and reacted at 4 ° C. with stirring for 4 hours. This reaction solution was added dropwise to 100 ml of a BSA 650 mg water-DMF (1: 1) solution over about 1 hour under ice-cooling, and then reacted at 4 ° C. with stirring overnight. After the reaction, the precipitate was centrifuged (1800 × g, 4 ° C., 15 minutes), and the supernatant was dialyzed against distilled water and freeze-dried to obtain a DT-5334-BSA conjugate (lot 2).
[0017]
1.4 Drug Bond Mole Number of DT-5334-BSA Conjugate The drug bond mole number of the prepared DT-5334-BSA conjugate was calculated by amino acid analysis. The number of moles of drug bound to 1 mole of protein BSA was 13.2 mole and 36.5 mole for lot 1 and lot 2, respectively. In addition, glycine and alanine were used as control amino acids in the calculation of the number of bonds, and the average value was used as the number of bonds.
[0018]
Example 2: Preparation of antiserum 0.5 ml of physiological saline and 0.5 ml of Freund's complete adjuvant per 1 mg of immunizing antigen were added to prepare an emulsion with a homogenizer. Using this emulsion, 20 rabbits (Japanese white breed, female, body weight 2.5 kg to 3 kg) were immunized. For the immunizing antigen, lot 1 was used from the 1st to the 6th, and lot 2 was used from the 7th to the 7th. The amount of the antigen was 1 mg per animal (in terms of conjugate) until the 7th, and 0.5 mg from the 8th onward. The interval between immunizations is generally 2 weeks, and the abdominal skin (40 times in the 1st to 2nd time), the skin in the buttocks (the 40th place in the 3rd time), the back skin (the 4th to 5th time, 40 places), and the subcutaneous part in the back (6-13) The fourth dose was administered at 4 sites. On the way, after confirming the production of the antibody, whole blood was collected from the carotid artery on the 10th day after the 13th immunization. The collected blood was centrifuged (1600 × g, 4 ° C., 30 minutes), and the obtained serum was stored at −80 ° C.
[0019]
Example 3 Production of Tritium-labeled Antigen Desmethyllevofloxacin [(−)-(S) -9-Fluoro-2,3-dihydro-3-methyl-10- (1-piperazinyl) -7-oxo-7H-pyrido [1,2,3-de] [1,4] benzoxazine-6-carboxylic acid] 3.5 mg was dissolved in 1 ml of DMF, and 11 mg of potassium carbonate was added. To this solution was added a toluene solution of 3 H-methyl iodide 1.85 GBq. By vacuum transfer, and the mixture was stirred at 37 ° C. overnight. After the reaction, the solvent was distilled off under reduced pressure, and the residue was purified by HPLC (ODS, eluent: 1% TEAOAc (pH 4) / CH 3 CN (85:15)) to obtain tritium-labeled levofloxacin (LVFX) 1.22 GBq. Obtained. This compound was identified by chromatography (TLC) compared to the standard levofloxacin. The specific activity was 2456.8 GBq (66.4 Ci) / mmol.
[0020]
Example 4: Establishment of RIA system
4.1 Measurement of Antibody Titer assay tubes antiserum 0.1 ml were serially diluted with PBS 0.1 ml containing PBS 0.5 ml and 0.5% BSA containing 0.5% BSA and tritiated levofloxacin (3 H-LVFX, hereinafter referred to as the tracer. About 1 × 10 4 dpm / tube) 0.1 ml was added and incubated overnight at 4 ° C. Next, add 1 ml of dextran charcoal powder (100 mg of dextran T-70 (Pharmacia) dissolved in 100 ml of PBS, and then add 1 g of activated charcoal), incubate at 4 ° C for 30 minutes, and then centrifuge (1600 × g , 4 ° C, 15 minutes), decant the supernatant into a vial, add 10 ml of scintillator (Atomlight: DuPont / NEN Research Product), and then bind the radioactivity with a liquid scintillation counter (Packard, 2500 model) Bo) was measured. Further, in order to determine the non-specific binding amount (N), the same operation was performed using normal rabbit serum (abbreviated as NRS) at the same dilution instead of antiserum.
[0021]
The relationship between the dilution rate of the antiserum and the specific binding rate between the antiserum and the tracer ((Bo-N) / T, T: total radioactivity) was determined. Antibody production was observed in all animals. Among them, antiserum R-3 showed a high antibody titer with a specific binding rate of 40.01% at an antiserum dilution ratio of 20,000 times. As preferable antisera, seven types of antisera having a binding rate of 40% or more at a dilution rate of 2,000 times were selected, and a dilution rate showing a binding rate of around 40% was set as the optimal dilution rate of each antiserum.
Furthermore, the measurement sensitivity in the case of measuring various fluorine-containing pyridonecarboxylic acid antibacterial compounds using the above RIA system was determined. A standard curve was prepared for each fluorine-containing pyridonecarboxylic acid antibacterial compound according to the above method. The characteristics of the standard curve are shown with 95% confidence limits, IC 90 , and IC 50 (concentration of compound required to inhibit antiserum and tracer binding by 90% or 50%, respectively) (Table 1).
[0022]
[Table 1]
Figure 0003712133
1) DV-7751 / 1/2 H 2 O
2) DU-6859 ・ 3/2 H 2 O
3) (+)-(R) -9-Fluoro-2,3-dihydro-3-methyl-10- (4-methyl-1-piperazinyl) -7-oxo-7H-pyrido [1,2,3- de] [1,4] benzoxazine-6-carboxylic acid
Example 5: Enzyme immunoassay
5.1 Preparation of enzyme-labeled antigen
5.1.1 DT-5334-ALP-labeled antigen A labeled antigen with ALP was prepared using DT-5334 according to the preparation of immune antigen. DT-5334 · HCl (4.4 mg) was dissolved in DMF (0.5 ml), and CDI (17.8 mg) was added under ice cooling, followed by reaction at 4 ° C. with stirring overnight. After the reaction, 12.7 mg of HOSu was added and reacted at 4 ° C. with stirring for 4 hours. This reaction solution was dropped into a solution of ALP 65 mg in water: DMF (1: 1) 10 ml over about 1 hour under ice-cooling, and then reacted at 4 ° C. with stirring overnight. After the reaction, the precipitate was centrifuged (1800 × g, 4 ° C., 15 minutes), and the supernatant was permeated with distilled water and then lyophilized to obtain DT-5334-ALP-labeled antigen.
[0024]
5.1.2 DV-7751a-ALP labeled antigen According to the glutaraldehyde method (one-step method) DV-7751a [(S) -9-fluoro-2,3-dihydro-3-methyl-10- (8-amino-6-azaspiro [3.4] Octan-6-yl) -7-oxo-7H-pyrido [1,2,3-de] [1,4] benzoxazine-6-carboxylic acid] was used to prepare a labeled antigen with ALP. DV-7751a 5 mg was added to 2 ml of 0.1 M PB (pH 6.8), and ALP dissolved in 0.2 ml of 0.1 M PB (pH 6.8) was added. Furthermore, 50 μl of 1% glutaraldehyde was added, and the mixture was reacted at room temperature for 2 hours with stirring. After the reaction, it was dialyzed against distilled water and then lyophilized to obtain DV-7751a-ALP-labeled antigen.
[0025]
5.2 Preparation of Standard Curve A standard curve for levofloxacin was prepared, and the performance of two kinds of enzyme-labeled antigens was compared using DT-5334-ALP-labeled antigen and DV-7751a-ALP-labeled antigen. 100 μl of goat anti-rabbit IgG adjusted to 20 μg / ml with a coating buffer was added to a microtiter plate, and incubated at 4 ° C. overnight to immobilize on the plate. Plates were washed 3 times (300 μl / well) with wash buffer-1. Next, 300 μl of PBS containing 1% BSA was added to each well for blocking, and the plate was washed with Wash Buffer-1.
[0026]
Thereafter, antiserum diluted with EIA buffer was added and incubated at 37 ° C. for 1 hour, and the plate was washed three times with Wash Buffer-1. Furthermore, 50 μl of enzyme-labeled antigen diluted with EIA buffer and 50 μl of LVFX standard solution diluted serially with EIA buffer were added to each well and incubated at 37 ° C. for 1 hour. Thereafter, the plate was washed 3 times with Wash Buffer-1 and an alkaline phosphatase substrate solution (diethanolamine buffer diluted 5 times with distilled water and then added with p-nitrophenyl phosphate: hereinafter abbreviated as substrate) Add 100 μl and incubate for 2 hours at room temperature for DT-5334-ALP labeled antigen and 30 minutes at room temperature for DV-7751a ALP labeled antigen, then stop the reaction by adding 25 μl 1.6 M NaOH, Absorbance at nm was measured.
Both types of labeled antigens showed a dose response. In particular, DV-7751a-ALP-labeled antigen was confirmed to be suitable as an antigen with a concentration range of 3 ng / ml to 10 ng / ml. .
[0027]
5.3 Examination of preparation method of enzyme-labeled antigen (general method)
Dissolve 1 mg of ALP in 1 ml of 1M PB (pH 6.8), add 5-fold, 10-fold, 20-fold and 50-fold moles of DV-7751a to 1 mole of ALP, respectively, and add 50 μl of 1% glutaraldehyde at room temperature. For 3 hours. After completion of the reaction, 100 μl of 1M DL-lysine was added and reacted at room temperature for 1 hour, and further dialyzed against distilled water. The lyophilized product after dialysis was redissolved in 1 ml of distilled water to obtain four types of DV-7751a-ALP-labeled antigens.
[0028]
(Two-stage method)
1 mg of ALP was dissolved in 1 ml of 1M PB (pH 6.8), 50 μl of 1% glutaraldehyde was added, reacted at room temperature for 16 hours, and dialyzed against distilled water. The lyophilized product after dialysis is redissolved in 1 ml of 1M PB (pH 6.8), and 10-fold, 20-fold, 50-fold and 100-fold moles of DV-7751a are added to 1 mole of ALP, respectively, and the mixture is stirred at 4 ° C for 16 hours. After reacting, it was dialyzed against distilled water. The lyophilized product after dialysis was redissolved in 1 ml of distilled water to obtain 4 types of DV-7751a-ALP-labeled antigens.
[0029]
5.4 Comparison of activity of enzyme-labeled antigen by preparation method Add 100 μl of goat anti-rabbit IgG prepared at 20 μg / ml with coating buffer to a microtiter plate and incubate at room temperature for 2 hours to form a solid support on the plate. The plate was washed with wash buffer-1. Next, 300 μl of 50 mM Tris-HCl buffer (pH 7.4) containing 1% BSA was added to each well and incubated at room temperature for 2 hours, and then the plate was washed with wash buffer-1. Next, anti-LVFX serum serially diluted with EIA buffer was added and incubated at room temperature for 2 hours, and then the plate was washed 3 times with wash buffer-1. Further, 50 μl of enzyme-labeled antigen diluted 50 times with EIA buffer and 50 μl of EIA buffer were added to each well and incubated at room temperature for 2 hours. The plate was then washed 3 times with wash buffer-1, 100 μl of substrate was added and incubated at room temperature for 30 minutes, then the reaction was stopped by adding 25 μl of 1.6 M sodium hydroxide solution, and the absorbance at 405 nm was measured. .
[0030]
The absorbance in the one-step method was the highest at 2.338 when the molar ratio was 20 times and the antiserum dilution rate was 100 times, and the maximum was 0.878 when the molar ratio was 20 times and the antiserum dilution rate was 100 times in the two-step method. When both methods were compared, the absorbance in the one-step method was higher than that in the two-step method. According to this result, it is preferable that the reaction condition of DV-7751a-ALP-labeled antigen is carried out by a one-step method, and the molar ratio of drug to ALP is 20 times.
By referring to the above examples, those skilled in the art can easily perform radioimmunoassay or enzyme immunoassay using the antibody of the present invention, and measure the concentration of various fluorine-containing pyridonecarboxylic acid antibacterial compounds. Can do. For reference, standard operating conditions are shown below, but the measuring method of the present invention is not limited to these conditions.
[0031]
Figure 0003712133
[0032]
Figure 0003712133
[0033]
Figure 0003712133
[0034]
【The invention's effect】
The antibody provided by the present invention is a useful antibody that recognizes a fluorine-containing pyridonecarboxylic acid antibacterial compound. By immunoassay using the antibody, various antibacterial compounds containing fluorine-containing pyridonecarboxylic acid antibacterial compounds in biological samples, for example, This is useful because the concentration can be measured with high sensitivity.

Claims (2)

(-)-(S)-9-フルオロ-2,3- ジヒドロ-3- メチル-10-(4- カルボキシメチル-1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸とウシ血清アルブミンとの結合物を抗原として用いることを特徴とする(-)-(S)-9-フルオロ-2,3- ジヒドロ-3- メチル-10-(4- メチル-1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸を認識する抗体の産生方法。(-)-(S) -9-Fluoro-2,3-dihydro-3-methyl-10- (4-carboxymethyl-1-piperazinyl) -7-oxo-7H-pyrido [1,2,3-de ] [1,4] (-)-(S) -9-Fluoro-2,3-dihydro-3-methyl, characterized by using a conjugate of benzoxazine-6-carboxylic acid and bovine serum albumin as an antigen A method for producing an antibody that recognizes -10- (4-methyl-1-piperazinyl) -7-oxo-7H-pyrido [1,2,3-de] [1,4] benzoxazine-6-carboxylic acid. (-)-(S)-9-フルオロ-2,3- ジヒドロ-3- メチル-10-(4- カルボキシメチル-1- ピペラジニル)-7-オキソ-7H-ピリド[1,2,3-de][1,4] ベンゾキサジン-6- カルボン酸とウシ血清アルブミンとの結合物である抗原。 (-)-(S) -9-Fluoro-2,3-dihydro-3-methyl-10- (4-carboxymethyl-1-piperazinyl) -7-oxo-7H-pyrido [1,2,3-de ] [1,4] An antigen that is a conjugate of benzoxazine-6-carboxylic acid and bovine serum albumin.
JP05891894A 1994-03-29 1994-03-29 Immunoassay for antibacterial compounds Expired - Fee Related JP3712133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05891894A JP3712133B2 (en) 1994-03-29 1994-03-29 Immunoassay for antibacterial compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05891894A JP3712133B2 (en) 1994-03-29 1994-03-29 Immunoassay for antibacterial compounds

Publications (2)

Publication Number Publication Date
JPH07267999A JPH07267999A (en) 1995-10-17
JP3712133B2 true JP3712133B2 (en) 2005-11-02

Family

ID=13098210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05891894A Expired - Fee Related JP3712133B2 (en) 1994-03-29 1994-03-29 Immunoassay for antibacterial compounds

Country Status (1)

Country Link
JP (1) JP3712133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451294A1 (en) * 1989-11-02 1991-10-16 Fanuc Ltd. Crank type injection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494522B2 (en) * 2007-12-13 2010-06-30 積水メディカル株式会社 Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same
JP5572451B2 (en) * 2009-06-12 2014-08-13 積水メディカル株式会社 Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same
JP7365063B2 (en) * 2021-07-08 2023-10-19 学校法人九州文化学園 Blood levofloxacin concentration measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451294A1 (en) * 1989-11-02 1991-10-16 Fanuc Ltd. Crank type injection device

Also Published As

Publication number Publication date
JPH07267999A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
De Haan et al. Three epitope-specific monoclonal antibodies against the hapten penicillin
KR100347166B1 (en) Rapamycin assay
US8088594B2 (en) Risperidone immunoassay
JP5031585B2 (en) 5-Fluoro-uracil immunoassay
US8273860B2 (en) Imatinib immunoassay
EP0674661B1 (en) Assay and treatment for demyelinating diseases such as multiple sclerosis
US10399938B2 (en) Compositions relating to vitamin D
US20040248222A1 (en) Monoclonal antibodies specific for buprenorphine and metabolites thereof
JP3712133B2 (en) Immunoassay for antibacterial compounds
US9815907B2 (en) Binding partners specific for vitamin D epimers
US5662911A (en) Benzodiazepine protein conjugates
JPH10265457A (en) Indoxyl sulfate derivative, antigen, antibody and detection of indoxyl sulfate using the same
JP2011017697A (en) Anti-ofloxacin monoclonal antibody and immunological measuring method of ofloxacin using the same
US6541004B1 (en) Cocaethylene immunogens and antibodies
JP2613067B2 (en) Monoclonal antibodies and methods of use
US4102979A (en) Radioimmunoassay for benzoylecgonine
EP0916676A1 (en) Synthesis of 6 alpha-functionalized estriol haptens and protein conjugate thereof
JPH07209296A (en) Antibody, enzyme-labeled antigen and method and kit for enzyme immunoassay
JPH07209295A (en) Antibody, enzyme-labeled antigen and method and kit for enzyme immunoassay
EP1542012B1 (en) Antibodies for detecting efavirenz
FI80703B (en) Protein conjugates of bis-indole alkaloids, process for the preparation and use thereof
CA2109644A1 (en) Agent and method for the immunological determination of amiodarone and its metabolites
CA2014006A1 (en) Monoclonal antibodies to tetracyclic compounds, processes for their production, and applications
JPH0920773A (en) Isoquinolinesulfonamide derivative and its determination

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees