JP3711834B2 - Humidity control system - Google Patents

Humidity control system Download PDF

Info

Publication number
JP3711834B2
JP3711834B2 JP2000082334A JP2000082334A JP3711834B2 JP 3711834 B2 JP3711834 B2 JP 3711834B2 JP 2000082334 A JP2000082334 A JP 2000082334A JP 2000082334 A JP2000082334 A JP 2000082334A JP 3711834 B2 JP3711834 B2 JP 3711834B2
Authority
JP
Japan
Prior art keywords
adsorption
desorption
air
control system
humidity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000082334A
Other languages
Japanese (ja)
Other versions
JP2001263729A (en
Inventor
裕司 渡部
芳正 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000082334A priority Critical patent/JP3711834B2/en
Publication of JP2001263729A publication Critical patent/JP2001263729A/en
Application granted granted Critical
Publication of JP3711834B2 publication Critical patent/JP3711834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、調湿システムに関する。
【0002】
【従来の技術】
従来、吸脱着素子としては、軸中心に回転する円板状の吸着ロータがある。この吸着ロータは、吸着材をハニカム状(または多孔多粒状)に成形し、軸方向に通過する空気を吸着する一方、加熱された空気に水分を放出する。
【0003】
【発明が解決しようとする課題】
ところが、上記吸着ロータでは、空気の水分を吸着して除湿する除湿領域では、除湿される空気が通過するときに、出口側になるほど吸着熱により通過空気の温度が上昇するため、相対湿度が下がり、十分な吸着能力が得られないという問題がある。また、上記吸脱着素子では、加熱された空気に水分を放出して再生する再生領域では、加湿される空気が通過するときに、出口側になるほど気化熱(脱着熱)により通過空気の温度が下がるため、相対湿度が上がり、水分を十分に放出させることができず、吸着材を十分に再生させることができないという問題がある。
【0004】
そこで、この発明の目的は、吸着時、除湿される空気の温度を下げることにより吸着能力を向上でき、再生時、加湿される空気の温度を上げることにより吸着材を十分に再生できる吸脱着素子を用いた調湿システムを提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、請求項1の調湿システムは、通過する空気の水分を吸着または脱着する吸脱着部と、上記吸脱着部を通過する空気と熱交換を行う熱交換部とを有する吸脱着素子を複数備え、一方の上記吸脱着素子で水分の吸着を行い、他方の上記吸脱着素子で水分の脱着を行って、両方の上記吸脱着素子の吸着動作と脱着動作を交互に切り換える調湿システムであって、導入外気の一部により吸着動作中の上記吸脱着素子の冷却を行い、その吸着動作中の上記吸脱着素子を冷却した後の上記導入外気を用いて脱着動作中の上記吸脱着素子を加熱することを特徴としている。
【0006】
上記請求項1の調湿システムによれば、例えば、上記吸脱着部の吸着材としてシリカゲル,ゼオライトまたはアルミナ等を用い、その吸脱着部に空気を通過させて、空気の水分を吸脱着部に吸着させることにより、除湿を行う。一方、上記吸脱着部に加熱空気を通過させて、吸脱着部から水分を放出することにより吸脱着部の再生を行う。このとき、上記吸脱着部を通過する空気と例えば熱媒体(空気または水等)との間で上記熱交換部により熱交換を行って、上記吸脱着部を通過する空気を冷却したり加熱したりすることが可能となる。したがって、上記吸脱着部を通過する空気の温度を制御して、その空気の相対湿度を適切に制御することによって、吸着,再生時の絶対湿度差を大きくとれ、吸脱着部の水分の吸着,放出を効率良く行うことができる。また、吸着,再生時の絶対湿度差を大きくとれるので、調湿システムの小型化が容易となる。
【0007】
【0008】
【0009】
【0010】
【0011】
また、請求項調湿システムは、請求項1の調湿システムにおいて、上記熱交換部は、上記吸脱着部の空気が通過する吸脱着通路と上記吸脱着通路内の空気と熱交換される空気が通過する熱交換通路とが交互に積層された積層構造であることを特徴としている。
【0012】
上記請求項の調湿システムによれば、上記吸脱着部の空気が通過する吸脱着通路と上記吸脱着通路内の空気と熱交換される空気が通過する熱交換通路とを交互に積層することによって、簡単な構造で吸脱着部を通過する空気と熱交換が可能な熱交換部を実現できる。
【0013】
【0014】
【0015】
【発明の実施の形態】
以下、この発明の調湿システムを図示の実施の形態により詳細に説明する。
【0016】
(第1実施形態)
図1はこの発明の第1実施形態の調湿システム10の構成図であり、1はケーシング、2は上記ケーシング1内を通路1Aと通路1Bに仕切る仕切板、3は上記通路1A内の一方の側に配置された第1吸脱着素子、4は上記通路1B内の一方の側に配置された第2吸脱着素子、5は上記第1,第2吸脱着素子3,4の間に仕切板2を貫通するように配置された加熱コイル、6は上記ケーシング1内の他方の側に、かつ、通路1A,1Bの両側にわたって配置された積層式顕熱交換器である。なお、上記加熱コイル5には、図示しない熱源から温水が供給される。
【0017】
また、上記ケーシング1の第1吸脱着素子3側の端に通路1Aの出入口12を設ける一方、ケーシング1の第2吸脱着素子4側の端に通路1Bの出入口11を設けている。一方、上記ケーシング1の顕熱交換器6側の端に通路1A,1Bの出入口13,14を設けている。なお、この出入口13は、顕熱交換器6を介して通路1Aにつながり、出入口14は、顕熱交換器6を介して通路1Bにつながっている。
【0018】
また、図2は上記第1吸脱着素子3の構成を示す概略図であり、この第1吸脱着素子3は、所定の間隔をあけて積層された複数の平板20と、上記平板20の間にを一層毎に交互に稜線が直交するように配置された断面波形形状の複数の案内板21,22とを有している。上記断面波形形状の案内板21は、表面および裏面に吸着材(シリカゲル,ゼオライトまたはアルミナ等)が塗布されている。また、吸脱着部としての平板20と案内板21によって、吸脱着通路21a,21bを形成する一方、熱交換部としての平板20と案内板22によって、熱交換通路22a,22bを形成している。なお、図1に示す第2吸脱着素子4も同様の構成をしている(図3参照)。
【0019】
また、図1に示す積層式顕熱交換器6は、方向が直交する扁平な複数の通路(図示せず)が一層毎に交互に積層されて、直交する両通路を流れる空気の間で熱交換を行う。
【0020】
上記構成の調湿システム10は、外部の図示しないダンパー等を用いて、空気の流れる方向を切り換えることによって、第1吸脱着素子3を吸着側から再生側(または再生側から吸着側)に切り換え、第2吸脱着素子4を再生側から吸着側(または吸着側から再生側)に切り換えるバッチ運転が行われる。
【0021】
以下、図1を用いてバッチ運転の一方の状態について上記調湿システム10の動作を説明する。なお、図1では、第1吸脱着素子3を吸着側とし、第2吸脱着素子4を再生側としている。
【0022】
図1において、外気OAが出入口12から第1吸脱着素子3の吸脱着通路21a,21b(図2に示す)を通過し、第1吸脱着素子3の吸脱着通路21a,21bを通って除湿された空気は、通路1Aを矢印X1の方向に流れて、顕熱交換器6を介して出入口13から除湿空気SAが室内に供給される。一方、室内からの空気RAが出入口14から顕熱交換器6を介して通路1Bを矢印Y1の方向に流れて、第2吸脱着素子4の吸脱着通路21a,21b(図3に示す)を通って加湿された空気は、出入口11から水を含んだ空気EAが室外に排出される。このとき、顕熱交換器6では、第1吸脱着素子3で除湿された空気と室内からの空気RAとの間で熱交換が行われる。そうして、上記第1吸脱着素子3で除湿された空気の吸着熱を利用して、室内からの空気RAを暖めて、温められた空気RAによって第2吸脱着素子4の再生を行う。
【0023】
さらに、外気OAの一部は、矢印Zの方向に第1吸脱着素子3の熱交換通路22a,22b(図2に示す)を通って、加熱コイル5で加熱された後、第2吸脱着素子4の熱交換通路22a,22b(図3に示す)を通って矢印Wの方向に流れ、第2吸脱着素子4の吸脱着通路21a,21bを通った空気と共に、水分を含んだ空気EAとして外部に排出される。
【0024】
例えば、図2に示すように、吸着側の第1吸脱着素子3では、乾球温度(DB)が35℃で湿球温度(WB)が27℃の外気OAが、吸脱着通路21a,21bを通過すると共に、その外気OAの一部が熱交換通路22a,22bを通過すると、吸脱着通路21a,21bで水分が吸着された除湿空気の乾球温度は40℃、熱交換通路22a,22bを通過して排気される空気の乾球温度は37℃となる。
【0025】
また、図3に示すように、再生側の第2吸脱着素子4では、乾球温度(DB) が27℃で湿球温度(WB)が19℃の室内からの空気RAが、吸脱着通路21a,21bを通過する一方、第1吸脱着素子3の熱交換通路22a,22bを通過し、加熱コイル5により乾球温度が80℃に加熱された空気が、第2吸脱着素子4の熱交換通路22a,22bを通過する。
【0026】
上記調湿システム10において、第1,第2吸脱着素子3,4の吸脱着通路21a,21bを通過する空気の絶対湿度の変化を図4に示している。なお、図4において、縦軸は乾球温度、横軸は絶対湿度である。
【0027】
図4に示すように、吸着側では、上記第1吸脱着素子3の吸脱着通路21a,21bを通過する空気は、除湿されて(1)の状態から(2)の状態になり、さらに、顕熱交換器6(図1に示す)で室内からの空気RAと熱交換されて、(2)の状態から(3)の状態になる。そうして、絶対湿度は、(1)の0.014kg/kgから(3)の0.008kg/kgまで除湿される。
【0028】
一方、再生側では、まず、室内からの空気RAが顕熱交換器6(図1に示す)で第1吸脱着素子3から室内に供給される空気SAと熱交換されて、さらに、加熱コイル5で加熱された空気と第2吸脱着素子4熱交換され、(4)の状態から(5)の状態になり、次に、第2吸脱着素子4の吸脱着通路21a,21bを通過する空気は、加湿されて(5)の状態から(6)の状態になる。そうして、絶対湿度は、(5)の0.013kg/kgから0.019kg/kgまで加湿される。
【0029】
上記第1吸脱着素子3で熱交換通路22a,22bを用いて、吸脱着通路21a,21bの空気を冷却しない場合、図4に示すように、除湿による吸着熱のために(1)の状態から温度が高いAの状態となってしまう。この場合、除湿される空気の温度が上昇するため、相対湿度が下がり、吸着材の含水率が下がり、除湿能力が低下することになる。一方、上記第第2吸脱着素子4で熱交換通路22a,22bを用いて、吸脱着通路21a,21bの空気を加熱せずに、従来の室内からの空気RAを加熱コイル等により加熱して、第2吸脱着素子4を通過させた場合、図4に示すように、加湿による気化熱のために(5)の状態からBの温度が低い状態となってします。実際には、加湿される空気の温度が低下するために相対湿度が上がり、吸着材の含水率が上がり、再生が十分でなくなる。
【0030】
これに対して、この第1実施形態では、吸着側の第1吸脱着素子3に熱交換部(20,22)を設けて、除湿される空気を冷却することによって、相対湿度を上げ、吸着材の含水率を上げることが可能となり、吸着能力を向上できると共に、再生側の第2吸脱着素子4に熱交換部(20,22)を設けて、加湿される空気を加熱することによって、相対湿度を下げ、吸着材の含水率を下げることが可能となり、吸着材を十分に再生することができる。
【0031】
このように、上記吸脱着部(20,21)を通過する空気の温度を制御して、その空気の相対湿度を適切に制御することによって、吸脱着部(20,21)の水分の吸着,放出を効率良く行うことができる。
【0032】
なお、上記調湿システムでは、図5に示すように、除湿運転により第1吸脱着素子3の吸着能力が低下すると、吸着側と再生側とを切り換えるバッチ運転を行う。すなわち、十分に再生された第2吸脱着素子4を吸着側とし、第1吸脱着素子3を再生側として、空気の流れを図1とすべて逆方向にするのである。以下、図1のときと同様にして除湿運転を行う。
【0033】
(第2実施形態)
図6はこの発明の第2実施形態の調湿システム20の構成図であり、31はケーシング、32は上記ケーシング31内を除湿通路31Aと再生通路31Bに仕切る仕切板、33は上記除湿通路31A,31Bの両側に配置された吸脱着素子としての円板形状の吸着ロータ、34は上記吸着ロータ33の通路1B側に配置された加熱手段、35は上記吸着ロータ33の除湿通路31A側に設けられた冷却手段、36は上記ケーシング1内の他方の側に配置された顕熱ロータ、37は上記再生通路31B内に吸着ロータ33と顕熱ロータ36との間に配置された加熱コイルである。上記吸着ロータ33は、吸着材(シリカゲル,ゼオライトまたはアルミナ等)をハニカム状または多孔多粒状に成形して、無数の吸脱着通路(図示せず)を形成している。この吸着ロータ33の無数の吸脱着通路を通過する空気から水分を吸着する一方、加熱された空気に水分を放出する。
【0034】
また、上記ケーシング31の顕熱ロータ36側の端に再生通路31Bの入口43を設ける一方、ケーシング31の吸着ロータ33側の端に再生通路31Bの出口41を設けている。また、上記ケーシング31の吸着ロータ33側の端に除湿通路31Aの入口42を設ける一方、ケーシング31の顕熱ロータ36側の端に除湿通路31Aの出口44を設けている。
【0035】
上記構成の調湿システム20において、除湿通路31に入口42から流入した外気OAは、吸着ロータ33によって、水分が吸着されて除湿され、かつ、吸着熱により温度上昇して、矢印X2の方向に流れる。さらに、吸着ロータ33で除湿された空気は、顕熱ロータ36によって熱が奪われて、適切な温度になった除湿空気SAが出口44から室内に供給される。一方、室内からの空気RAが再生通路31Bに入口43から流入して、顕熱ロータ36で予熱され、さらに、加熱コイル37によって加熱された後、矢印Y2の方向に流れる。この加熱コイル37により加熱された空気によって、吸着ロータ33から水分を放出させて、吸着ロータ33を再生し、水分を含んだ空気EAを出口41から外部に放出する。このようにして、除湿通路31Aを流れる空気から吸湿ロータ33で水分を再生通路31Bに移送して、除湿空気SAを室内に供給する。
【0036】
このとき、上記吸着ロータ33の除湿通路31A側において、熱交換部としての冷却手段35によって、除湿される空気の温度を冷却する一方、吸着ロータ33の再生通路31B側において、熱交換部としての加熱手段34によって、加湿される空気の温度を加熱する。上記冷却手段35は、吸着ロータ33の除湿通路31A側に面する側方から冷却空気を内部に循環させる構成をしており、加熱手段34は、吸着ロータ33の再生通路31B側に面する側方から加熱空気を内部に循環させる構成をしている。なお、冷却手段35,加熱手段34の構成はこれに限らず、吸着ロータを通過する空気と熱交換する熱交換部であればよい。
【0037】
このようにして、この第2実施形態の調湿システムは、上記第1実施形態の調湿システムと同様に、除湿される空気を冷却することによって、吸着ロータ33の吸着側の吸着能力を向上できると共に、吸着ロータ33の再生側の吸着材を十分に再生することができる。
【0038】
上記第1,第2実施形態では、除湿を行う調湿システムについて説明したが、加湿を行う調湿システムや除湿,加湿の両方を行う調湿システムにこの発明を適用してもよい。
【0039】
【発明の効果】
以上より明らかなように、請求項1の発明の調湿システムは、通過する空気の水分を吸着する吸脱着部と、上記吸脱着部を通過する空気と熱交換を行う熱交換部とを有する吸脱着素子を複数備え、一方の吸脱着素子で水分の吸着を行い、他方の吸脱着素子で水分の脱着を行って、両方の吸脱着素子の吸着動作と脱着動作を交互に切り換える調湿システムであって、導入外気の一部により吸着動作中の吸脱着素子の冷却を行い、その吸着動作中の吸脱着素子を冷却した後の導入外気を用いて脱着動作中の吸脱着素子を加熱するものである。
【0040】
したがって、請求項1の発明の調湿システムによれば、上記吸脱着部を通過する空気と例えば熱媒体との間で熱交換部により熱交換を行って、上記吸脱着部を通過する空気を冷却したり加熱したりすることによって、上記吸脱着部を通過する空気の温度を制御し、その空気の相対湿度を適切に制御して、吸脱着部の水分の吸着,放出を効率良く行うことができる。
【0041】
【0042】
【0043】
また、請求項の発明の吸脱着素子は、請求項1の調湿システムにおいて、上記熱交換部は、上記吸脱着部の空気が通過する吸脱着通路と上記吸脱着通路内の空気と熱交換される空気が通過する熱交換通路とが交互に積層された積層構造であるので、簡単な構造で吸脱着部を通過する空気と熱交換が可能な熱交換部を実現することができる。
【0044】
【0045】
【図面の簡単な説明】
【図1】 図1はこの発明の第1実施形態の調湿システムの構成図である。
【図2】 図2は上記調湿システムの吸着側の第1吸脱着素子の説明図である。
【図3】 図3は上記調湿システムの再生側の第2吸脱着素子の説明図である。
【図4】 図4は上記調湿システムの吸着,再生を切り換えた状態を説明する図である。
【図5】 図5は上記調湿システムの吸着,再生時の絶対湿度の変化を示す図である。
【図6】 図6はこの発明の第2実施形態の調湿システムの構成図である。
【符号の説明】
1,31…ケーシング、
2,32…仕切板、
3…第1吸脱着素子、
4…第2吸脱着素子、
5,37…加熱コイル、
6…顕熱交換器、
10,20…調湿システム、
20…平板、
21,22…案内板、
21a,21b…吸脱着通路、
22a,22b…熱交換通路、
33…吸着ロータ、
36…顕熱ロータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a humidity control system.
[0002]
[Prior art]
Conventionally, as the adsorption / desorption element, there is a disk-shaped adsorption rotor that rotates about an axis. In this adsorption rotor, the adsorbent is formed into a honeycomb shape (or a porous multi-grain) and adsorbs air passing in the axial direction, while releasing moisture to the heated air.
[0003]
[Problems to be solved by the invention]
However, in the above-described adsorption rotor, in the dehumidifying region where moisture in the air is adsorbed and dehumidified, when the air to be dehumidified passes, the temperature of the passing air increases due to the heat of adsorption toward the outlet side, so the relative humidity decreases. There is a problem that sufficient adsorption capacity cannot be obtained. Further, in the above-described adsorption / desorption element, in the regeneration region in which moisture is released into the heated air for regeneration, when the humidified air passes, the temperature of the passing air is increased by the heat of vaporization (desorption heat) toward the outlet side. Therefore, there is a problem that the relative humidity increases, moisture cannot be sufficiently released, and the adsorbent cannot be sufficiently regenerated.
[0004]
Accordingly, an object of the present invention is to provide an adsorption / desorption element capable of improving adsorption capacity by lowering the temperature of air to be dehumidified during adsorption and sufficiently regenerating the adsorbent by raising the temperature of humidified air during regeneration. It is to provide a humidity control system using a child .
[0005]
[Means for Solving the Problems]
To achieve the above object, the system humidifying of claim 1, a desorption unit for adsorbing or desorbing moisture in the air that passes through, and a heat exchanger for performing heat exchange with air passing over SL desorption unit A plurality of adsorbing / desorbing elements, one adsorbing / desorbing element adsorbs moisture, the other adsorbing / desorbing element desorbs moisture, and alternately adsorbing and desorbing both adsorbing / desorbing elements. A humidity control system for switching, wherein the adsorption / desorption element during the adsorption operation is cooled by a part of the introduced outside air, and the adsorption / desorption element during the adsorption operation is cooled and the desorption operation is performed using the introduced outside air The above adsorption / desorption element is heated .
[0006]
According to the humidity control system of claim 1, for example, silica gel, zeolite, alumina, or the like is used as the adsorbent for the adsorption / desorption part, and air is passed through the adsorption / desorption part, so that moisture in the air is supplied to the adsorption / desorption part. Dehumidification is performed by adsorption. On the other hand, the adsorption / desorption part is regenerated by passing heated air through the adsorption / desorption part and releasing moisture from the adsorption / desorption part. At this time, heat exchange is performed by the heat exchange unit between the air passing through the adsorption / desorption unit and, for example, a heat medium (such as air or water) to cool or heat the air passing through the adsorption / desorption unit. It becomes possible to do. Therefore, by controlling the temperature of the air passing through the adsorption / desorption part and appropriately controlling the relative humidity of the air, it is possible to increase the absolute humidity difference during adsorption and regeneration, and to absorb moisture in the adsorption / desorption part, Release can be performed efficiently. In addition, since the difference in absolute humidity during adsorption and regeneration can be increased , the humidity control system can be easily downsized.
[0007]
[0008]
[0009]
[0010]
[0011]
The humidity control system according to claim 2 is the humidity control system according to claim 1 , wherein the heat exchanging portion exchanges heat with the air in the adsorption / desorption passage through which the air in the adsorption / desorption portion passes and the air in the adsorption / desorption passage. It is characterized by a laminated structure in which heat exchange passages through which air passes through are alternately laminated.
[0012]
According to the humidity control system of the second aspect , the adsorption / desorption passage through which the air in the adsorption / desorption portion passes and the heat exchange passage through which the air exchanged with the air in the adsorption / desorption passage passes alternately. Thus, it is possible to realize a heat exchanging section that can exchange heat with air passing through the adsorption / desorption section with a simple structure.
[0013]
[0014]
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter will be described in detail by embodiments thereof illustrated in the humidity control system of the present invention.
[0016]
(First embodiment)
Figure 1 is a block diagram of a humidity control system 10 of the first embodiment of the present invention, 1 is a casing, 2 is a partition plate for partitioning the inside the casing 1 to the passage 1A and the passage 1B, 3 is one in the passage 1A The first adsorbing / desorbing element 4 is disposed on the first side, 4 is a second adsorbing / desorbing element disposed on one side of the passage 1B, and 5 is a partition between the first and second adsorbing / desorbing elements 3 and 4. A heating coil 6 disposed so as to penetrate the plate 2 is a stacked sensible heat exchanger disposed on the other side of the casing 1 and on both sides of the passages 1A and 1B. The heating coil 5 is supplied with warm water from a heat source (not shown).
[0017]
An entrance / exit 12 of the passage 1A is provided at the end of the casing 1 on the first adsorption / desorption element 3 side, while an entrance / exit 11 of the passage 1B is provided at the end of the casing 1 on the second adsorption / desorption element 4 side. On the other hand, the entrances 13 and 14 of the passages 1A and 1B are provided at the end of the casing 1 on the sensible heat exchanger 6 side. The entrance / exit 13 is connected to the passage 1 </ b> A via the sensible heat exchanger 6, and the entrance / exit 14 is connected to the passage 1 </ b> B via the sensible heat exchanger 6.
[0018]
FIG. 2 is a schematic diagram showing the configuration of the first adsorption / desorption element 3. The first adsorption / desorption element 3 includes a plurality of flat plates 20 stacked at a predetermined interval and the flat plate 20. And a plurality of guide plates 21 and 22 having a corrugated cross-sectional shape arranged so that the ridge lines are alternately orthogonal to each other. The guide plate 21 having the corrugated cross-section has an adsorbent (silica gel, zeolite, alumina, or the like) applied to the front and back surfaces. Further, the flat plate 20 as the adsorption / desorption portion and the guide plate 21 form the adsorption / desorption passages 21a, 21b, while the flat plate 20 as the heat exchange portion and the guide plate 22 form the heat exchange passages 22a, 22b. . In addition, the 2nd adsorption / desorption element 4 shown in FIG. 1 is also the same structure (refer FIG. 3).
[0019]
Further, the laminated sensible heat exchanger 6 shown in FIG. 1 has a plurality of flat passages (not shown) whose directions are orthogonal to each other and are alternately laminated for each layer, and heat is generated between air flowing through the two orthogonal passages. Exchange.
[0020]
The humidity control system 10 having the above configuration switches the first adsorption / desorption element 3 from the adsorption side to the regeneration side (or from the regeneration side to the adsorption side) by switching the direction of air flow using an external damper (not shown) or the like. Then, a batch operation for switching the second adsorption / desorption element 4 from the regeneration side to the adsorption side (or from the adsorption side to the regeneration side) is performed.
[0021]
Hereinafter, operation | movement of the said humidity control system 10 is demonstrated about one state of batch operation using FIG. In FIG. 1, the first adsorption / desorption element 3 is the adsorption side, and the second adsorption / desorption element 4 is the regeneration side.
[0022]
In FIG. 1, the outside air OA passes through the adsorption / desorption passages 21a, 21b (shown in FIG. 2) of the first adsorption / desorption element 3 from the inlet / outlet 12, and dehumidifies through the adsorption / desorption passages 21a, 21b of the first adsorption / desorption element 3. The air thus flowed flows in the direction of the arrow X1 through the passage 1A, and dehumidified air SA is supplied into the room through the sensible heat exchanger 6 from the inlet / outlet 13. On the other hand, the air RA from the room flows through the passage 1B in the direction of the arrow Y1 through the sensible heat exchanger 6 from the entrance / exit 14, and passes through the adsorption / desorption passages 21a and 21b (shown in FIG. 3) of the second adsorption / desorption element 4. As for the air that has been humidified, air EA containing water is discharged from the entrance / exit 11 to the outside. At this time, in the sensible heat exchanger 6, heat exchange is performed between the air dehumidified by the first adsorption / desorption element 3 and the indoor air RA. Then, using the heat of adsorption of the air dehumidified by the first adsorption / desorption element 3, the indoor air RA is warmed, and the second adsorption / desorption element 4 is regenerated by the warmed air RA.
[0023]
Further, a part of the outside air OA is heated by the heating coil 5 through the heat exchange passages 22a and 22b (shown in FIG. 2) of the first adsorption / desorption element 3 in the direction of the arrow Z, and then the second adsorption / desorption is performed. Air EA containing moisture together with air flowing through the heat exchange passages 22a and 22b (shown in FIG. 3) of the element 4 in the direction of the arrow W and passing through the adsorption / desorption passages 21a and 21b of the second adsorption / desorption element 4. Discharged to the outside.
[0024]
For example, as shown in FIG. 2, in the first adsorption / desorption element 3 on the adsorption side, the outside air OA having a dry bulb temperature (DB) of 35 ° C. and a wet bulb temperature (WB) of 27 ° C. is absorbed / desorbed passages 21a, 21b. When a part of the outside air OA passes through the heat exchange passages 22a and 22b, the dry bulb temperature of the dehumidified air in which moisture is adsorbed in the adsorption / desorption passages 21a and 21b is 40 ° C., and the heat exchange passages 22a and 22b. The dry-bulb temperature of the air exhausted after passing through is 37 ° C.
[0025]
As shown in FIG. 3, in the second adsorbing / desorbing element 4 on the regeneration side, air RA from the room having a dry bulb temperature (DB) of 27 ° C. and a wet bulb temperature (WB) of 19 ° C. While passing through 21a and 21b, passing through the heat exchange passages 22a and 22b of the first adsorption / desorption element 3 and heated by the heating coil 5 to a dry bulb temperature of 80 ° C., the heat of the second adsorption / desorption element 4 It passes through the exchange passages 22a and 22b.
[0026]
FIG. 4 shows a change in the absolute humidity of the air passing through the adsorption / desorption passages 21a, 21b of the first and second adsorption / desorption elements 3, 4 in the humidity control system 10. In FIG. 4, the vertical axis represents dry bulb temperature, and the horizontal axis represents absolute humidity.
[0027]
As shown in FIG. 4, on the adsorption side, the air passing through the adsorption / desorption passages 21a and 21b of the first adsorption / desorption element 3 is dehumidified to change from the state (1) to the state (2) . Heat is exchanged with the indoor air RA in the sensible heat exchanger 6 (shown in FIG. 1), and the state (2) changes to the state (3) . Thus, the absolute humidity is dehumidified from 0.014 kg / kg in (1) to 0.008 kg / kg in (3) .
[0028]
On the other hand, on the regeneration side, first, air RA from the room is heat-exchanged with the air SA supplied from the first adsorption / desorption element 3 to the room by the sensible heat exchanger 6 (shown in FIG. 1). The air heated in 5 and the second adsorption / desorption element 4 are heat-exchanged to change from the state (4) to the state (5) and then pass through the adsorption / desorption passages 21a and 21b of the second adsorption / desorption element 4. The air is humidified to change from the state (5) to the state (6) . Thus, the absolute humidity is humidified from 0.013 kg / kg to 0.019 kg / kg in (5) .
[0029]
Using heat exchange passages 22a, 22b in the first desorption element 3, desorption passage 21a, if no cooling 21b of the air, as shown in FIG. 4, for the adsorption heat by dehumidification of (1) Condition Therefore, the temperature A is high. In this case, since the temperature of the air to be dehumidified increases, the relative humidity decreases, the moisture content of the adsorbent decreases, and the dehumidifying ability decreases. On the other hand, by using the heat exchange passages 22a and 22b in the second adsorption / desorption element 4, the air RA in the conventional room is heated by a heating coil or the like without heating the air in the adsorption / desorption passages 21a and 21b. When passing through the second adsorption / desorption element 4, as shown in Fig. 4, the temperature of B changes from the state (5) due to the heat of vaporization due to humidification. Actually, since the temperature of the humidified air decreases, the relative humidity increases, the moisture content of the adsorbent increases, and regeneration becomes insufficient.
[0030]
On the other hand, in the first embodiment, the first adsorption / desorption element 3 on the adsorption side is provided with a heat exchange section (20, 22) to cool the air to be dehumidified, thereby increasing the relative humidity and the adsorption. The moisture content of the material can be increased, the adsorption capacity can be improved, and the second adsorption / desorption element 4 on the regeneration side is provided with a heat exchange part (20, 22) to heat the humidified air, It becomes possible to reduce the relative humidity and the moisture content of the adsorbent, and the adsorbent can be sufficiently regenerated.
[0031]
Thus, by controlling the temperature of the air passing through the adsorption / desorption part (20, 21) and appropriately controlling the relative humidity of the air, the adsorption / desorption of the moisture in the adsorption / desorption part (20, 21), Release can be performed efficiently.
[0032]
In the humidity control system, as shown in FIG. 5, when the adsorption capacity of the first adsorption / desorption element 3 is reduced by the dehumidification operation, a batch operation is performed to switch between the adsorption side and the regeneration side. That is, the fully regenerated second adsorbing / desorbing element 4 is the adsorption side, and the first adsorbing / desorbing element 3 is the reproducing side, so that the air flow is in the opposite direction to that of FIG. Thereafter, the dehumidifying operation is performed in the same manner as in FIG.
[0033]
(Second Embodiment)
Figure 6 is a block diagram of a humidity control system 20 of the second embodiment of the present invention, 31 casing, 32 is a partition plate for partitioning the regeneration passage 31B and dehumidifying passage 31A inside the casing 31, 33 is the dehumidifying passage 31A , 31B, disk-shaped adsorption rotors as adsorption / desorption elements, 34 is a heating means arranged on the passage 1B side of the adsorption rotor 33, and 35 is provided on the dehumidification passage 31A side of the adsorption rotor 33. The cooling means 36, the sensible heat rotor disposed on the other side of the casing 1, and the heating coil 37 disposed between the adsorption rotor 33 and the sensible heat rotor 36 in the regeneration passage 31B. . The adsorption rotor 33 is formed of an adsorbent (silica gel, zeolite, alumina, or the like) into a honeycomb shape or a porous multi-grain shape to form an infinite number of adsorption / desorption passages (not shown). While adsorbing moisture from the air passing through the countless adsorption / desorption passages of the adsorption rotor 33, the moisture is released into the heated air.
[0034]
Further, the inlet 43 of the regeneration passage 31B is provided at the end of the casing 31 on the sensible heat rotor 36 side, while the outlet 41 of the regeneration passage 31B is provided at the end of the casing 31 on the adsorption rotor 33 side. Further, the inlet 42 of the dehumidifying passage 31A is provided at the end of the casing 31 on the adsorption rotor 33 side, while the outlet 44 of the dehumidifying passage 31A is provided at the end of the casing 31 on the sensible heat rotor 36 side.
[0035]
In the humidity control system 20 configured as described above, the outside air OA flowing into the dehumidifying passage 31 from the inlet 42 is desorbed by moisture adsorbed by the adsorption rotor 33, and the temperature rises due to the heat of adsorption, in the direction of the arrow X2. Flowing. Further, the air dehumidified by the adsorption rotor 33 is deprived of heat by the sensible heat rotor 36, and dehumidified air SA having an appropriate temperature is supplied from the outlet 44 into the room. On the other hand, air RA from the room flows into the regeneration passage 31B from the inlet 43, is preheated by the sensible heat rotor 36, further heated by the heating coil 37, and then flows in the direction of the arrow Y2. Moisture is released from the adsorption rotor 33 by the air heated by the heating coil 37, the adsorption rotor 33 is regenerated, and moisture-containing air EA is released from the outlet 41 to the outside. In this way, moisture is transferred from the air flowing through the dehumidification passage 31A to the regeneration passage 31B by the moisture absorption rotor 33, and the dehumidification air SA is supplied indoors.
[0036]
At this time, on the dehumidification passage 31A side of the adsorption rotor 33, the temperature of the air to be dehumidified is cooled by the cooling means 35 as the heat exchange unit, while on the regeneration passage 31B side of the adsorption rotor 33, the heat exchange unit The temperature of the humidified air is heated by the heating means 34. The cooling means 35 is configured to circulate cooling air from the side facing the dehumidifying passage 31A side of the adsorption rotor 33, and the heating means 34 is the side facing the regeneration passage 31B side of the adsorption rotor 33. The heated air is circulated from the inside. In addition, the structure of the cooling means 35 and the heating means 34 is not restricted to this, What is necessary is just a heat exchange part which heat-exchanges with the air which passes an adsorption | suction rotor.
[0037]
In this way, the humidity control system of the second embodiment improves the suction capability on the suction side of the suction rotor 33 by cooling the air to be dehumidified, similarly to the humidity control system of the first embodiment. In addition, the adsorbent on the regeneration side of the adsorption rotor 33 can be sufficiently regenerated.
[0038]
In the first and second embodiments, the humidity control system that performs dehumidification has been described. However, the present invention may be applied to a humidity control system that performs humidification and a humidity control system that performs both dehumidification and humidification.
[0039]
【The invention's effect】
As apparent from the above, the humidity control system of the invention of claim 1 includes a desorption unit for adsorbing the moisture of the air passing through, and a heat exchange unit that performs heat exchange with air passing through the adsorption and desorption unit Humidity control system with multiple adsorption / desorption elements, one adsorbing / desorbing element adsorbs moisture, the other adsorbing / desorbing element desorbs moisture, and alternately switches between adsorption and desorption operations of both adsorption / desorption elements Then, the adsorption / desorption element during the adsorption operation is cooled by a part of the introduced outside air, and the adsorption / desorption element during the desorption operation is heated using the introduced outside air after cooling the adsorption / desorption element during the adsorption operation. Is.
[0040]
Therefore, according to the humidity control system of the first aspect of the present invention, heat exchange is performed between the air passing through the adsorption / desorption unit and, for example, a heat medium by the heat exchange unit, and the air passing through the adsorption / desorption unit is changed. By cooling or heating, the temperature of the air passing through the adsorption / desorption part is controlled, and the relative humidity of the air is appropriately controlled to efficiently adsorb and release moisture in the adsorption / desorption part. Can do.
[0041]
[0042]
[0043]
According to a second aspect of the present invention, in the humidity control system of the first aspect, the heat exchanging unit includes an adsorption / desorption passage through which air of the adsorption / desorption portion passes, and air and heat in the adsorption / desorption passage. Since the heat exchange passages through which the exchanged air passes are alternately laminated, a heat exchange part capable of exchanging heat with the air passing through the adsorption / desorption part can be realized with a simple structure.
[0044]
[0045]
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a humidity control system according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a first adsorption / desorption element on the adsorption side of the humidity control system.
FIG. 3 is an explanatory diagram of a second adsorption / desorption element on the regeneration side of the humidity control system.
FIG. 4 is a diagram illustrating a state in which adsorption and regeneration of the humidity control system are switched.
FIG. 5 is a diagram showing a change in absolute humidity during adsorption and regeneration of the humidity control system.
FIG. 6 is a configuration diagram of a humidity control system according to a second embodiment of the present invention.
[Explanation of symbols]
1,31 ... casing,
2, 32 ... partition plate,
3 ... 1st adsorption / desorption element,
4 ... 2nd adsorption / desorption element,
5, 37 ... heating coil,
6 ... Sensible heat exchanger,
10, 20 ... humidity control system,
20: flat plate,
21,22 ... Guide board,
21a, 21b ... adsorption / desorption passageway,
22a, 22b ... heat exchange passage,
33 ... Adsorption rotor,
36 ... Sensible heat rotor.

Claims (2)

通過する空気の水分を吸着または脱着する吸脱着部(20,21)と、上記吸脱着部(20,21)を通過する空気と熱交換を行う熱交換部(20,22,35)とを有する吸脱着素子を複数備え、一方の上記吸脱着素子で水分の吸着を行い、他方の上記吸脱着素子で水分の脱着を行って、両方の上記吸脱着素子の吸着動作と脱着動作を交互に切り換える調湿システムであって、
導入外気の一部により吸着動作中の上記吸脱着素子の冷却を行い、その吸着動作中の上記吸脱着素子を冷却した後の上記導入外気を用いて脱着動作中の上記吸脱着素子を加熱することを特徴とする調湿システム。
The adsorption and desorption unit for adsorbing or desorbing moisture of the air passing through (20, 21), the heat exchange unit that performs heat exchange with air passing over SL desorption unit (20, 21) and (20,22,35) a plurality of adsorption and desorption device having performs adsorption of moisture in one of the adsorption-desorption device performs desorption of moisture by the other of the adsorption-desorption device, alternately adsorbing operation and desorbing operation of both the adsorption and desorption device A humidity control system for switching to
The adsorption / desorption element during the adsorption operation is cooled by a part of the introduced outside air, and the adsorption / desorption element during the desorption operation is heated using the introduced outside air after cooling the adsorption / desorption element during the adsorption operation. A humidity control system characterized by that.
請求項1に記載の調湿システムにおいて、
上記熱交換部(22)は、上記吸脱着部(20,21)の空気が通過する吸脱着通路(21a,21b)と上記吸脱着通路(21a,21b)内の空気と熱交換される空気が通過する熱交換通路(22a,22b)とが交互に積層された積層構造であることを特徴とする調湿システム
The humidity control system according to claim 1 ,
The heat exchange part (22) is an air that exchanges heat with the air in the adsorption / desorption passages (21a, 21b) through which the air in the adsorption / desorption part (20, 21) passes and the adsorption / desorption passages (21a, 21b). A humidity control system having a laminated structure in which heat exchange passages (22a, 22b) through which the gas passes are alternately laminated.
JP2000082334A 2000-03-23 2000-03-23 Humidity control system Expired - Fee Related JP3711834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082334A JP3711834B2 (en) 2000-03-23 2000-03-23 Humidity control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082334A JP3711834B2 (en) 2000-03-23 2000-03-23 Humidity control system

Publications (2)

Publication Number Publication Date
JP2001263729A JP2001263729A (en) 2001-09-26
JP3711834B2 true JP3711834B2 (en) 2005-11-02

Family

ID=18599155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082334A Expired - Fee Related JP3711834B2 (en) 2000-03-23 2000-03-23 Humidity control system

Country Status (1)

Country Link
JP (1) JP3711834B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680149B2 (en) 2001-11-09 2005-08-10 ダイキン工業株式会社 Air conditioner
CN100350190C (en) * 2003-03-10 2007-11-21 大金工业株式会社 Humidity control device
JP3646722B2 (en) * 2003-08-18 2005-05-11 ダイキン工業株式会社 Humidity control device
JP5361461B2 (en) * 2009-03-10 2013-12-04 新日本空調株式会社 Dehumidification system
JP5542777B2 (en) * 2011-10-27 2014-07-09 三菱電機株式会社 Air conditioner
US9140396B2 (en) 2013-03-15 2015-09-22 Water-Gen Ltd. Dehumidification apparatus
JP6468911B2 (en) * 2015-03-27 2019-02-13 大阪瓦斯株式会社 Air conditioning system
JP2017015367A (en) * 2015-07-06 2017-01-19 大阪瓦斯株式会社 Humidity adjuster element and air conditioning system
JP6570345B2 (en) * 2015-07-06 2019-09-04 大阪瓦斯株式会社 Air conditioning system
JP6566829B2 (en) * 2015-10-09 2019-08-28 大阪瓦斯株式会社 Air conditioning system
JP6594227B2 (en) * 2016-02-25 2019-10-23 大阪瓦斯株式会社 Air conditioning system
CN112225286B (en) * 2020-10-13 2023-08-11 安徽工程大学 Novel gel adsorption equipment

Also Published As

Publication number Publication date
JP2001263729A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP3709815B2 (en) Air conditioner
JP3680149B2 (en) Air conditioner
WO2003046441A1 (en) Humidity controller
JP3668846B2 (en) Adsorption element and air conditioner
JP3992051B2 (en) Air conditioning system
JP3711834B2 (en) Humidity control system
JP2001263764A (en) Humidity regulating system
JPH07163830A (en) Dry dehumidifier and air conditioner used therewith
WO2005017417A1 (en) Humidity control apparatus
JP4599670B2 (en) Humidity control device
JP2002253924A (en) Dehumidifying device and dehumidifier using the same
JP4496821B2 (en) Humidity control device
JP3649203B2 (en) Humidity control device
JP4165102B2 (en) Humidity control system
JP2002022206A (en) Humidity control device
JP2002191971A (en) Adsorption element structure and humidity controller
JP3711833B2 (en) Humidity control system
JP2005140372A (en) Air conditioner
JP2003202128A (en) Humidity controller
JP2001263732A (en) Humidity control system
JP4356182B2 (en) Air conditioning system
JP2505640B2 (en) Dehumidifier
JP2001311537A (en) Humidity control system
JP2001263728A (en) Moisture adjusting system
JP2003139349A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees