JP3708366B2 - Electrified non-woven fabric - Google Patents

Electrified non-woven fabric Download PDF

Info

Publication number
JP3708366B2
JP3708366B2 JP14408199A JP14408199A JP3708366B2 JP 3708366 B2 JP3708366 B2 JP 3708366B2 JP 14408199 A JP14408199 A JP 14408199A JP 14408199 A JP14408199 A JP 14408199A JP 3708366 B2 JP3708366 B2 JP 3708366B2
Authority
JP
Japan
Prior art keywords
fiber
charged
collection efficiency
measurement
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14408199A
Other languages
Japanese (ja)
Other versions
JP2000170068A (en
Inventor
政実 竹内
美浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP14408199A priority Critical patent/JP3708366B2/en
Publication of JP2000170068A publication Critical patent/JP2000170068A/en
Application granted granted Critical
Publication of JP3708366B2 publication Critical patent/JP3708366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気フィルターやマスクなどに用いられ、優れた性能を有する帯電不織布に関するものである。
【0002】
【従来の技術】
空気中の塵埃を捕集するために、様々な空気濾過材が用いられているのは周知の通りである。このような空気濾過材には、圧力損失が低く、しかも塵埃の捕集効率は可能な限り高いことが望まれており、種々の技術が提案されてきた。その中にあって、異なる繊維成分同士が摩擦によって帯電する現象は古くから知られており、圧力損失の増大に繋がる繊維の見掛け密度を上げることなく、繊維ウエブの調製時に生じる繊維間摩擦を利用した帯電により捕集効率を向上させ得る技術として注目されている。このような摩擦を利用した帯電不織布として、摩擦に関与する繊維成分を選択することにより、種々の組合せが提案されている。
その一例として、米国特許第4,798,850号(以下、文献1と称する)には、清浄なポリオレフィン系繊維と清浄なアクリル系繊維とをカード機によって繊維ウエブとして形成し、この際の繊維間摩擦を利用して帯電不織布を得る技術が開示されている。尚、本明細書では、繊維に付着する潤滑剤や帯電防止剤といった帯電を妨げる添加剤が、非イオン性界面活性剤、アルカリ性水溶液、アルコールなどによって洗浄除去された繊維の状態を「清浄な」と称する。この文献1に開示されるポリオレフィン系繊維として、ポリエチレン樹脂、エチレン−プロピレン共重合体またはポリプロピレン樹脂などを構成する炭化水素の一部をシアノ基、またはフッ素或いは塩素といったハロゲンで置換した構造のものが挙げられている。また、アクリル系繊維として、アクリロニトリルと塩化ビニルまたは塩化ビニリデンとを共重合したモダクリル繊維が開示されている。
【0003】
さらに、特開平7−256024号公報(以下、文献2と称する)では、上述した清浄なポリオレフィン系繊維をポリプロピレン樹脂とポリエチレン樹脂とを芯鞘型またはサイドバイサイド型に配置した複合繊維とし、清浄なアクリル系繊維をハロゲン不含のポリアクリロニトリル繊維とし、これら2種類の繊維を摩擦帯電させ、しかも上記複合繊維によって熱融着性を持たせることが可能な空気濾過材を開示している。
【0004】
【発明が解決しようとする課題】
このように、従来知られている帯電不織布として、清浄なポリオレフィン系繊維と清浄なアクリル系繊維との組み合わせのうち、文献1ではシアノ基またはハロゲンで一部置換を受けたポリオレフィン系繊維とモダクリル繊維との組み合わせが開示され、文献2では加熱成型などを考慮してポリプロピレン/ポリエチレンからなる熱融着性のポリオレフィン系繊維とハロゲン不含のアクリル系繊維とを組み合わせたものである。ここで、帯電不織布を用いて一定量で供給された塵埃を捕集する際、縦軸に捕集効率、横軸に時間(または粉じん供給量)を採って経時的変化を測定すると、比較的初期の段階では帯電が徐々に中和されて行くために捕集効率低下が見られる。ところが、さらに測定を継続すると、帯電不織布内に捕集された塵埃によって不織布に目詰まりを生じ、見かけ上の捕集効率は上昇傾向を示す。この目詰まりによる捕集効率の向上はメカニカル濾過とも言われ、圧力損失の上昇を伴うものであるが、この様な一連の現象は、その捕集効率曲線の形状からボトムダウン現象と称される。
【0005】
本発明者は、上述した2つの文献に開示される帯電不織布を含む種々の組み合わせ、特にアクリル系繊維を種々に変えて組み合わせることにより、優れた帯電状態を実現すべく鋭意検討を重ねた。その結果、或る特定のアクリル系繊維を用いることによって、前述した初期の捕集効率低下を改善すること(以下、ボトムダウン改善と称する場合がある)ができ、メカニカル濾過に転ずる直前であっても捕集効率に優れた帯電不織布を見出した。
【0006】
従って、この発明の目的は、優れた帯電状態を持つことによって、長期間に渡って安定した捕集効率を持つ帯電不織布を提供することにある。
【0007】
【発明を解決するための手段】
この目的の達成を図るため、本発明の帯電不織布の構成によれば、帯電を妨げるような前述の添加剤が実質的に除去された、清浄な複数の繊維成分からなり、これら繊維成分同士が摩擦帯電されてなる帯電不織布において、上述した複数の繊維成分が、ポリオレフィン系繊維と、無機系溶媒によって紡糸されたアクリル系繊維を用いたことにある。
【0008】
【発明の実施の形態】
以下、本発明の実施に好適な形態につき説明する。上述した通り、本発明の特徴は、清浄なポリオレフィン系繊維と清浄なアクリル系繊維とを組み合わせた帯電不織布であって、このアクリル系繊維として無機系溶媒によって紡糸されたアクリル系繊維を用いたことにある。
【0009】
本発明に使用されるポリオレフィン系繊維は特に限定されるものではなく、前述した文献に開示されるポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、酢酸ビニル共重合体樹脂、エチレン−プロピレン共重合体または、これら樹脂の一部をシアノ基やハロゲンで置換した樹脂などを単独若しくは複数組み合わせた場合や、複合繊維として組み合わせたものを用いることができる。さらには、例えば芯鞘型の複合繊維において、その鞘成分として繊維表面に上記ポリオレフィン系樹脂を備えた場合であっても良い。
【0010】
次に、本発明で使用するアクリル系樹脂について説明する。アクリル系繊維については、例えば文献3:「繊維便覧−原料編−」(繊維学会編,丸善株式会社刊,1970年10月発行.第727頁〜第779頁参照)に詳説されている。既に述べたように、アクリル系繊維は、その樹脂組成により、文献1に採用されるモダクリル系とポリアクリロニトリル系とに分類される。このうち、ポリアクリロニトリル系繊維は、例えばジメチルホルムアミド。ジメチルアセトアミド、アセトニトリル、アセトンなどの有機系溶媒を用いて紡糸したものと、硝酸、塩化亜鉛水溶液、塩化カルシウム水溶液、ロダン塩(チオシアン酸ナトリウム、チオシアン酸カリウム、チオシアン酸カルシウム)水溶液などの無機系溶媒を用いたものとが知られている。本発明者の実験によれば、この発明に用いることができるアクリル系繊維は、何れもポリアクリロニトリル系のアクリル系繊維であって、その紡糸工程で無機系溶媒を用いて調製されたものである。
【0011】
これら無機系溶媒によって紡糸された市販のアクリル系繊維として、「ベスロン」(東邦レーヨン(株)製,商品名)、「カシミロン」(旭化成工業(株)製,商品名)、「エクスラン」(日本エクスラン工業(株),商品名)、「クレスラン」(米国American Cyanamid Co.製,商品名)、「ゼフラン」(米国The Dow Chemical Co.製,商品名)、「コーテル」(英国Courtaulds Co.製,商品名)などが挙げられる。これら無機系溶媒によって紡糸調製されたアクリル系繊維の使用とボトムダウン改善効果との因果関係は明らかではない。しかしながら、モダクリル系繊維や有機系溶媒で紡糸調製されたポリアクリロニトリル系繊維の殆どは、くびれた異形断面を持ち、上述した無機系溶媒で紡糸調製されたポリアクリロニトリル系繊維の殆どが略円形断面を有することから、この略円形の繊維断面が摩擦帯電後の帯電状態などに有利に作用するものと考えられる。
【0012】
これら本発明におけるポリオレフィン系繊維と上記アクリル系繊維との重量混合比は、摩擦による帯電効率を確保するため、前述した文献1及び文献2に開示されるのと同様に、30:70〜80:20の範囲内とするのが好適である。本発明の帯電不織布は、これらポリオレフィン系繊維及び上記アクリル系繊維のみにより構成するのが好ましいが、係る場合に限定されるものではなく、この他の樹脂からなる繊維成分は、帯電不織布に占める重量比率で30mass%以下程度であれば、実質的に同等の効果を期待し得る。
【0013】
また、繊維成分における前述の添加剤残留量、即ち、所定の洗浄処理を行った後に、メタノールで再度洗浄抽出することによって減少する重量が、メタノールまたはエタノールなどのアルコールによる抽出前の繊維重量に占める重量割合を0.2mass%以下、好ましくは0.15mass%以下とするのが好適である。
【0014】
以下、本発明の帯電不織布を得るに好適な製造工程を例示により説明する。まず、上述した組み合わせを含む複数の繊維成分を所定の重量混合比で開繊・混綿した後、これら繊維成分を清浄化する。然る後、これら繊維を周知のウエブ形成装置にかけ、各繊維成分を互いに摩擦することにより帯電した繊維ウエブを形成する。ここに言うウエブ形成装置とは、繊維成分同士を摺擦して帯電することが可能なフラットカードやローラーカードに代表されるカード機の他、ガーネット機或いはエアレイ法に属する装置を表す。このエアレイ法に属する装置として、例えば本出願人が特開平5−9813号公報(以下、文献4)に開示するような、複数の開繊シリンダーをハウジング内に収納し、これらシリンダーを高速回転させることによってシリンダーの周縁に積極的に空気流を発生させ、この空気流によって繊維成分を所定方向に吹き飛ばし得る装置が挙げられる。特に、このエアレイ法によるウエブ形成は、空気流を積極的に発生させる過程で繊維同士が摺擦されるエネルギーが大きいため、カード機などに比べて良好な帯電状態を実現することができる。
【0015】
このようなウエブ形成装置により得られた繊維ウエブをそのまま帯電不織布として利用することもできるが、主としてウエブ強度を高めるため、また、補助的な摩擦帯電を図るためにニードルパンチ法による絡合を行うのが好適である。
【0016】
さらに、本発明の帯電不織布は繊維ウエブ作製時に帯電が実現されるため、コロナ放電処理のように効率的な帯電を実現するための設計上の制約が少なく、用途に応じた面密度及び厚さで作製することができる。しかしながら、ウエブ強度を確保するために、好ましくは40g/m2以上、前述したメカニカル濾過を利用するために、より好適には150g/m2以上の面密度で構成するのが良い。
【0017】
【実施例】
以下、この発明の実施例につき説明する。尚、この実施例では、本発明の理解を容易とするため、特定の数値条件などを例示するが、本発明はこれら特定条件にのみ限定されるものではなく、本発明の目的の範囲内で任意好適な設計の変更及び変形を行うことができる。
【0018】
本実施例では、ポリオレフィン系繊維として市販のポリプロピレン繊維と、種々の市販アクリル系繊維との組み合わせで、重量混合比をポリオレフィン系繊維/アクリル系繊維=40/60、面密度を200g/m2、針密度を100本/cm2など、主な繊維ウエブの作成条件を統一した。この際、後述する各繊維成分の組み合わせで混綿した後に温水で清浄化を図り、メタノール抽出法により繊維の残留添加剤が0.15mass%以下であることを確認して使用した。これら混綿された繊維をカード機またはエアレイ機にかけてウエブ形成し、ニードルパンチ法による絡合を行うことにより帯電不織布を作製した。表1に、各実施例並びに比較例における繊維成分の組み合わせ、アクリル系繊維の紡糸溶媒、ウエブ形成手段を示すと共に、表1に記した各繊維の詳細を表2に示す。
【0019】
【表1】

Figure 0003708366
【0020】
【表2】
Figure 0003708366
【0021】
次いで、これら帯電不織布の評価方法について説明する。この実施例では、ボトムダウン改善効果を評価する測定法の一例として、防じんマスクに適用されている「防じんマスクの規格」(昭和63年労働省告示第19号)第6条に記載される試験方法に準じて行った。まず、粉じんの通過面積が直径85mmの円形となるように各帯電不織布を所定形状に裁断して測定サンプルとし、規定の測定装置に装着する。次いで、JIS T8151に規定される、粒径が2μm以下の石英を粉じんに用い、粉じん濃度が30mg/m3、かつ流量を30リッター/分(0.03m3/分)として粉じんを測定サンプル上流側から供給し、測定サンプル上流側及び測定サンプル下流側の粉じん量を光散乱式粉じん濃度計で測定し、この測定結果は、供給された粉じん量に対する下流側で観測された粉じん量の割合を捕集効率(%)として経時的に記録した。さらに、各測定点での圧力損失は、測定試料上流側と同下流側での圧力差をマノメーターで測定、記録した。これら結果につき、図を参照して説明する。
【0022】
図1から図6は、実施例1〜比較例2に係る6種類の帯電不織布を測定サンプルとし、各測定サンプルに対する粉じん供給量が合計100mgとなるまでの測定を行った際の捕集効率を各々プロットした捕集効率曲線である。縦軸は捕集効率(%)を採り、横軸は測定開始からの粉じん供給量(mg)を採って示す。
【0023】
まず、実施例1では、測定開始時の捕集効率が99%以上、捕集効率の最小値は粉じん供給量が60mgにおいて約93%であった。図1から理解できる通り、明確なボトム領域は認められず、帯電の劣化による捕集効率の低下は極めて小さいものであった。
【0024】
また、実施例2における測定開始時の捕集効率も99%以上、捕集効率の最小値は粉じん供給量が70mgにおいて約95%であった。図2に示すように、無機系溶媒である硝酸により紡糸調製されたアクリル系繊維を用いたことを除いては実施例1と同様な構成した場合でも明確なボトム領域は認められず、良好な帯電状態にあることが理解できる。
【0025】
実施例3における測定開始時の捕集効率は約99%であり、捕集効率の最小値は粉じん供給量が30mgにおいて約95%であった。この実施例3は、表1に示すように、ポリオレフィン系繊維が異なることを除いては実施例1と同様な構成で作製したものであるが、図3から理解できるように、明確なボトムダウンを来すことなく、良好な帯電状態を実現することが確認された。
【0026】
実施例4は、上記実施例3と繊維成分の構成を同一とし、ウエブ形成をエアレイ機で実施したものであり、図4に示す通り、測定開始時の捕集効率はほぼ100%であり、その後の経時的な捕集効率低下は実質的に認められず、測定時間内では99%以上の捕集効率が維持された。このように、ウエブ形成手段としてエアレイ法を採用することによって、より良好な帯電状態が得られることが確認された。
【0027】
次いで、有機系溶媒で紡糸されたアクリル系繊維を用いた比較例1では、測定開始時点での捕集効率が約77%と低く、捕集効率の最小値は粉じん供給量が10mgにおいて73%と、明確なボトムが観測された(図5参照)。その後、捕集効率は回復し、典型的なボトムダウンが認められた。
【0028】
モダクリル系繊維を用いた比較例2においては、図6に示す通り、測定開始時の捕集効率は96.6%であったが、捕集効率の最小値は粉じん供給量が60mgにおいて78%であり、比較例1の場合と同様に、明らかなボトム領域が認められた。
【0029】
これらの測定結果からも理解できるように、ポリオレフィン系繊維とアクリル系繊維の組み合わせで構成した帯電不織布にあって、このアクリル系繊維を無機系溶媒により紡糸されたもので構成した実施例1〜実施例4では、捕集効率の低下が実質的に解消され、著しいボトムダウン改善を図り得ることが明らかとなった。
【0030】
続いて、これら6つの帯電不織布について、捕集効率測定時の圧力損失変化を測定した結果を、測定開始時及び測定終了時(100mg時)について、Pa(パスカル)単位で表3に示す。
【0031】
【表3】
Figure 0003708366
【0032】
上記表3に示す通り、測定開始時の圧力損失を比較すれば、ほぼ同等の結果となった。しかしながら、測定終了時の圧力損失を比較すれば、エアレイ法でウエブ形成した実施例4は、著しい低圧損をもたらすことが認められた。前述した捕集効率の測定結果(図1〜図6参照)と、圧力損失の計測結果(上記表3参照)とからも、本発明の構成を適用した帯電不織布は、ボトムダウン改善効果のみならず、低圧損で高効率な空気濾過材となし得ることが確認された。
【0033】
以上、この発明の実施例につき、防じんマスクの評価方法を参照して説明したが、本発明の技術は係る用途に限定して用いるものではなく、空気濾過材一般に適用することができる。また、本発明の帯電不織布の優れた帯電特性を利用してワイピングクロスなどに使用することもできる。
【0034】
【発明の効果】
上述した説明から明らかなように、ポリオレフィン系繊維と無機系溶媒で紡糸調製されたアクリル系繊維との組み合わせで構成された帯電不織布により、優れた帯電状態を実現することができ、帯電状態の低下が抑制されることによってボトムダウン現象の改善を図ることができる。従って、本発明を適用することにより、優れた濾過性能を有する種々の空気濾過材を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1に関する評価試験結果を説明するための捕集効率曲線図、
【図2】 本発明の実施例2に関する評価試験結果を説明するための捕集効率曲線図、
【図3】本発明の実施例3に関する評価試験結果を説明するための捕集効率曲線図、
【図4】本発明の実施例4に関する評価試験結果を説明するための捕集効率曲線図、
【図5】本発明の比較例1に関する評価試験結果を説明するための捕集効率曲線図、
【図6】本発明の比較例2に関する評価試験結果を説明するための捕集効率曲線図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charged nonwoven fabric that is used in air filters, masks, and the like and has excellent performance.
[0002]
[Prior art]
As is well known, various air filter media are used to collect dust in the air. Such an air filter material is desired to have a low pressure loss and a dust collection efficiency as high as possible, and various techniques have been proposed. Among them, the phenomenon in which different fiber components are electrified by friction has been known for a long time, and it uses the inter-fiber friction that occurs during fiber web preparation without increasing the apparent density of the fiber that leads to increased pressure loss. As a technique that can improve the collection efficiency due to the electrification. Various combinations have been proposed by selecting a fiber component involved in friction as a charged nonwoven fabric using such friction.
As an example, U.S. Pat. No. 4,798,850 (hereinafter referred to as Document 1) forms a clean polyolefin fiber and a clean acrylic fiber as a fiber web by a card machine, and the fiber at this time A technique for obtaining a charged non-woven fabric using inter-friction has been disclosed. In the present specification, the state of the fiber that has been cleaned and removed by a nonionic surfactant, an alkaline aqueous solution, alcohol, or the like, which is an additive that hinders charging, such as a lubricant or an antistatic agent attached to the fiber, is “clean”. Called. The polyolefin fiber disclosed in this document 1 has a structure in which a part of hydrocarbon constituting polyethylene resin, ethylene-propylene copolymer or polypropylene resin is substituted with cyano group or halogen such as fluorine or chlorine. Are listed. Further, modacrylic fibers obtained by copolymerizing acrylonitrile and vinyl chloride or vinylidene chloride are disclosed as acrylic fibers.
[0003]
Further, in Japanese Patent Application Laid-Open No. 7-256024 (hereinafter referred to as Document 2), the above-described clean polyolefin fiber is a composite fiber in which a polypropylene resin and a polyethylene resin are arranged in a core-sheath type or a side-by-side type, and a clean acrylic An air filter material is disclosed in which a halogen-free polyacrylonitrile fiber is used as the base fiber, and these two types of fibers are triboelectrically charged and heat-bonding properties can be provided by the composite fiber.
[0004]
[Problems to be solved by the invention]
Thus, as a conventionally known charged non-woven fabric, among the combination of clean polyolefin fiber and clean acrylic fiber, in Document 1, polyolefin fiber and modacrylic fiber partially substituted with cyano group or halogen are used. In the literature 2, taking into account heat molding and the like, a heat-sealable polyolefin fiber made of polypropylene / polyethylene and a halogen-free acrylic fiber are combined. Here, when collecting dust supplied in a fixed amount using a charged non-woven fabric, taking the collection efficiency on the vertical axis and time (or dust supply amount) on the horizontal axis, In the initial stage, the charging is gradually neutralized, so that the collection efficiency decreases. However, if the measurement is further continued, the nonwoven fabric is clogged by dust collected in the charged nonwoven fabric, and the apparent collection efficiency tends to increase. This improvement in collection efficiency due to clogging is also called mechanical filtration, and is accompanied by an increase in pressure loss. Such a series of phenomena is called a bottom-down phenomenon due to the shape of the collection efficiency curve. .
[0005]
The present inventor has intensively studied to realize an excellent charged state by variously combining various combinations including the charged nonwoven fabric disclosed in the above-mentioned two documents, in particular, acrylic fibers. As a result, by using a certain acrylic fiber, it is possible to improve the above-described initial reduction in collection efficiency (hereinafter sometimes referred to as bottom-down improvement), and immediately before turning to mechanical filtration. Also found a charged nonwoven fabric with excellent collection efficiency.
[0006]
Accordingly, an object of the present invention is to provide a charged nonwoven fabric having a stable collection efficiency over a long period of time by having an excellent charged state.
[0007]
[Means for Solving the Invention]
In order to achieve this object, according to the configuration of the charged non-woven fabric of the present invention, the above-mentioned additives that prevent charging are substantially removed, and a plurality of clean fiber components are formed. In the charged non-woven fabric formed by frictional charging, the plurality of fiber components described above use polyolefin fibers and acrylic fibers spun with an inorganic solvent.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments for implementing the present invention will be described. As described above, the feature of the present invention is a charged nonwoven fabric in which clean polyolefin fibers and clean acrylic fibers are combined, and acrylic fibers spun with an inorganic solvent are used as the acrylic fibers. It is in.
[0009]
The polyolefin fiber used in the present invention is not particularly limited, and the polypropylene resin, polyethylene resin, polystyrene resin, vinyl acetate copolymer resin, ethylene-propylene copolymer, or these disclosed in the above-mentioned literature. A resin in which a part of the resin is substituted with a cyano group or a halogen can be used alone or in combination, or a composite fiber can be used. Furthermore, for example, in a core-sheath type composite fiber, the above-mentioned polyolefin resin may be provided on the fiber surface as the sheath component.
[0010]
Next, the acrylic resin used in the present invention will be described. The acrylic fiber is described in detail in, for example, Document 3: “Fiber Handbook-Raw Material Edition” (Fiber Society, published by Maruzen Co., Ltd., published in October 1970. See pages 727 to 779). As already described, acrylic fibers are classified into modacrylic and polyacrylonitrile based on the resin composition depending on the resin composition. Of these, the polyacrylonitrile fiber is, for example, dimethylformamide. Spinning with organic solvents such as dimethylacetamide, acetonitrile, acetone, and inorganic solvents such as nitric acid, zinc chloride aqueous solution, calcium chloride aqueous solution, rhodan salt (sodium thiocyanate, potassium thiocyanate, calcium thiocyanate) aqueous solution It is known to use. According to the inventor's experiment, the acrylic fibers that can be used in the present invention are all polyacrylonitrile-based acrylic fibers, and are prepared using an inorganic solvent in the spinning process. .
[0011]
Commercially available acrylic fibers spun with these inorganic solvents include "Veslon" (trade name, manufactured by Toho Rayon Co., Ltd.), "Cashmilon" (trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.), "Exlan" (Japan) Exlan Kogyo Co., Ltd., trade name), "Cresslan" (American Cyanamid Co., USA, trade name), "Zeflan" (US The Dow Chemical Co., trade name), "Cotel" (Courtaulds Co., UK) , Product name). The causal relationship between the use of acrylic fibers spun and prepared with these inorganic solvents and the bottom-down improvement effect is not clear. However, most of the polyacrylonitrile fibers spun and prepared with modacrylic fibers and organic solvents have a constricted irregular cross section, and most of the polyacrylonitrile fibers spun and prepared with the inorganic solvents described above have a substantially circular cross section. Therefore, it is considered that this substantially circular fiber cross section has an advantageous effect on the charged state after frictional charging.
[0012]
The weight mixing ratio between the polyolefin fibers and the acrylic fibers in the present invention is 30:70 to 80: as disclosed in the literature 1 and literature 2 described above in order to ensure the charging efficiency by friction. It is preferable to be within the range of 20. The charged nonwoven fabric of the present invention is preferably composed only of these polyolefin fibers and the above acrylic fibers, but is not limited to such cases, and the fiber component composed of the other resin is the weight of the charged nonwoven fabric. If the ratio is about 30 mass% or less, substantially the same effect can be expected.
[0013]
Further, the residual amount of the above-mentioned additive in the fiber component, that is, the weight reduced by washing and extracting again with methanol after performing a predetermined washing treatment occupies the fiber weight before extraction with methanol or alcohol such as ethanol. The weight ratio is 0.2 mass% or less, preferably 0.15 mass% or less.
[0014]
Hereinafter, the production process suitable for obtaining the charged nonwoven fabric of the present invention will be described by way of illustration. First, after opening and blending a plurality of fiber components including the combination described above at a predetermined weight mixing ratio, these fiber components are cleaned. Thereafter, these fibers are applied to a known web forming apparatus, and each fiber component is rubbed against each other to form a charged fiber web. The web forming apparatus mentioned here represents an apparatus belonging to a garnet machine or an air array method, in addition to a card machine represented by a flat card or a roller card that can be charged by rubbing fiber components. As an apparatus belonging to the air array method, for example, a plurality of open cylinders as disclosed in Japanese Patent Laid-Open No. 5-9813 (hereinafter referred to as Document 4) by the present applicant are housed in a housing, and these cylinders are rotated at high speed. Thus, there is an apparatus that can actively generate an air flow around the periphery of the cylinder and blow the fiber component in a predetermined direction by the air flow. In particular, the web formation by the air array method can realize a charged state better than that of a card machine or the like because the energy by which the fibers are rubbed is large in the process of actively generating the air flow.
[0015]
The fiber web obtained by such a web forming apparatus can be used as a charged non-woven fabric as it is. However, in order to increase the web strength and to achieve auxiliary frictional charging, entanglement by the needle punch method is performed. Is preferred.
[0016]
Furthermore, since the charged nonwoven fabric of the present invention is charged when the fiber web is produced, there are few design restrictions for realizing efficient charging, such as corona discharge treatment, and the surface density and thickness according to the application. Can be produced. However, in order to secure the web strength, the surface density is preferably 40 g / m 2 or more, and more preferably 150 g / m 2 or more in order to use the mechanical filtration described above.
[0017]
【Example】
Examples of the present invention will be described below. In this embodiment, specific numerical conditions and the like are illustrated for easy understanding of the present invention. However, the present invention is not limited only to these specific conditions, and within the scope of the object of the present invention. Any suitable design changes and modifications can be made.
[0018]
In this example, a combination of a commercially available polypropylene fiber as a polyolefin fiber and various commercially available acrylic fibers, a weight mixing ratio of polyolefin fiber / acrylic fiber = 40/60, an areal density of 200 g / m 2 , The production conditions of main fiber webs were unified, such as a needle density of 100 / cm 2 . Under the present circumstances, after mixing with the combination of each fiber component mentioned later, it cleaned with warm water, and it confirmed using the methanol extraction method that the residual additive of a fiber was 0.15 mass% or less, and was used. These mixed cotton fibers were formed into a web using a card machine or an air array machine, and entangled by a needle punch method to produce a charged nonwoven fabric. Table 1 shows combinations of fiber components, acrylic fiber spinning solvents, and web forming means in each Example and Comparative Example, and Table 2 shows details of each fiber listed in Table 1.
[0019]
[Table 1]
Figure 0003708366
[0020]
[Table 2]
Figure 0003708366
[0021]
Next, a method for evaluating these charged nonwoven fabrics will be described. In this example, as an example of a measurement method for evaluating the bottom-down improvement effect, the test method described in Article 6 of “Standard of Dust Mask” (Ministry of Labor Notification No. 19 in 1988) applied to a dust mask. It went according to. First, each charged non-woven fabric is cut into a predetermined shape so that the dust passage area is a circle with a diameter of 85 mm, and is used as a measurement sample, which is then attached to a specified measurement device. Next, using quartz with a particle size of 2 μm or less as defined in JIS T8151, the dust concentration is 30 mg / m 3 and the flow rate is 30 liters / minute (0.03 m 3 / minute). The amount of dust on the upstream side of the measurement sample and the downstream side of the measurement sample is measured with a light scattering dust concentration meter, and this measurement result shows the ratio of the amount of dust observed on the downstream side to the amount of dust supplied. The collection efficiency (%) was recorded over time. Furthermore, the pressure loss at each measurement point was measured and recorded with a manometer by measuring the pressure difference between the upstream side and the downstream side of the measurement sample. These results will be described with reference to the drawings.
[0022]
FIG. 1 to FIG. 6 show the collection efficiency when measurement was performed until six types of charged nonwoven fabrics according to Example 1 and Comparative Example 2 were used as measurement samples, and the amount of dust supplied to each measurement sample was 100 mg in total. Each is a collection efficiency curve plotted. The vertical axis represents the collection efficiency (%), and the horizontal axis represents the dust supply amount (mg) from the start of measurement.
[0023]
First, in Example 1, the collection efficiency at the start of measurement was 99% or more, and the minimum value of the collection efficiency was about 93% when the dust supply amount was 60 mg. As can be understood from FIG. 1, a clear bottom region was not recognized, and the decrease in the collection efficiency due to the deterioration of charging was extremely small.
[0024]
Further, the collection efficiency at the start of measurement in Example 2 was 99% or more, and the minimum value of the collection efficiency was about 95% when the dust supply amount was 70 mg. As shown in FIG. 2, a clear bottom region was not recognized even in the case of the same configuration as in Example 1 except that acrylic fiber spun and prepared with nitric acid as an inorganic solvent was used. It can be understood that it is in a charged state.
[0025]
The collection efficiency at the start of measurement in Example 3 was about 99%, and the minimum value of the collection efficiency was about 95% when the dust supply amount was 30 mg. As shown in Table 1, this Example 3 was produced with the same configuration as Example 1 except that the polyolefin fibers were different. As can be understood from FIG. It was confirmed that a good charged state was achieved without causing
[0026]
In Example 4, the configuration of the fiber component was the same as in Example 3 above, and the web formation was performed with an air lay machine. As shown in FIG. 4, the collection efficiency at the start of measurement was almost 100%. Subsequent collection efficiency decline over time was not substantially observed, and collection efficiency of 99% or more was maintained within the measurement time. Thus, it was confirmed that a better charged state can be obtained by adopting the air array method as the web forming means.
[0027]
Next, in Comparative Example 1 using acrylic fibers spun with an organic solvent, the collection efficiency at the start of measurement is as low as about 77%, and the minimum value of the collection efficiency is 73% at a dust supply amount of 10 mg. A clear bottom was observed (see FIG. 5). Thereafter, the collection efficiency recovered and a typical bottom-down was observed.
[0028]
In Comparative Example 2 using modacrylic fibers, as shown in FIG. 6, the collection efficiency at the start of measurement was 96.6%, but the minimum value of the collection efficiency was 78% when the dust supply amount was 60 mg. As in the case of Comparative Example 1, a clear bottom region was observed.
[0029]
As can be understood from these measurement results, Examples 1 to 1 are composed of a charged non-woven fabric composed of a combination of polyolefin fibers and acrylic fibers, and the acrylic fibers are spun with an inorganic solvent. In Example 4, it was clarified that the decrease in the collection efficiency was substantially eliminated, and a significant bottom-down improvement could be achieved.
[0030]
Then, about these six charged nonwoven fabrics, the result of having measured the pressure loss change at the time of a collection efficiency measurement is shown in Table 3 per Pa (pascal) unit at the time of a measurement start and a measurement end (at the time of 100 mg).
[0031]
[Table 3]
Figure 0003708366
[0032]
As shown in Table 3 above, when the pressure loss at the start of measurement was compared, almost the same results were obtained. However, when the pressure loss at the end of the measurement was compared, it was found that Example 4 web-formed by the air array method resulted in significant low pressure loss. From the measurement results of the collection efficiency described above (see FIGS. 1 to 6) and the measurement results of pressure loss (see Table 3 above), the charged nonwoven fabric to which the configuration of the present invention is applied only has a bottom-down improvement effect. Thus, it was confirmed that the air filter material can be made highly efficient with low pressure loss.
[0033]
As described above, the embodiments of the present invention have been described with reference to the dust mask evaluation method. However, the technology of the present invention is not limited to such use, and can be applied to air filter media in general. Moreover, it can also be used for a wiping cloth or the like by utilizing the excellent charging characteristics of the charged nonwoven fabric of the present invention.
[0034]
【The invention's effect】
As is clear from the above description, the charged non-woven fabric composed of a combination of polyolefin fibers and acrylic fibers spun and prepared with an inorganic solvent can achieve an excellent charged state and a reduced charged state. The bottom-down phenomenon can be improved by suppressing the above. Therefore, by applying the present invention, various air filter media having excellent filtration performance can be provided.
[Brief description of the drawings]
FIG. 1 is a collection efficiency curve diagram for explaining an evaluation test result relating to Example 1 of the present invention;
FIG. 2 is a collection efficiency curve diagram for explaining an evaluation test result relating to Example 2 of the present invention;
FIG. 3 is a collection efficiency curve diagram for explaining an evaluation test result relating to Example 3 of the present invention;
FIG. 4 is a collection efficiency curve diagram for explaining an evaluation test result relating to Example 4 of the present invention;
FIG. 5 is a collection efficiency curve diagram for explaining the evaluation test results regarding Comparative Example 1 of the present invention;
FIG. 6 is a collection efficiency curve for explaining an evaluation test result relating to Comparative Example 2 of the present invention.

Claims (3)

添加剤残留量が0.2mass%以下である清浄な複数の繊維成分からなり、該繊維成分同士が摩擦帯電されてなる帯電不織布において、前記複数の繊維成分が、ポリオレフィン系繊維と、無機系溶媒によって紡糸されたアクリル系繊維とを含むことを特徴とする帯電不織布。 A charged non-woven fabric comprising a plurality of clean fiber components having an additive residual amount of 0.2 mass% or less , wherein the fiber components are frictionally charged with each other, wherein the plurality of fiber components include a polyolefin fiber and an inorganic solvent. A charged non-woven fabric comprising an acrylic fiber spun by 前記ポリオレフィン系繊維と前記アクリル系繊維との重量混合比を30:70〜80:20の範囲としたことを特徴とする請求項1記載の帯電不織布。  The charged nonwoven fabric according to claim 1, wherein a weight mixing ratio of the polyolefin fiber and the acrylic fiber is in a range of 30:70 to 80:20. 前記帯電不織布がエアレイ法によりウエブ形成されてなることを特徴とする請求項1または請求項2記載の帯電不織布。  The charged nonwoven fabric according to claim 1 or 2, wherein the charged nonwoven fabric is formed by web formation by an air lay method.
JP14408199A 1998-09-29 1999-05-24 Electrified non-woven fabric Expired - Lifetime JP3708366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14408199A JP3708366B2 (en) 1998-09-29 1999-05-24 Electrified non-woven fabric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-275835 1998-09-29
JP27583598 1998-09-29
JP14408199A JP3708366B2 (en) 1998-09-29 1999-05-24 Electrified non-woven fabric

Publications (2)

Publication Number Publication Date
JP2000170068A JP2000170068A (en) 2000-06-20
JP3708366B2 true JP3708366B2 (en) 2005-10-19

Family

ID=26475615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14408199A Expired - Lifetime JP3708366B2 (en) 1998-09-29 1999-05-24 Electrified non-woven fabric

Country Status (1)

Country Link
JP (1) JP3708366B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659232B2 (en) * 2001-02-23 2011-03-30 日本バイリーン株式会社 Electrified non-woven fabric
JP2014128758A (en) * 2012-12-28 2014-07-10 Ambic Co Ltd Air filter material and its manufacturing method
US10525392B2 (en) 2014-07-30 2020-01-07 Japan Vilene Company, Ltd. Filtration material, filter element using same, and manufacturing method of filtration material

Also Published As

Publication number Publication date
JP2000170068A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP4290339B2 (en) Filter material and manufacturing method thereof
TW200819160A (en) Molded monocomponent monolayer respirator with bimodal monolayer monocomponent media
JP3708366B2 (en) Electrified non-woven fabric
DE69306973T2 (en) TRIBOELECTRIC FILTER MATERIAL
EP2231906A2 (en) Microfiber
JP2016030862A (en) Fibrillated fiber and method for producing the same
EP3775346A1 (en) Method for producing a textile fabric having electrostatically charged fibers and textile fabric
JP3763686B2 (en) Charged air filter
JP2014128758A (en) Air filter material and its manufacturing method
JP3703986B2 (en) Friction charging type non-woven fabric
JP5239466B2 (en) Nonwoven fabric for filter and filter using the same
JP4659232B2 (en) Electrified non-woven fabric
KR20020079627A (en) High electric non-woven fabrics and manufacturing method for the same
JP3527793B2 (en) Filter media and air filters
JP2003512147A (en) Filter media and method for producing the same
JP2006274507A (en) Flame resistant fiber
JP5908709B2 (en) Nonwoven fabric for filter, method for producing the same and filter
JP2007167788A (en) Filter medium for filter, filter for fluid filtration, and oil filter for engine
KR101626205B1 (en) Splittable conjugate fiber and manufacturing method thereof, and nonwoven fabrics and manufacturing method thereof
JP6427922B2 (en) Blended nonwoven fabric
CN100357010C (en) Three component filtration material
JP2021095655A (en) Fiber and method for producing fiber
US3225390A (en) Method of producing filter plugs
JP4744747B2 (en) Ultrafine fiber-dispersed nonwoven fabric, process for producing the same, apparatus for producing the same, and sheet material including the same
JPH0791750B2 (en) Acrylic nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

EXPY Cancellation because of completion of term