JP3710494B2 - Electrorheological fluid - Google Patents

Electrorheological fluid Download PDF

Info

Publication number
JP3710494B2
JP3710494B2 JP32911592A JP32911592A JP3710494B2 JP 3710494 B2 JP3710494 B2 JP 3710494B2 JP 32911592 A JP32911592 A JP 32911592A JP 32911592 A JP32911592 A JP 32911592A JP 3710494 B2 JP3710494 B2 JP 3710494B2
Authority
JP
Japan
Prior art keywords
electrorheological fluid
electric field
dispersion
dispersed phase
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32911592A
Other languages
Japanese (ja)
Other versions
JPH06172772A (en
Inventor
哲 小野
龍司 相澤
佳延 浅子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP32911592A priority Critical patent/JP3710494B2/en
Publication of JPH06172772A publication Critical patent/JPH06172772A/en
Priority to US08/627,025 priority patent/USRE35773E/en
Application granted granted Critical
Publication of JP3710494B2 publication Critical patent/JP3710494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は電気粘性流体に関するものである。更に詳しくは、比較的弱い電場を印加することによっても大きなせん断応力が発生し、その際に流れる電流密度が小さいという電流特性に優れ、発生したせん断応力および電流密度の経時安定性に優れ、かつ電場を印加していない状態での分散安定性(分散相を沈降あるいは浮上させずに電気粘性流体を長時間均一に保持できる性能)、再分散性(分散相が沈降あるいは浮上して不均一になった後簡単な外力でもとの均一状態を再現する性能)及び電場を印加していない状態での流動性に特に優れた電気粘性流体に関するものである。
【0002】
【従来の技術】
大きいせん断応力を発生する電気粘性流体として例えばイオン交換樹脂の粉状体を芳香族カルボン酸の高級アルキルエステル中に懸濁したもの(特開昭50−92278)や、3つの結晶軸の1つのみに沿って電流を伝導する結晶性物質と誘電性液体及び立体安定剤からなる組成物(特開平1−170693)等が提案されている。しかしながら、これらの電気粘性流体は、電場を印加していない状態での分散安定性や、一旦沈降あるいは浮上した後の再分散性に劣っていたり、また分散相濃度を高くした場合には流動性に乏しくなるという問題点を有していた。
【0003】
また、再分散性の改良のために添加剤として微細粒子を用いた電気粘性流体(特開平3−160094、特開平3−166295)が提案されている。しかしながら、これらの電気粘性流体は、電場を印加した際に得られるせん断応力値が微細粒子を添加することで低下したり、分散安定性に乏しいので電気粘性流体の使用条件が限られたり、デバイスに再分散機構が必要である等の問題点を有していた。
【0004】
本発明者らは、せん断応力特性や電流特性を低下させることなく電気粘性流体の分散安定性、再分散性を改良するため各種添加剤を検討してきた。その結果、添加剤として分散媒に可溶性の特定の高分子分散剤を使用することにより、電気粘性流体の分散安定性が改良されることが解った。しかしこの高分子分散剤を添加剤とする電気粘性流体は、分散相が一旦沈降した後の再分散性に問題があり、分散安定性と再分散性を両立するものではなかった。
【0005】
【発明が解決しようとする課題】
本発明は、従来の電気粘性流体が有していた上記の問題点を解決するものである。
【0006】
従って、本発明の目的は、比較的弱い電場を印加することによっても大きいせん断応力を発生し、その際に流れる電流密度が小さいという電流特性に優れ、発生したせん断応力及び電流密度の経時安定性に優れ、かつ電場を印加していない状態での分散安定性(分散相を沈降あるいは浮上させずに電気粘性流体を長時間均一に保持できる性能)、再分散性(分散相が沈降あるいは浮上して不均一になったあと簡単な外力でもとの均一状態を再現する性能)及び電場を印加していない状態での流動性に特に優れた電気粘性流体を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、平均径が1〜50μmである誘電体粒子からなる分散相と電気絶縁油からなる分散媒から構成される電気粘性流体であって、該分散相100重量部に対する該分散媒の量が100〜400重量部であり、25℃で電場を印加しないで測定したせん断速度33/sのせん断状態での粘度が200cp以下であり且つ式(1)の条件を満たす構造粘性を示すことを特徴とする電気粘性流体に関するものである
【0008】
【作用】
電気粘性流体を用いたデバイスを実現する上での要求性能として分散安定性、再分散性及び流動性が挙げられる。即ち電場を印加した際に発生するせん断応力値が大きいという応力特性及びその際に流れる電流密度が小さいという電流特性を維持しながら分散安定性、再分散性及び流動性に優れた流体の開発が望まれていた。本発明者らは、これらの要求性能が分散媒中における分散相の存在状態に依存するものと考え、電気粘性流体の電場を印加していない状態での粘度を低く保ちながら電気粘性流体に構造粘性を付与することにより、電気粘性流体の分散安定性、再分散性及び流動性が良好になることを見いだした。即ち本発明の電気粘性流体は前記した特定の粘度と構造粘性を示すことが必要である。
【0009】
本発明でいう電気粘性流体が示す構造粘性とは、分散媒中で分散相同志が弱く凝集することにより形成された分散相と分散媒からなる構造体による粘性の発現をいう。この構造粘性は、分散相同志に働く相互作用の大きさによって制御され、電気粘性流体に好適な分散安定性及び再分散性を付与する。
【0010】
また、構造粘性を示す電気粘性流体をデバイスに好適に用いるため、本発明の電気粘性流体は、25℃で電場を印加しないで測定したせん断速度33/sのせん断状態での粘度が200cp以下であることが必要となる。200cpを越える粘度の場合には、流動性に乏しくなると共に電場を印加した際の電気粘性効果が十分に得られないという問題点が生じたり、デバイスの設計上問題となる。
【0011】
本発明の電気粘性流体が示す構造粘性としては、次の式(1)の条件を満たすものであることが好ましい。
【0012】
【数2】

Figure 0003710494
【0013】
(ただし式中、η1は25℃で電場を印加しないで測定したせん断速度3.3/sのせん断状態での粘度、η2は25℃で電場を印加しないで測定したせん断速度33/sのせん断状態での粘度であり、Ti値はη1とη2の差である。)
即ち式(1)に示すように、本発明の電気粘性流体としてはTi値が10cp以上500cp以下の範囲であることが好ましい。更に好ましくはTi値が50cp以上100cp以下であり、この範囲であると、電気粘性流体において分散安定性、再分散性及び流動性をより高レベルで満足することができる。Ti値が10cp未満の場合には、構造粘性が不十分であり分散安定性が不十分となることがある。また、Ti値が500cpを越える場合には、電場を印加していない状態での流動性が不十分となることがある。
【0014】
本発明において、電気粘性流体に前記した特定の粘度を保ちながら構造粘性を付与する方法としては、特に制限はないが、添加剤を用いることや分散相粒子表面を高分子化合物等で処理することが有効である。例えば添加剤としては、微粒子の表面に分散相吸着成分と分散媒に可溶の成分が存在するもの、膨潤性のゲルに分散相吸着成分と分散媒に可溶の成分が共に導入されたもの等を好適に用いることができる。
【0015】
本発明の電気粘性流体の分散相となる誘電体粒子としては、電場を印加した状態で分極する粒子であれば特に制限はなく、例えばデンプン、セルロース、イオン交換樹脂、スルホン酸基含有ポリスチレン系重合体粒子などの親水性基を有する有機物粒子;シリカ、アルミナ等の親水性無機物粒子;有機固体粒子を中心としてその表面に導電性薄膜層を形成し、更に電気絶縁性薄膜層の形成された3層構造からなる粒子、アルミニウムなどの導電体粒子の表面に薄膜絶縁層を形成した粒子、樹脂中にカーボンブラック等の導電体粒子が分散されてなる粒子などの複合体粒子;ポリ(アセン−キノン)等の有機半導体粒子;チタン酸バリウム、酒石酸リチウム等の強誘電体粒子等が挙げられる。上記した誘電体粒子の中でも、電場を印加した際に得られるせん断応力値が大きいこと、その際に流れる電流密度が小さい及びこれらの経時安定性に優れていることからスルホン酸基含有ポリスチレン系重合体粒子の使用が好ましい。また、調製された電気粘性流体の分散安定性や流動性を考えると、誘電体粒子の平均粒子径は1〜50μmの範囲にあることが好ましい。
【0016】
本発明の電気粘性流体の分散媒としては、電気絶縁性油であれば特に制限はなく、例えばポリジメチルシロキサン、部分オクチル置換ポリジメチルシロキサン、部分フェニル置換ポリジメチルシロキサン等のシリコンオイル;流動パラフィン、デカン、メチルナフタレン、デカリン、ジフェニルメタン、部分水添されたトリフェニル等の炭化水素;クロロベンゼン、ジクロロベンゼン、ブロモベンゼン、クロロビフェニル、クロロジフェニルメタン等のハロゲン化炭化水素;ダイフロイル(ダイキン工業(株)製)、デムナム(ダイキン工業(株)製)などのフッ化物;フタル酸ジオクチル、トリメリット酸トリオクチル、セバシン酸ジブチルなどのエステル化合物等を挙げることができ、これらの中から一種または二種以上用いることができる。調製された電気粘性流体の電場を印加していない状態での粘度を考えると、分散媒の粘度は50cp以下であることが好ましい。
【0017】
本発明の電気粘性流体における分散相と分散媒との比は前者100重量部に対して後者100〜400重量部の範囲であることが好ましい。分散媒の量が400重量部を越える場合、調製された電気粘性流体に電場を印加した際に得られるせん断応力が充分に大きくならないことがある。また、分散媒の量が100重量部未満の場合、調製された電気粘性流体としての使用が難しくなることがある。
【0018】
本発明の電気粘性流体には、その粘度調節あるいはせん断応力値向上のために、例えば公知の高分子分散剤、界面活性剤、高分子増粘剤、その他の添加剤等の従来公知の各種添加剤を添加することができる。
【0019】
【実施例】
以下、実施例により本発明を説明するが、本発明の範囲がこれらの実施例に限定されるものではない。
【0020】
【参考例1】
撹拌機、還流冷却器、温度計および窒素導入管を備えた500mlの4つ口フラスコにトルエン150g、アゾビスイソブチロニトリル1g、メタクリロイル基含有ポリジメチルシロキサン(チッソ(株)製のサイラプレーンFM0721、平均分子量=約5000)50gおよびメタクリル酸セチル500gを投入し、窒素を吹き込みながら室温で30分間撹拌した。これを75℃で3時間加熱して重合反応を行った。反応終了後、エバポレーターで減圧下加熱することにより溶媒を留去し油状の高分子重合体(1)を得た。
【0021】
撹拌機、還流冷却器、温度計および窒素導入管を備えた500mlの4つ口フラスコにイソプロピルアルコール350g、高分子重合体(1)2g、アゾビスイソブチロニトリル2g、スチレン50gを加えて、窒素を吹き込みながら室温で30分間撹拌した。これを70℃で24時間加熱して重合反応を行った。この反応液に20csのシリコンオイル(信越化学工業(株)製のKF96−20cs)200gを滴下した後、エバポレーターで減圧下乾燥することにより揮発分を留去し、スチレン系グラフト重合体からなる添加剤(1)のシリコンオイル分散液(添加剤(1)の含有率20重量%、以下添加剤分散液(1)という)を得た。
【0022】
【参考例2】
300mlのフラスコにメタノール200mlおよびイオン交換水100mlを混合し、そこへシリカゲル微粒子((株)日本触媒製、真球状、平均粒子径1.5μm)100gを分散した。そこへγ−メタクリロキシプロピルトリメトキシシラン7gを加えて、70℃で1時間反応した後溶媒を加熱溜去し、得られた反応物を減圧下60℃で乾燥した。
【0023】
500mlのフラスコにトルエン300mlを入れ、乾燥して得られた上記反応物100gを分散した。そこへアゾビスイソブチロニトリル1g、メタクリロイル基含有ポリジメチルシロキサン(チッソ(株)製のサイラプレーンFM0721、平均分子量=約5000、ケイ素含有量=36%)5gおよびメタクリロイル基含有メトキシポリエチレングリコール(新中村化学工業(株)製のNKエスエルM−230G、ポリエチレングリコールの重合度n=約23、平均分子量=約1100)5gを溶解して70℃で5時間反応した。反応終了後に減圧下加熱することにより溶媒を溜去して、表面処理されたシリカゲル微粒子からなる添加剤(2)を得た。
【0024】
【参考例3】
撹拌機、還流冷却機、温度計および窒素導入管を備えた500mlの4つ口フラスコにイオン交換水200g、反応性乳化剤アクアロンRN−20(第一工業製薬(株)製、ポリオキシエチレンアルキルスチリルエーテル)1g、メタクリル酸ドデシル1gおよび過硫酸ナトリウム1gを投入し溶解した。ここにメタクリル酸メチル50gおよび工業用ジビニルベンゼン(和光純薬工業(株)製、ジビニルベンゼン55重量%、エチルスチレン35重量%等の混合物)5gからなる単量体成分を添加し、窒素を吹き込みながら分散機により20000回転で2分間撹拌した。これを70℃で3時間加熱しさらに90℃で3時間加熱して重合反応を行った。重合終了後、共沸により分散媒を水からイソプロピルアルコールに変換した後、更に鉱物系電気絶縁油((株)コスモ石油製、高圧絶縁油)を加えイソプロピルアルコールを減圧下留去し、メタクリル酸メチル系架橋重合体ミクロゲルからなる添加剤(3)の鉱物系電気絶縁油分散液(添加剤(3)の含有率20重量%、以下添加剤分散液(3)という)を得た。
【0025】
【参考例4】
撹拌機、環流冷却器、温度計および窒素導入管を備えた500mlの4つ口フラスコにイソプロピルアルコール150g、アゾビスイソブチロニトリル2.5g、メタクリロイル基含有ポリジメチルシロキサン(チッソ(株)製のサイラプレーンFM0721、平均分子量=約5000)7g、メタクリロイル基含有ポリエチレングリコール(日本油脂(株)製のブレンマーPE−350、ポリエチレングリコールの重合度=7〜9、平均分子量=約450)5g、スチレン45.3gおよび工業用ジビニルベンゼン(和光純薬工業(株)製、ジビニルベンゼン55重量%、エチルスチレン35重量%等の混合物)4.7gを投入し窒素を吹き込みながら30分撹拌した。これを70℃で20時間加熱し85℃で4時間加熱撹拌して重合反応を行った。この反応液に20csのシリコンオイル(信越化学工業(株)製のKF96−20cs)400gを滴下した後、エバポレータで減圧下留去することにより揮発分を留去し、スチレン系架橋重合体ミクロゲルからなる添加剤(4)のシリコンオイル分散液(添加剤(4)の含有率20重量%、以下添加剤分散液(4)という)を得た。
【0026】
【参考例5】
撹拌機、環流冷却器、温度計および窒素導入管を備えた500mlの4つ口フラスコにトルエン150g、アゾビスイソブチロニトリル1.5g、スチレン80g及びメタクリル酸ドデシル20gを投入し窒素を吹き込みながら30分撹拌した。これを70℃で20時間加熱し85℃で4時間加熱撹拌して重合反応を行った。反応終了後、減圧下で揮発分を留去して、スチレン−メタクリル酸ドデシル共重合体からなる比較添加剤(1)を得た。
【0027】
【実施例1】
撹拌機、還流冷却機および温度計を備えた3リットルの四つ口セパラブルフラスコに水1.2リットルを仕込み、クラレポバールPVA−205((株)クラレ製のポリビニルアルコール)16.0gを添加・溶解させた後、更に、スチレン270g、工業用ジビニルベンゼン(和光純薬工業(株)製、ジビニルベンゼン55重量%、エチルスチレン35重量%等の混合物)30gおよびアゾビスイソブチロニトリル8gからなる混合物を加えた。その後、7000rpmの撹拌速度でフラスコ内の内容物を分散させ、80℃で8時間重合した。得られた固形物を濾別し、十分に水洗した後、熱風乾燥器を用いて80℃で12時間乾燥し、球状の重合架橋体{以下、これを重合架橋体(1)という。}289gを得た。
【0028】
ついで撹拌機、温度計および滴下ロ−トを備えた2リットルの四つ口セパラブルフラスコに重合架橋体(1)100gを仕込み、98重量%濃硫酸700gを加え、均一な分散液とした。反応混合物の温度を80℃に上げた後、同温度で24時間加熱・撹拌し、スルホン化反応を行った。その後、反応混合物を0℃の水中に注ぎ、濾別、水洗した。得られた固形物を10重量%水酸化ナトリウム水溶液500mlで中和した後、十分に水洗した。その後、真空乾燥器を用いて80℃で10時間乾燥し、平均粒子径6μmのスルホン酸基含有ポリスチレン系重合体粒子{以下、これを分散相粒子(1)という。}を298g得た。なお、分散相粒子(1)の陰イオン解離基密度は4.2mg当量/gであった。
【0029】
分散相粒子(1)30gを150℃で3時間乾燥し、次いで大気中の水分を吸湿させて含水率を2.0重量%に調整したのち、参考例1で得られた添加剤分散液(1)1gを20csのシリコンオイル(信越化学工業(株)製のKF96−20cs)69gに添加して得た分散媒中に均一に分散し、本発明の電気粘性流体(1)を得た。
【0030】
【実施例2】
実施例1における添加剤分散液(1)の代わりに参考例2で得られた添加剤(2)0.5gを用い、20csのシリコンオイルの代わりに10csの鉱物系電気絶縁油((株)コスモ石油製、高圧絶縁油)69.5gを使用した以外は実施例1と同様の方法により、本発明の電気粘性流体(2)を得た。
【0031】
【実施例3】
実施例1における添加剤分散液(1)の代わりに参考例3で得られた添加剤分散液(3)0.5gを用い、20csのシリコンオイルの代わりに10csの鉱物系電気絶縁油((株)コスモ石油製、高圧絶縁油)69.5gを使用した以外は実施例1と同様の方法により、本発明の電気粘性流体(3)を得た。
【0032】
【実施例4】
実施例1における添加剤分散液(1)の代わりに参考例4で得られた添加剤分散液(4)2.0gを用い、20csのシリコンオイル(信越化学工業(株)製のKF96−20cs)の使用量を68gに変更した以外は実施例1と同様の方法により、本発明の電気粘性流体(4)を得た。
【0033】
【比較例1】
実施例1における分散相粒子(1)30gを150℃で3時間乾燥後に大気中の水分を吸湿させて含水率を2.0重量%に調整したのち、20csのシリコンオイル(信越化学工業(株)製のKF96−20cs)70g中に混合分散し、比較用の電気粘性流体{以下、これを比較流体(1)という。}を得た。
【0034】
【比較例2】
実施例1における分散相粒子(1)30gを150℃で3時間乾燥後に大気中の水分を吸湿させて含水率を2.0重量%に調整したのち、10csの鉱物系電気絶縁油((株)コスモ石油製、高圧絶縁油)70g中に混合分散し、比較用の電気粘性流体{以下、これを比較流体(2)という。}を得た。
【0035】
【比較例3】
実施例1における分散相粒子(1)30gを150℃で3時間乾燥後に大気中の水分を吸湿させて含水率を2.0重量%に調整したのち、平均粒子径0.007μmの粉末状シリカ(日本アエロジル(株)製のAEROSIL380)1.2gを20csのシリコンオイル(信越化学工業(株)製のKF96−20cs)68.8gに添加して得た分散媒中に均一に分散し、比較用の電気粘性流体{以下、これを比較流体(3)という。}を得た。
【0036】
【比較例4】
実施例1における分散相粒子(1)30gを150℃で3時間乾燥後に大気中の水分を吸湿させて含水率を2.0重量%に調整したのち、参考例5で得られた比較添加剤(1)2.0gを溶解させた鉱物系電気絶縁油((株)コスモ石油製、高圧絶縁油)68g中に混合分散し、比較用の電気粘性流体{以下、これを比較流体(4)という。}を得た。
【0037】
【実施例5】
実施例1〜4および比較例1〜4で得られた本発明の電気粘性流体(1)〜(4)および比較流体(1)〜(4)の各々について、25℃にて電場無印加時の粘度をせん断速度3.3/sおよび33/sのせん断状態下で測定し、前記の式(1)にしたがってTi値を算出した。ついで各々の電気粘性流体を高さ150mm、直径15mmの試験管の底から100mmのところまで充填して密閉し、その後室温で放置して分散相粒子の沈降状況を追跡した。電気粘性流体中の分散相粒子が沈降して生じた沈降層の試験管底からの高さを放置して1日後および1週間後に測定し、電気粘性流体の分散安定性を評価した。さらに各々の電気粘性流体50mlを100mlの容器にいれて密栓し1ヶ月の静置後に容器ごと毎分30回転の速度で回転し、元の均一状態に戻るまでに要した延べ回転数を測定し、再分散性を評価した。その結果を表1に示す。
【0038】
【表1】
Figure 0003710494
【0039】
また、電気粘性流体の各々を共軸電場付回転粘度計にいれ、内/外筒間隙1.0mm、せん断速度33/s、25℃の条件で交流外部電場4000V/mm(周波数:50Hz)を印加した時のせん断応力値(初期値)およびその際に流れる電流密度(初期値)を測定した。さらに、4000V/mmの外部電場を印加した状態で粘度計を25℃にて3日間連続運転した後、せん断応力値(3日後の値)および電流密度(3日後の値)を測定し、電気粘性流体の経時安定性を調べた。その結果を表2に示す。
【0040】
【表2】
Figure 0003710494
【0041】
表1から明らかなように、本発明の電気粘性流体(1)〜(4)は、η2が200cp以下であり且つ有意なTi値が認められることから構造粘性が付与されているため、分散安定性および再分散性に優れていた。しかしながら比較流体(1)および(2)は、η2が200cp以下であるが構造粘性が付与されておらず、分散安定性および再分散性に劣っていた。一方、比較流体(3)および(4)は、η2が200cpを越え且つTi値が500cpを越えるため再分散性に劣っていた。また、表2から明らかなように、本発明の電気粘性流体(1)〜(4)は、比較流体(1)〜(2)と同様に良好なせん断応力特性および電流特性を維持していた。
【0042】
【発明の効果】
本発明の電気粘性流体は、比較的弱い電場を印加することによっても大きいせん断応力を発生し、その際に流れる電流密度が小さいという電流特性に優れ、発生したせん断応力および電流密度の経時安定性に優れ、かつ電場を印加していない状態での流動性、分散安定性(分散相を沈降あるいは浮上させずに電気粘性流体を長時間均一状態に保持できる性能)および再分散性(分散相が沈降あるいは浮上して不均一になった後簡単な外力で元の均一状態を再現する性能)に特に優れているため、エンジンマウント、クラッチ、ダンパー、ブレーキ、ショックアブソーバー、アクチュエーター、バルブ等へ有効に利用できる。[0001]
[Industrial application fields]
The present invention relates to an electrorheological fluid. More specifically, a large shear stress is generated even by applying a relatively weak electric field, and the current characteristic that the current density flowing at that time is small is excellent, the generated shear stress and the current density are excellent over time, and Dispersion stability when no electric field is applied (capability of holding the electrorheological fluid uniformly for a long time without settling or floating the dispersed phase), redispersibility (dispersed phase is settling or floating and non-uniform The present invention relates to an electrorheological fluid that is particularly excellent in the ability to reproduce a uniform state with a simple external force after it has become and the fluidity in a state where no electric field is applied.
[0002]
[Prior art]
As an electrorheological fluid that generates a large shear stress, for example, a powder of an ion exchange resin suspended in a higher alkyl ester of aromatic carboxylic acid (Japanese Patent Laid-Open No. 50-92278) or one of three crystal axes A composition comprising a crystalline substance, a dielectric liquid, and a steric stabilizer that conducts a current only along Japanese Patent Laid-Open No. 1-170693 has been proposed. However, these electrorheological fluids are inferior in dispersion stability when no electric field is applied, redispersibility after sedimentation or levitation, or fluidity when the concentration of the dispersed phase is increased. It had the problem of becoming poor.
[0003]
In addition, an electrorheological fluid (JP-A-3-160094, JP-A-3-166295) using fine particles as an additive for improving redispersibility has been proposed. However, in these electrorheological fluids, the shear stress value obtained when an electric field is applied is reduced by adding fine particles, and since the dispersion stability is poor, the usage conditions of the electrorheological fluid are limited, However, there is a problem that a redispersion mechanism is necessary.
[0004]
The present inventors have studied various additives in order to improve the dispersion stability and redispersibility of an electrorheological fluid without deteriorating shear stress characteristics and current characteristics. As a result, it has been found that the dispersion stability of the electrorheological fluid is improved by using a specific polymer dispersant that is soluble in the dispersion medium as an additive. However, the electrorheological fluid using the polymer dispersant as an additive has a problem in redispersibility after the dispersed phase has once settled, and does not achieve both dispersion stability and redispersibility.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-described problems of conventional electrorheological fluids.
[0006]
Therefore, the object of the present invention is to generate a large shear stress even by applying a relatively weak electric field, and to have excellent current characteristics that the current density flowing at that time is small, and the stability of the generated shear stress and current density over time. Dispersion stability with no electric field applied (performance of holding electrorheological fluid uniformly without settling or floating the dispersed phase), redispersibility (dispersed phase settling or floating) The present invention provides an electrorheological fluid that is particularly excellent in the ability to reproduce a uniform state with a simple external force after becoming non-uniform) and fluidity in a state where no electric field is applied.
[0007]
[Means for Solving the Problems]
The present invention has an average diameter of I electrorheological fluid der consists dispersion medium consisting of dispersed phase and the electrical insulating oil consisting of dielectric particles is 1 to 50 [mu] m, of the dispersing medium for the dispersion phase 100 parts by weight amount Ri 100-400 parts by der shows satisfying structural viscosity of 25 viscosity at the shear conditions of the shear rate 33 / s, measured without applying an electric field at ℃ is below 200cp and equation (1) The present invention relates to an electrorheological fluid.
[0008]
[Action]
Dispersion stability, redispersibility, and fluidity can be cited as performance requirements for realizing a device using an electrorheological fluid. In other words, the development of fluids with excellent dispersion stability, redispersibility and fluidity while maintaining the stress characteristic that the shear stress value generated when an electric field is applied is large and the current characteristic that the current density that flows is small. It was desired. The present inventors consider that the required performance depends on the state of the dispersed phase in the dispersion medium, and the structure of the electrorheological fluid is maintained while the viscosity of the electrorheological fluid is not applied. It has been found that the dispersion stability, redispersibility and fluidity of the electrorheological fluid are improved by imparting viscosity. That is, the electrorheological fluid of the present invention needs to exhibit the specific viscosity and structural viscosity described above.
[0009]
The structural viscosity indicated by the electrorheological fluid in the present invention refers to the expression of viscosity by a structure composed of a dispersed phase and a dispersion medium formed by agglomeration with weak dispersion homology in the dispersion medium. This structural viscosity is controlled by the magnitude of the interaction acting on the dispersion homology, and imparts suitable dispersion stability and redispersibility to the electrorheological fluid.
[0010]
In addition, since an electrorheological fluid exhibiting structural viscosity is suitably used for the device, the electrorheological fluid of the present invention has a viscosity in a shear state of 200 cp or less at a shear rate of 33 / s measured without applying an electric field at 25 ° C. It is necessary to be. When the viscosity exceeds 200 cp, the fluidity becomes poor and the electrorheological effect when an electric field is applied cannot be obtained sufficiently, or the device design becomes a problem.
[0011]
The structural viscosity exhibited by the electrorheological fluid of the present invention preferably satisfies the following condition (1).
[0012]
[Expression 2]
Figure 0003710494
[0013]
(Where η 1 is the viscosity at a shear rate of 3.3 / s measured without applying an electric field at 25 ° C., and η 2 is the shear rate of 33 / s measured at 25 ° C. without applying an electric field. And the Ti value is the difference between η 1 and η 2. )
That is, as shown in Equation (1), the electrorheological fluid of the present invention preferably has a Ti value in the range of 10 cp to 500 cp. More preferably, the Ti value is not less than 50 cp and not more than 100 cp. When the Ti value is within this range, the dispersion stability, redispersibility and fluidity can be satisfied at a higher level in the electrorheological fluid. When the Ti value is less than 10 cp, the structural viscosity may be insufficient and the dispersion stability may be insufficient. Moreover, when Ti value exceeds 500 cp, the fluidity | liquidity in the state which has not applied the electric field may become inadequate.
[0014]
In the present invention, the method for imparting the structural viscosity to the electrorheological fluid while maintaining the above-mentioned specific viscosity is not particularly limited, but using an additive or treating the surface of the dispersed phase particles with a polymer compound or the like. Is effective. For example, the additive has a dispersed phase adsorbing component and a component soluble in the dispersion medium on the surface of the fine particles, and a swellable gel in which both the dispersed phase adsorbing component and the component soluble in the dispersion medium are introduced Etc. can be used suitably.
[0015]
The dielectric particles serving as the dispersed phase of the electrorheological fluid of the present invention are not particularly limited as long as the particles are polarized when an electric field is applied. For example, starch, cellulose, ion exchange resin, sulfonate group-containing polystyrene-based polymer particles are not limited. Organic particles having a hydrophilic group such as coalesced particles; hydrophilic inorganic particles such as silica and alumina; a conductive thin film layer formed on the surface centering on organic solid particles; and an electrically insulating thin film layer 3 Composite particles such as particles having a layer structure, particles having a thin film insulating layer formed on the surface of a conductive particle such as aluminum, particles in which conductive particles such as carbon black are dispersed in a resin; poly (acene-quinone) Organic semiconductor particles such as) Ferroelectric particles such as barium titanate and lithium tartrate. Among the above-mentioned dielectric particles, the sulphonic acid group-containing polystyrene-based weight is large because the shear stress value obtained when an electric field is applied is large, the current density flowing at that time is small, and these are stable over time. The use of coalesced particles is preferred. In view of the dispersion stability and fluidity of the prepared electrorheological fluid, the average particle diameter of the dielectric particles is preferably in the range of 1 to 50 μm.
[0016]
The dispersion medium of the electrorheological fluid of the present invention is not particularly limited as long as it is an electrically insulating oil. For example, silicon oil such as polydimethylsiloxane, partially octyl-substituted polydimethylsiloxane, and partially phenyl-substituted polydimethylsiloxane; liquid paraffin; Hydrocarbons such as decane, methylnaphthalene, decalin, diphenylmethane, partially hydrogenated triphenyl, etc .; halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, bromobenzene, chlorobiphenyl, chlorodiphenylmethane; Fluoride such as demnum (manufactured by Daikin Industries, Ltd.); ester compounds such as dioctyl phthalate, trioctyl trimellitic acid, dibutyl sebacate, etc., and one or more of these may be used it can. Considering the viscosity of the prepared electrorheological fluid without applying an electric field, the viscosity of the dispersion medium is preferably 50 cp or less.
[0017]
The ratio of the dispersed phase and the dispersion medium in the electrorheological fluid of the present invention is preferably in the range of 100 to 400 parts by weight with respect to the former 100 parts by weight. When the amount of the dispersion medium exceeds 400 parts by weight, the shear stress obtained when an electric field is applied to the prepared electrorheological fluid may not be sufficiently increased. Further, when the amount of the dispersion medium is less than 100 parts by weight, it may be difficult to use the prepared electrorheological fluid.
[0018]
In the electrorheological fluid of the present invention, various conventionally known additives such as known polymer dispersants, surfactants, polymer thickeners, and other additives are added to adjust the viscosity or improve the shear stress value. An agent can be added.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.
[0020]
[Reference Example 1]
A 500 ml four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen inlet tube was charged with 150 g of toluene, 1 g of azobisisobutyronitrile, polydimethylsiloxane containing methacryloyl group (Silaplane FM0721 manufactured by Chisso Corporation). , Average molecular weight = about 5000) and 500 g of cetyl methacrylate were added and stirred at room temperature for 30 minutes while blowing nitrogen. This was heated at 75 ° C. for 3 hours to carry out a polymerization reaction. After completion of the reaction, the solvent was distilled off by heating under reduced pressure with an evaporator to obtain an oily polymer (1).
[0021]
To a 500 ml four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, 350 g of isopropyl alcohol, 2 g of the polymer (1), 2 g of azobisisobutyronitrile, and 50 g of styrene were added. The mixture was stirred at room temperature for 30 minutes while blowing nitrogen. This was heated at 70 ° C. for 24 hours to carry out a polymerization reaction. After adding 200 g of 20 cs silicon oil (KF96-20cs made by Shin-Etsu Chemical Co., Ltd.) dropwise to this reaction solution, the volatile matter is distilled off by drying under reduced pressure with an evaporator, and an addition comprising a styrene-based graft polymer A silicone oil dispersion of additive (1) (content of additive (1) 20% by weight, hereinafter referred to as additive dispersion (1)) was obtained.
[0022]
[Reference Example 2]
In a 300 ml flask, 200 ml of methanol and 100 ml of ion-exchanged water were mixed, and 100 g of silica gel fine particles (manufactured by Nippon Shokubai Co., Ltd., true sphere, average particle size: 1.5 μm) were dispersed therein. 7 g of γ-methacryloxypropyltrimethoxysilane was added thereto, reacted at 70 ° C. for 1 hour, the solvent was distilled off by heating, and the resulting reaction product was dried at 60 ° C. under reduced pressure.
[0023]
Into a 500 ml flask was placed 300 ml of toluene, and 100 g of the reaction product obtained by drying was dispersed. Thereto, 1 g of azobisisobutyronitrile, 5 g of methacryloyl group-containing polydimethylsiloxane (Silane Plan FM0721 manufactured by Chisso Corporation, average molecular weight = about 5000, silicon content = 36%) and methacryloyl group-containing methoxypolyethylene glycol (new) Nakamura Chemical Co., Ltd. NK SELL M-230G, 5 g of polyethylene glycol polymerization degree n = about 23, average molecular weight = about 1100) were dissolved and reacted at 70 ° C. for 5 hours. After completion of the reaction, the solvent was distilled off by heating under reduced pressure to obtain an additive (2) composed of surface-treated silica gel fine particles.
[0024]
[Reference Example 3]
In a 500 ml four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube, ion-exchanged water 200 g, reactive emulsifier Aqualon RN-20 (Daiichi Kogyo Seiyaku Co., Ltd., polyoxyethylene alkylstyryl) 1 g of ether), 1 g of dodecyl methacrylate and 1 g of sodium persulfate were added and dissolved. A monomer component consisting of 50 g of methyl methacrylate and 5 g of industrial divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., a mixture of 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, etc.) was added, and nitrogen was blown into it. While stirring, the mixture was stirred at 20000 rpm for 2 minutes. This was heated at 70 ° C. for 3 hours and further heated at 90 ° C. for 3 hours to carry out a polymerization reaction. After completion of the polymerization, the dispersion medium was converted from water to isopropyl alcohol by azeotropic distillation, and then a mineral electrical insulating oil (manufactured by Cosmo Oil Co., Ltd., high-pressure insulating oil) was added, and isopropyl alcohol was distilled off under reduced pressure. A mineral-based electrical insulating oil dispersion (additive (3) content of 20% by weight, hereinafter referred to as additive dispersion (3)) of an additive (3) comprising a methyl-based crosslinked polymer microgel was obtained.
[0025]
[Reference Example 4]
In a 500 ml four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, 150 g of isopropyl alcohol, 2.5 g of azobisisobutyronitrile, polydimethylsiloxane containing methacryloyl group (manufactured by Chisso Corporation) Silaplane FM0721, average molecular weight = about 5000) 7 g, methacryloyl group-containing polyethylene glycol (Nippon Yushi Co., Ltd., Bremer PE-350, polyethylene glycol polymerization degree = 7-9, average molecular weight = about 450) 5 g, styrene 45 .3 g and 4.7 g of industrial divinylbenzene (made by Wako Pure Chemical Industries, Ltd., mixture of 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, etc.) were added and stirred for 30 minutes while blowing nitrogen. This was heated at 70 ° C. for 20 hours and stirred at 85 ° C. for 4 hours to carry out a polymerization reaction. After dropping 400 g of 20 cs silicon oil (KF96-20cs, manufactured by Shin-Etsu Chemical Co., Ltd.) into this reaction solution, the volatile matter was distilled off under reduced pressure by using an evaporator, and the styrene-based crosslinked polymer microgel was used. An additive (4) silicone oil dispersion (additive (4) content of 20 wt%, hereinafter referred to as additive dispersion (4)) was obtained.
[0026]
[Reference Example 5]
To a 500 ml four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube was charged 150 g of toluene, 1.5 g of azobisisobutyronitrile, 80 g of styrene and 20 g of dodecyl methacrylate while blowing nitrogen. Stir for 30 minutes. This was heated at 70 ° C. for 20 hours and stirred at 85 ° C. for 4 hours to carry out a polymerization reaction. After completion of the reaction, the volatile component was distilled off under reduced pressure to obtain a comparative additive (1) composed of a styrene-dodecyl methacrylate copolymer.
[0027]
[Example 1]
A 3-liter four-necked separable flask equipped with a stirrer, reflux condenser and thermometer was charged with 1.2 liters of water, and 16.0 g of Kuraray Poval PVA-205 (Kuraray Co., Ltd.) was added. After dissolution, 270 g of styrene, 30 g of industrial divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., a mixture of 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, etc.) and 8 g of azobisisobutyronitrile The resulting mixture was added. Thereafter, the contents in the flask were dispersed at a stirring speed of 7000 rpm and polymerized at 80 ° C. for 8 hours. The obtained solid was filtered off, washed thoroughly with water, and then dried at 80 ° C. for 12 hours using a hot air drier. A spherical polymer crosslinked product {hereinafter referred to as polymerized crosslinked product (1). } 289 g was obtained.
[0028]
Next, 100 g of the polymerized crosslinked product (1) was charged into a 2 liter four-necked separable flask equipped with a stirrer, a thermometer and a dropping funnel, and 700 g of 98% by weight concentrated sulfuric acid was added to obtain a uniform dispersion. After raising the temperature of the reaction mixture to 80 ° C., the mixture was heated and stirred at the same temperature for 24 hours to carry out sulfonation reaction. Thereafter, the reaction mixture was poured into water at 0 ° C., filtered and washed with water. The obtained solid was neutralized with 500 ml of a 10% by weight aqueous sodium hydroxide solution and thoroughly washed with water. Then, it dried for 10 hours at 80 degreeC using a vacuum dryer, and the sulfonic acid group containing polystyrene type polymer particle | grains with an average particle diameter of 6 micrometers (Hereafter, this is called dispersed phase particle (1). } Was obtained. The anion dissociation group density of the dispersed phase particles (1) was 4.2 mg equivalent / g.
[0029]
30 g of the dispersed phase particles (1) were dried at 150 ° C. for 3 hours, and then the moisture content in the atmosphere was absorbed to adjust the water content to 2.0% by weight, and then the additive dispersion obtained in Reference Example 1 ( 1) 1 g was uniformly dispersed in a dispersion medium obtained by adding 69 g of 20 cs silicone oil (KF96-20cs manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain the electrorheological fluid (1) of the present invention.
[0030]
[Example 2]
In place of the additive dispersion (1) in Example 1, 0.5 g of the additive (2) obtained in Reference Example 2 was used, and 10 cs of mineral-based electric insulating oil (Co., Ltd.) instead of 20 cs of silicone oil. The electrorheological fluid (2) of the present invention was obtained in the same manner as in Example 1 except that 69.5 g (manufactured by Cosmo Oil, high-pressure insulating oil) was used.
[0031]
[Example 3]
Instead of the additive dispersion (1) in Example 1, 0.5 g of the additive dispersion (3) obtained in Reference Example 3 was used, and 10 cs of mineral electrical insulating oil (( The electrorheological fluid (3) of the present invention was obtained in the same manner as in Example 1 except that 69.5 g of high pressure insulating oil (manufactured by Cosmo Oil Co., Ltd.) was used.
[0032]
[Example 4]
Instead of the additive dispersion (1) in Example 1, 2.0 g of the additive dispersion (4) obtained in Reference Example 4 was used, and 20 cs of silicone oil (KF96-20cs manufactured by Shin-Etsu Chemical Co., Ltd.) was used. The electrorheological fluid (4) of the present invention was obtained in the same manner as in Example 1 except that the amount of ()) was changed to 68 g.
[0033]
[Comparative Example 1]
After 30 g of the dispersed phase particles (1) in Example 1 were dried at 150 ° C. for 3 hours, moisture in the atmosphere was absorbed to adjust the moisture content to 2.0 wt%, and then 20 cs silicon oil (Shin-Etsu Chemical Co., Ltd.) ) KF96-20cs) 70 g mixed and dispersed in a comparative electrorheological fluid {hereinafter referred to as comparative fluid (1). }.
[0034]
[Comparative Example 2]
After 30 g of the dispersed phase particles (1) in Example 1 were dried at 150 ° C. for 3 hours, moisture in the atmosphere was absorbed to adjust the moisture content to 2.0 wt%, and then 10 cs mineral-based electrical insulating oil (Co., Ltd. ) Cosmo Oil, high pressure insulating oil) 70 g mixed and dispersed for comparison electrorheological fluid (hereinafter referred to as comparative fluid (2). }.
[0035]
[Comparative Example 3]
After 30 g of dispersed phase particles (1) in Example 1 were dried at 150 ° C. for 3 hours, moisture in the atmosphere was absorbed to adjust the water content to 2.0 wt%, and then powdered silica having an average particle size of 0.007 μm Disperse uniformly in a dispersion medium obtained by adding 1.2 g (AEROSIL 380 manufactured by Nippon Aerosil Co., Ltd.) to 68.8 g of 20 cs silicon oil (KF96-20cs manufactured by Shin-Etsu Chemical Co., Ltd.) Electrorheological fluid {hereinafter referred to as comparative fluid (3). }.
[0036]
[Comparative Example 4]
The comparative additive obtained in Reference Example 5 was prepared by drying 30 g of the dispersed phase particles (1) in Example 1 at 150 ° C. for 3 hours and then absorbing moisture in the air to adjust the water content to 2.0% by weight. (1) Mix and disperse in 68 g of mineral-based electrical insulating oil (Cosmo Oil Co., Ltd., high-pressure insulating oil) in which 2.0 g is dissolved, and the electrorheological fluid for comparison {hereinafter referred to as comparative fluid (4) That's it. }.
[0037]
[Example 5]
For each of the electrorheological fluids (1) to (4) and the comparative fluids (1) to (4) of the present invention obtained in Examples 1 to 4 and Comparative Examples 1 to 4, when no electric field is applied at 25 ° C. Was measured under a shear rate of 3.3 / s and 33 / s, and the Ti value was calculated according to the above equation (1). Next, each electrorheological fluid was filled from the bottom of a test tube having a height of 150 mm and a diameter of 15 mm to 100 mm and sealed, and then allowed to stand at room temperature to follow the state of sedimentation of the dispersed phase particles. The height from the bottom of the test tube of the sediment layer formed by the dispersion phase particles in the electrorheological fluid settling was measured after 1 day and 1 week, and the dispersion stability of the electrorheological fluid was evaluated. Furthermore, 50 ml of each electrorheological fluid is put in a 100 ml container and sealed, and after standing for one month, the whole container rotates at a speed of 30 revolutions per minute, and the total number of revolutions required to return to the original uniform state is measured. The redispersibility was evaluated. The results are shown in Table 1.
[0038]
[Table 1]
Figure 0003710494
[0039]
Moreover, each of the electrorheological fluids is put into a rotational viscometer with a coaxial electric field, and an AC external electric field of 4000 V / mm (frequency: 50 Hz) is applied under the conditions of an inner / outer cylinder gap of 1.0 mm, a shear rate of 33 / s, and 25 ° C. The shear stress value (initial value) when applied and the current density (initial value) flowing at that time were measured. Further, after the viscometer was continuously operated for 3 days at 25 ° C. with an external electric field of 4000 V / mm applied, the shear stress value (value after 3 days) and the current density (value after 3 days) were measured. The stability of viscous fluid over time was investigated. The results are shown in Table 2.
[0040]
[Table 2]
Figure 0003710494
[0041]
As is apparent from Table 1, the electrorheological fluids (1) to (4) of the present invention are given structural viscosity because η 2 is 200 cp or less and a significant Ti value is recognized. Excellent stability and redispersibility. However, Comparative Fluids (1) and (2) had η 2 of 200 cp or less, but were not imparted with structural viscosity, and were inferior in dispersion stability and redispersibility. On the other hand, Comparative Fluids (3) and (4) were inferior in redispersibility because η 2 exceeded 200 cp and Ti value exceeded 500 cp. Further, as is apparent from Table 2, the electrorheological fluids (1) to (4) of the present invention maintained good shear stress characteristics and current characteristics similarly to the comparative fluids (1) to (2). .
[0042]
【The invention's effect】
The electrorheological fluid of the present invention generates large shear stress even when a relatively weak electric field is applied, and has excellent current characteristics that the current density flowing at that time is small, and the generated shear stress and current density are stable over time. Excellent fluidity and dispersion stability when no electric field is applied (the ability to keep the electrorheological fluid in a uniform state for a long time without settling or floating the dispersed phase) and redispersibility (dispersion phase is It is particularly excellent in the ability to reproduce the original uniform state with a simple external force after it has settled or floated and becomes non-uniform, making it effective for engine mounts, clutches, dampers, brakes, shock absorbers, actuators, valves, etc. Available.

Claims (2)

平均径が1〜50μmである誘電体粒子からなる分散相と電気絶縁油からなる分散媒から構成される電気粘性流体であって、該分散相100重量部に対する該分散媒の量が100〜400重量部であり、25℃で電場を印加しないで測定したせん断速度33/sのせん断状態での粘度が200cp以下であり且つ式(1)の条件を満たす構造粘性を示すことを特徴とする電気粘性流体。
Figure 0003710494
(ただし式中、ηは25℃で電場を印加しないで測定したせん断速度3.3/sのせん断状態での粘度、η は25℃で電場を印加しないで測定したせん断速度33/sのせん断状態での粘度であり、Ti値はηとηの差である。)
An electrorheological fluid composed of a dispersed phase composed of dielectric particles having an average diameter of 1 to 50 μm and a dispersion medium composed of electrical insulating oil, wherein the amount of the dispersion medium is 100 to 400 with respect to 100 parts by weight of the dispersed phase. Electricity characterized in that it is a part by weight, has a viscosity of 200 cp or less in a shearing state with a shear rate of 33 / s measured without applying an electric field at 25 ° C., and exhibits a structural viscosity satisfying the condition of formula (1) Viscous fluid.
Figure 0003710494
(Where η 1 is the viscosity at a shear rate of 3.3 / s measured without applying an electric field at 25 ° C., and η 2 is the shear rate of 33 / s measured at 25 ° C. without applying an electric field. And the Ti value is the difference between η 1 and η 2. )
該電気絶縁油がシリコンオイルである請求項1に記載の電気粘性流体。  The electrorheological fluid according to claim 1, wherein the electrical insulating oil is silicon oil.
JP32911592A 1991-08-29 1992-12-09 Electrorheological fluid Expired - Fee Related JP3710494B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32911592A JP3710494B2 (en) 1992-12-09 1992-12-09 Electrorheological fluid
US08/627,025 USRE35773E (en) 1991-08-29 1996-06-20 Electrorhelogical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32911592A JP3710494B2 (en) 1992-12-09 1992-12-09 Electrorheological fluid

Publications (2)

Publication Number Publication Date
JPH06172772A JPH06172772A (en) 1994-06-21
JP3710494B2 true JP3710494B2 (en) 2005-10-26

Family

ID=18217782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32911592A Expired - Fee Related JP3710494B2 (en) 1991-08-29 1992-12-09 Electrorheological fluid

Country Status (1)

Country Link
JP (1) JP3710494B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184581A (en) * 2010-03-09 2011-09-22 Sekisui Plastics Co Ltd Cross-linked (meth)acrylic acid ester-based resin particle exhibiting negative chargeability, and dispersion of the same

Also Published As

Publication number Publication date
JPH06172772A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
US4772407A (en) Electrorheological fluids
KR940008392B1 (en) Electrobiscous fluids
US5429761A (en) Carbonated electrorheological particles
JP2660123B2 (en) Electrorheological liquids based on polymer dispersions with electrolyte-containing dispersed phases
JPH0687967B2 (en) Method for producing a dispersion of composite particles
US3984339A (en) Hydraulic oil composition
Kuramoto et al. Electrorheological property of a polyaniline-coated silica suspension
EP0453614A1 (en) Electrorheological fluids
EP0393692A2 (en) Electrorheological fluids
US5558803A (en) Electrorheological fluid with improved properties comprising composite polymer
JP3710494B2 (en) Electrorheological fluid
US5910269A (en) Electrorheological fluid composition including hydrocarbon compound having at least one unsaturated bond
US5294426A (en) Electrorheological fluid compositions
US5558811A (en) Electrorheological fluids with hydrocarbyl aromatic hydroxy compounds
US5164105A (en) Electroviscous fluid
JP3115672B2 (en) Manufacturing method of electrorheological fluid composition
JP3095868B2 (en) Electrorheological fluid composition
JPH08127790A (en) Electro-rheological fluid composition and device using the same
JPH02142896A (en) Electroviscous fluid composition
EP0636683B1 (en) Electrorheological fluid
JP3307743B2 (en) Manufacturing method of electrorheological fluid
JPH03119098A (en) Electroviscous fluid
USRE35773E (en) Electrorhelogical fluid
EP0529166A1 (en) Electrorheological fluids
JP3093831B2 (en) Electrorheological fluid

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030819

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees