JP3711716B2 - Fast reactor metal sodium waste treatment equipment - Google Patents

Fast reactor metal sodium waste treatment equipment Download PDF

Info

Publication number
JP3711716B2
JP3711716B2 JP29762997A JP29762997A JP3711716B2 JP 3711716 B2 JP3711716 B2 JP 3711716B2 JP 29762997 A JP29762997 A JP 29762997A JP 29762997 A JP29762997 A JP 29762997A JP 3711716 B2 JP3711716 B2 JP 3711716B2
Authority
JP
Japan
Prior art keywords
sodium
metal
metal sodium
metallic
metallic sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29762997A
Other languages
Japanese (ja)
Other versions
JPH11133187A (en
Inventor
孝昭 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP29762997A priority Critical patent/JP3711716B2/en
Publication of JPH11133187A publication Critical patent/JPH11133187A/en
Application granted granted Critical
Publication of JP3711716B2 publication Critical patent/JP3711716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は高速炉で使用する多量の金属ナトリウムを化学的に安定な状態にして廃棄処理する高速炉金属ナトリウムの廃棄処理装置に関する。
【0002】
【従来の技術】
周知のように高速炉では、原子炉の冷却材として金属ナトリウムを使用する。金属ナトリウムは、約100℃以下で固体であるがそれを越える温度では液体という性状を持っており、両相の金属ナトリウムは水と激しく反応し安定な水酸化ナトリウムと水素を生成する。高速炉では炉内燃料交換等に際して交換機器に金属ナトリウムが付着するため、機器の保守にあたっては金属ナトリウムの洗浄除去が行われる。また高速炉の廃棄措置時には燃料搬出後に多量の金属ナトリウムが廃棄物として残る。
【0003】
図8は従来のアルコール洗浄方法を示す模式図である。洗浄対象物である燃料交換機81の金属ナトリウム付着部82が交換機ドアバルブ83と洗浄槽ドアバルブ84を介して洗浄槽85内のアルコール86に浸漬される。金属ナトリウムはアルコール中の水分と反応した後にナトリウムアルコラートとしてアルコールとともに排出される。機器の再利用を考慮し反応速度を緩やかにする必要のある場合に採用される。
【0004】
図9は従来の水蒸気洗浄と水洗浄方法を示す模式図である。
洗浄対象物である燃料交換機81に水蒸気87をかけ、ある程度反応が終わってから温水88に浸漬し固形物等の除去を行う。
【0005】
【発明が解決しようとする課題】
しかしながら高速炉廃棄措置時の多量のナトリウムの処理方法に関しては現在定かな方法がない。処理方法としては常温下で密封し保管する方法または水と反応させ化学的に安定な水酸化ナトリウムとして処理する方法が考えられる。しかし多量の金属ナトリウムの長期密封保管は、厳重な管理を必要とし、また多大の危険性を伴う。一方上述のようなアルコ−ルまたは蒸気洗浄方法のように洗浄毎にタンク内に金属ナトリウムを持ち込む方法は、処理に膨大な時間を要し実際的でない。
【0006】
この発明は上記の点に鑑みてなされその目的は、高速炉から発生すると予想される多量の廃棄金属ナトリウムを安全且つ効率的に処理することが可能な高速炉金属ナトリウムの廃棄処理装置を提供することにある。
【0007】
【課題を解決するための手段】
上述の目的はこの発明によれは高速炉金属ナトリウムを水酸化ナトリウムに化学変化させて廃棄処理する高速炉金属ナトリウム用廃棄処理装置において、分量容器と分量容器内に設けられた液面計により廃棄する原子炉内金属ナトリウムを処理単位毎に一定量を計量してガス圧移送方式により送りだす金属ナトリウムの分量手段と、金属ナトリウム注入ノズルと前記ノズルの閉塞を防止するために不活性ガス流入口を前記ノズル回りに配したガス分散リングから構成される金属ナトリウムの注入手段と、滴下する金属ナトリウムを細かく飛散させるために羽板支持ロッドを介して多段に設けたプロペラ形状の羽板と羽板に付着した金属ナトリウムを水蒸気および温水と反応させるための水蒸気および温水用の複数の通流口を装備する金属ナトリウムの洗浄具から構成される金属ナトリウムの反応処理手段を備えることにより達成される。
【0008】
上述の発明において金属ナトリウム注入ノズルはノズル詰り除去口を備えること、または多段に設けたプロペラ形状の各羽板は相互に所定角度のピッチで配置されることが有効である。
金属ナトリウムの分量手段は廃棄する原子炉内金属ナトリウムを処理単位毎に一定量を計量して送りだし、後述する反応処理手段において金属ナトリウムを水蒸気および水と逐次反応させる。
【0009】
金属ナトリウムの注入手段におけるガス分散リングは金属ナトリウム注入ノズル回りに不活性ガス流入口を配しており、不活性ガス流入口より供給される不活性ガスが金属ナトリウム注入ノズル回りの水蒸気と置換して、注入される金属ナトリウムと水蒸気の反応を防止し、金属ナトリウム注入ノズルの閉塞が回避される。
【0010】
金属ナトリウムの反応処理手段におけるプロペラ形状の羽板は滴下する金属ナトリウムを細かく飛散させる。水蒸気および温水用の複数の通流口を装備する洗浄具は細かく飛散した金属ナトリウムに水蒸気および水を効率良く供給する。
ノズル詰り除去口は金属ナトリウム注入ノズルの閉塞という不測の事態がおこった際にノズル詰りを除去する。
【0011】
多段に設けたプロペラ形状の各羽板が相互に所定角度のピッチで配置されると、滴下する金属ナトリウムが各段の羽板に平均して堆積し、金属ナトリウムと水蒸気との反応面積が大きくなる。
【0012】
【発明の実施の形態】
図1はこの発明の高速炉金属ナトリウム廃棄処理装置を示す系統図である。
廃棄処理する液体の金属ナトリウムは、原子炉内から予め減圧状態の分量手段1に受け入れる。金属ナトリウムの分量手段1は1回の処理量を受入れる。金属ナトリウムの分量手段1内を加圧すると連続的に金属ナトリウムが注入手段2に送り込まれる。金属ナトリウムの注入手段2から注入される液体金属ナトリウム5は、金属ナトリウムの反応処理手段25において洗浄槽4内の洗浄具3に落下し、予め水蒸気雰囲気下にある洗浄槽4内部の水蒸気6と緩やかに反応して水酸化ナトリウム溶液または水酸化ナトリウム固形物を生成する。反応を完全なものにするために、また次の処理を行うために洗浄槽4に温水循環装置を介して温水7を注入且つ循環し次いで水酸化ナトリウムを含む温水を排水して廃液処理タンクに貯蔵することにより一連の廃棄金属ナトリウムの処理を完了する。
【0013】
図2は高速炉金属ナトリウム廃棄処理装置の分量手段を示す断面図である。
保温材被覆のヒータ14で所定の温度に維持される分量容器9は金属ナトリウムを金属ナトリウム供給管10より受入れて液面計13で検知し、金属ナトリウム5を安全に処理できる規定量を受け入れる。分量容器9の内部を加圧することにより、金属ナトリウムを金属ナトリウム排出管11に送りだす。圧力計12は、この際の加圧の程度および原子炉からの廃棄金属ナトリウムを分量容器9に受け入れる際の負圧の程度を検出する。
【0014】
図3は高速炉金属ナトリウム廃棄処理装置の注入手段を示す断面図である。
洗浄槽上部のバルブ8上に設置された注入手段は金属ナトリウム排出管11を経由して分量容器9から送られてくる金属ナトリウムを金属ナトリウム注入ノズル15から洗浄具3に注入する。滴下する液体金属ナトリウム5がナトリウム滴下口20から上昇する洗浄槽4内の水蒸気6により、金属ナトリウム注入ノズル15を詰まらせないように、不活性ガス注入ノズル19から窒素ガス等の不活性ガスが不活性ガス流入口16を介して金属ナトリウム注入ノズル15の周辺にブロ−ダウンされる。不活性ガス流入口16は金属ナトリウム注入ノズル15を離間して被覆するガス分散リング17上に穿設されている。金属ナトリウム注入ノズル15が閉塞した場合は、ノズル詰り除去口18から注入ノズル内の金属ナトリウムを除去することができる。注入手段は保温材被覆のヒータ14で所定の温度に維持される。
【0015】
図4は高速炉金属ナトリウム廃棄処理装置の反応処理手段を示す破砕階段断面図である。
図5は図4に示す反応処理手段のAA矢視断面図である。
図6は図4に示す反応処理手段のBB矢視断面図である。
図7は図4に示す反応処理手段のCC矢視断面図である。
【0016】
羽板24はプロペラ状であり、捩じりを有して注入手段2よりバルブ8を介して滴下する金属ナトリウム5が飛散し易い構造である。羽板24は洗浄具3に支持される羽板支持ロッド22を介して多段に設けられる。各段の羽板24は相互に所定の角度回転した状態て固定され、金属ナトリウムの滴下方向に目視したときに間隙を生じることがなく、滴下した金属ナトリウムは各段の羽板24に一様に堆積する。洗浄具3には通気口23を上下円周方向に多数設けているので、洗浄槽4より供給される水蒸気6及び温水7が金属ナトリウム5と容易に反応する。
【0017】
【発明の効果】
本発明の高速炉金属ナトリウムの廃棄処理装置は次の効果を奏する。
(1)水蒸気雰囲気下の羽板は金属ナトリウムの注入手段から滴下した金属ナトリウムを細かく飛散させるが急激な反応は抑止して安定且つ速やかな金属ナトリウム処理を実現する。
【0018】
(2)金属ナトリウムと水蒸気の反応によって生成した水酸化ナトリウムは従来技術である温水循環により除去される。
(3)金属ナトリウムの注入手段に不活性ガスブロ−ダウン構造を採用し且つ金属ナトリウム分量手段を設置したので金属ナトリウムの閉塞を起こすことなく金属ナトリウムの安定したバッチ処理ができる。
【0019】
(4)金属ナトリウムの分量手段にガス圧移送方式を採用したので、一般にナトリウム移送に用いられる配管口径を部分的に細くした電磁式ポンプを不要とし、電磁ポンプを用いる際の口径の細さに起因する金属ナトリウム詰りがない。
(5)本発明は高速炉金属ナトリウムの廃棄処理装置に限らず一般の金属ナトリウムの安定な処理を必要とする場合に応用可能である。
【図面の簡単な説明】
【図1】この発明の高速炉金属ナトリウム廃棄処理装置を示す系統図
【図2】高速炉金属ナトリウム廃棄処理装置の分量手段を示す断面図
【図3】高速炉金属ナトリウム廃棄処理装置の注入手段を示す断面図
【図4】高速炉金属ナトリウム廃棄処理装置の反応処理手段を示す破砕階段断面図
【図5】図4に示す反応処理手段のAA矢視断面図
【図6】図4に示す反応処理手段のBB矢視断面図
【図7】図4に示す反応処理手段のCC矢視断面図
【図8】従来のアルコール洗浄方法を示す模式図
【図9】従来の水蒸気洗浄と水洗浄方法を示す模式図
【符号の説明】
1 金属ナトリウムの分量手段
2 金属ナトリウムの注入手段
3 洗浄具
4 洗浄槽
5 金属ナトリウム
6 水蒸気
7 温水
8 バルブ
9 分量容器
10 金属ナトリウム供給管
11 金属ナトリウム排出管
12 圧力計
13 液面計
14 保温材被覆のヒータ
15 金属ナトリウム注入ノズル
16 不活性ガス流入口
17 ガス分散リング
18 ノズル詰り除去口
19 不活性ガス注入ノズル
20 金属ナトリウム滴下口
22 羽板支持ロッド
23 通気口
24 羽板
25 金属ナトリウムの反応処理手段
81 燃料交換機
82 金属ナトリウム付着部
83 交換機ドアバルブ
84 洗浄槽ドアバルブ
85 洗浄槽
86 アルコール
87 水蒸気
88 温水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fast reactor metallic sodium waste treatment apparatus for treating a large amount of metallic sodium used in a fast reactor in a chemically stable state.
[0002]
[Prior art]
As is well known, in a fast reactor, metallic sodium is used as a coolant for the reactor. Metallic sodium is a solid at about 100 ° C. or less, but has a property of being liquid at a temperature higher than that, and metallic sodium in both phases reacts violently with water to produce stable sodium hydroxide and hydrogen. In the fast reactor, metallic sodium adheres to the replacement equipment when the fuel in the furnace is exchanged. Therefore, the metallic sodium is washed and removed during maintenance of the equipment. In addition, a large amount of metallic sodium remains as waste after the fuel is taken out during disposal of the fast reactor.
[0003]
FIG. 8 is a schematic diagram showing a conventional alcohol cleaning method. The metal sodium adhering portion 82 of the fuel exchanger 81 that is the object to be cleaned is immersed in the alcohol 86 in the cleaning tank 85 through the exchanger door valve 83 and the cleaning tank door valve 84. Metallic sodium is discharged with the alcohol as sodium alcoholate after reacting with moisture in the alcohol. Adopted when it is necessary to slow down the reaction rate in consideration of equipment reuse.
[0004]
FIG. 9 is a schematic diagram showing a conventional steam cleaning and water cleaning method.
Water vapor 87 is applied to the fuel exchanger 81 that is the object to be cleaned, and after a certain degree of reaction is completed, it is immersed in warm water 88 to remove solids and the like.
[0005]
[Problems to be solved by the invention]
However, there is currently no clear method for treating a large amount of sodium during fast reactor disposal. As a treatment method, a method of sealing and storing at room temperature or a method of reacting with water and treating it as chemically stable sodium hydroxide can be considered. However, long-term sealed storage of a large amount of metallic sodium requires strict management and involves a great deal of danger. On the other hand, a method of bringing metallic sodium into the tank for each cleaning, such as the above-described alcohol or steam cleaning method, requires a huge amount of time for processing and is not practical.
[0006]
The present invention has been made in view of the above points, and an object thereof is to provide a fast reactor metal sodium waste treatment apparatus capable of safely and efficiently treating a large amount of waste metal sodium expected to be generated from a fast reactor. There is.
[0007]
[Means for Solving the Problems]
According to the present invention, according to the present invention, the fast reactor metal sodium is disposed of by disposing it by chemically changing the fast sodium metal sodium to sodium hydroxide. A metallic sodium dispensing means for metering a certain amount of metallic sodium in the reactor for each processing unit and delivering it by a gas pressure transfer system, a metallic sodium injection nozzle, and an inert gas inlet for preventing the nozzle from being blocked Metal sodium injection means composed of a gas dispersion ring arranged around the nozzle, and propeller-shaped slats and slats provided in multiple stages via slat support rods to finely scatter dripping metal sodium Metal nato equipped with multiple inlets for water vapor and hot water to react the deposited metal sodium with water vapor and hot water It is accomplished by providing a reaction processing means composed of sodium metal from the cleaning tool um.
[0008]
In the above-described invention, it is effective that the metal sodium injection nozzle has a nozzle clogging removal port, or the propeller-shaped blades provided in multiple stages are arranged at a pitch of a predetermined angle.
The metallic sodium dispensing means measures and sends out a certain amount of metallic sodium in the reactor to be discarded for each processing unit, and causes the metallic sodium to react with water vapor and water sequentially in the reaction processing means described later.
[0009]
The gas dispersion ring in the metal sodium injection means has an inert gas inlet around the metal sodium injection nozzle, and the inert gas supplied from the inert gas inlet replaces the water vapor around the metal sodium injection nozzle. Thus, the reaction between the injected sodium metal and water vapor is prevented, and the blocking of the metal sodium injection nozzle is avoided.
[0010]
The propeller-shaped slats in the metallic sodium reaction treatment means scatter the metallic sodium dripping finely. A cleaning tool equipped with a plurality of outlets for water vapor and hot water efficiently supplies water vapor and water to finely scattered metal sodium.
The nozzle clogging removal port removes the nozzle clogging when an unexpected situation such as blockage of the metal sodium injection nozzle occurs.
[0011]
When the propeller-shaped blades provided in multiple stages are arranged at a pitch of a predetermined angle with each other, the dropping metal sodium deposits on the blades of each stage on average, and the reaction area between metal sodium and water vapor is large. Become.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing a fast reactor metal sodium disposal apparatus according to the present invention.
Liquid metallic sodium to be disposed of is received in advance from the inside of the nuclear reactor into the dispensing means 1 in a reduced pressure state. Metal sodium dispensing means 1 accepts a single throughput. When the inside of the metallic sodium dispensing means 1 is pressurized, metallic sodium is continuously fed into the injection means 2. The liquid metal sodium 5 injected from the metal sodium injection means 2 falls into the cleaning tool 3 in the cleaning tank 4 in the metal sodium reaction processing means 25, and the water vapor 6 in the cleaning tank 4 in the water vapor atmosphere in advance. Reacts slowly to produce sodium hydroxide solution or sodium hydroxide solids. In order to complete the reaction and to carry out the next treatment, hot water 7 is injected and circulated in the washing tank 4 through a hot water circulation device, and then the hot water containing sodium hydroxide is drained to the waste liquid treatment tank. A series of waste metal sodium treatment is completed by storage.
[0013]
FIG. 2 is a cross-sectional view showing the dispensing means of the fast reactor metal sodium disposal apparatus.
A dispensing container 9 maintained at a predetermined temperature by a heater 14 covered with a heat insulating material receives metallic sodium from a metallic sodium supply pipe 10 and detects it with a liquid level gauge 13 to receive a prescribed amount capable of safely processing metallic sodium 5. Metal sodium is sent out to the metal sodium discharge pipe 11 by pressurizing the inside of the dispensing container 9. The pressure gauge 12 detects the degree of pressurization at this time and the degree of negative pressure when the waste metal sodium from the nuclear reactor is received in the dispensing container 9.
[0014]
FIG. 3 is a cross-sectional view showing the injection means of the fast reactor metal sodium disposal apparatus.
The injection means installed on the valve 8 at the upper part of the cleaning tank injects the metal sodium sent from the weighing container 9 through the metal sodium discharge pipe 11 into the cleaning tool 3 from the metal sodium injection nozzle 15. Inert gas such as nitrogen gas is supplied from the inert gas injection nozzle 19 so that the liquid metal sodium 5 to be dropped does not clog the metal sodium injection nozzle 15 by the water vapor 6 in the washing tank 4 rising from the sodium dropping port 20. It is blown down around the metallic sodium injection nozzle 15 via the inert gas inlet 16. The inert gas inlet 16 is drilled on a gas distribution ring 17 that covers the metallic sodium injection nozzle 15 at a distance. When the metal sodium injection nozzle 15 is blocked, the metal sodium in the injection nozzle can be removed from the nozzle clogging removal port 18. The injection means is maintained at a predetermined temperature by a heater 14 covered with a heat insulating material.
[0015]
FIG. 4 is a crushing step sectional view showing a reaction processing means of the fast reactor metal sodium disposal apparatus.
FIG. 5 is a cross-sectional view of the reaction processing means shown in FIG.
FIG. 6 is a cross-sectional view of the reaction processing means shown in FIG.
7 is a cross-sectional view of the reaction processing means shown in FIG.
[0016]
The wing plate 24 has a propeller shape, and has a structure in which the metallic sodium 5 dripped from the injection means 2 via the valve 8 is easily scattered. The slats 24 are provided in multiple stages via slat support rods 22 supported by the cleaning tool 3. The slats 24 of each stage are fixed in a state where they are rotated by a predetermined angle with each other, and no gap is formed when viewed in the dropping direction of the metallic sodium, and the dropped metallic sodium is uniformly in the slats 24 of each stage. To deposit. Since the cleaning tool 3 is provided with a large number of vent holes 23 in the upper and lower circumferential directions, the water vapor 6 and the hot water 7 supplied from the cleaning tank 4 easily react with the metallic sodium 5.
[0017]
【The invention's effect】
The fast reactor metallic sodium disposal apparatus of the present invention has the following effects.
(1) The slats under a water vapor atmosphere finely scatter metallic sodium dropped from the metallic sodium injection means, but abrupt reaction is suppressed and stable and rapid metallic sodium treatment is realized.
[0018]
(2) Sodium hydroxide produced by the reaction between metallic sodium and water vapor is removed by hot water circulation, which is a conventional technique.
(3) Since an inert gas blow-down structure is adopted as the metal sodium injection means and a metal sodium content means is installed, stable batch processing of metal sodium can be performed without causing clogging of the metal sodium.
[0019]
(4) Since the gas pressure transfer method is adopted as the means for measuring metallic sodium, an electromagnetic pump with a partially reduced pipe diameter generally used for sodium transfer is not required, and the diameter of the electromagnetic pump is reduced. There is no metallic sodium clogging.
(5) The present invention is not limited to a fast reactor metallic sodium waste treatment apparatus, but can be applied to cases where a stable treatment of general metallic sodium is required.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a fast reactor metal sodium waste treatment apparatus according to the present invention. FIG. 2 is a cross-sectional view showing a dispensing means of the fast reactor metal sodium waste treatment apparatus. FIG. 4 is a sectional view of a crushing staircase showing a reaction processing means of a fast reactor metal sodium disposal apparatus. FIG. 5 is a cross-sectional view of the reaction processing means shown in FIG. BB cross-sectional view of the reaction processing means [Fig. 7] CC cross-sectional view of the reaction processing means shown in Fig. 4 [Fig. 8] Schematic diagram showing a conventional alcohol cleaning method [Fig. 9] Conventional steam cleaning and water cleaning Schematic diagram showing the method 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Metal sodium measuring means 2 Metal sodium injecting means 3 Cleaning tool 4 Washing tank 5 Metal sodium 6 Steam 7 Hot water 8 Valve 9 Dosing container 10 Metal sodium supply pipe 11 Metal sodium discharge pipe 12 Pressure gauge 13 Liquid level gauge 14 Insulating material Heater for coating 15 Metal sodium injection nozzle 16 Inert gas inlet 17 Gas dispersion ring 18 Nozzle clogging removal port 19 Inert gas injection nozzle 20 Metal sodium dropping port 22 Blade plate support rod 23 Vent port 24 Blade plate 25 Reaction of metal sodium Processing means 81 Fuel changer 82 Metal sodium adhesion part 83 Changer door valve 84 Washing tank door valve 85 Washing tank 86 Alcohol 87 Water vapor 88 Hot water

Claims (3)

高速炉金属ナトリウムを水酸化ナトリウムに化学変化させて廃棄処理する高速炉金属ナトリウム用廃棄処理装置において、分量容器と分量容器内に設けられた液面計により廃棄する原子炉内金属ナトリウムを処理単位毎に一定量を計量してガス圧移送方式により送りだす金属ナトリウムの分量手段と、金属ナトリウム注入ノズルと前記ノズルの閉塞を防止するために不活性ガス流入口を前記ノズル回りに配したガス分散リングから構成される金属ナトリウムの注入手段と、滴下する金属ナトリウムを細かく飛散させるために羽板支持ロッドを介して多段に設けたプロペラ形状の羽板と羽板に付着した金属ナトリウムを水蒸気及び温水と反応させるための水蒸気および温水用の複数の通流口を装備する金属ナトリウムの洗浄具から構成される金属ナトリウムの反応処理手段を備える高速炉金属ナトリウムの廃棄処理装置。In the fast reactor metal sodium waste treatment equipment that chemically changes the fast sodium metal sodium to sodium hydroxide and disposes it, the unit of treatment of the sodium metal in the reactor to be disposed of by the weighing vessel and the liquid level gauge provided in the dispensing vessel Metal sodium dispensing means that measures a certain amount every time and sends out by a gas pressure transfer system, a metal sodium injection nozzle, and a gas dispersion ring with an inert gas inlet arranged around the nozzle to prevent clogging of the nozzle Injecting means of metallic sodium composed of, and propeller-shaped slats provided in multiple stages via slat support rods to disperse the dropping metallic sodium finely, and metal sodium attached to the slats with steam and hot water Gold composed of metallic sodium scrubber equipped with multiple outlets for steam and hot water to react Disposal apparatus FBR metallic sodium with the reaction process means sodium. 金属ナトリウム注入ノズルはノズル詰り除去口を備える請求項1に記載の高速炉金属ナトリウムの廃棄処理装置。The fast sodium metal sodium disposal apparatus according to claim 1, wherein the metal sodium injection nozzle includes a nozzle clogging removal port. 多段に設けたプロペラ形状の各羽板は相互に所定角度のピッチで配置される請求項1に記載の高速炉金属ナトリウムの廃棄処理装置。2. The fast reactor metallic sodium disposal apparatus according to claim 1, wherein the propeller-shaped blades provided in multiple stages are arranged at a pitch of a predetermined angle.
JP29762997A 1997-10-30 1997-10-30 Fast reactor metal sodium waste treatment equipment Expired - Fee Related JP3711716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29762997A JP3711716B2 (en) 1997-10-30 1997-10-30 Fast reactor metal sodium waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29762997A JP3711716B2 (en) 1997-10-30 1997-10-30 Fast reactor metal sodium waste treatment equipment

Publications (2)

Publication Number Publication Date
JPH11133187A JPH11133187A (en) 1999-05-21
JP3711716B2 true JP3711716B2 (en) 2005-11-02

Family

ID=17849055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29762997A Expired - Fee Related JP3711716B2 (en) 1997-10-30 1997-10-30 Fast reactor metal sodium waste treatment equipment

Country Status (1)

Country Link
JP (1) JP3711716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286727B2 (en) * 2014-06-04 2018-03-07 日本曹達株式会社 Inactivation method of metallic sodium

Also Published As

Publication number Publication date
JPH11133187A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
JP5813510B2 (en) Method and apparatus for producing fuel nuclei
JP5746148B2 (en) Method and plant for carrying out chemical processes
JP2000031251A (en) Wafer rack with gas distribution device
KR100378769B1 (en) A device for bringing liquids or gases into contact with a solid body in the form of a free-
JP3711716B2 (en) Fast reactor metal sodium waste treatment equipment
KR0179038B1 (en) Method and apparatus to displace spent liquors in a digester
US4268409A (en) Process for treating radioactive wastes
KR20010071371A (en) Apparatus for Dissolving Nuclear Fuel
US4017952A (en) Method for disassembling and repairing a sodium-handling apparatus
JPS59133499A (en) Method of preparing waste
JPS58128140A (en) Reacting device with fluidized bed by microwave heating
CN1174381A (en) Reactor cavity flooding system
CN109912840B (en) Polymer purification and separation integrated device
JPH10202138A (en) Washing method for reaction vessel
US3835910A (en) Liquid evaporator and operation process therefor
SK131499A3 (en) Liquid/gas/solid separation
US6718002B2 (en) Method and device for removing radioactive deposits
JPS61169798A (en) Continuous melter for spent nuclear fuel
CN217093512U (en) Waste resin treatment device for molten salt oxidation
CN217311948U (en) Device for efficiently removing low molecular silicone oil
KR102123841B1 (en) Electrolytic reduction apparatus
JPH04246420A (en) Method for preventing resin from blocking in continuous treating bath
WO2013018188A1 (en) Apparatus for discharging byproduct slacked lime
JP2633804B2 (en) Boiled equipment such as boiled beans
WO1998053464A1 (en) A device for removing a radioactive deposition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees