JP3707650B2 - Electric vehicle power supply - Google Patents

Electric vehicle power supply Download PDF

Info

Publication number
JP3707650B2
JP3707650B2 JP33913597A JP33913597A JP3707650B2 JP 3707650 B2 JP3707650 B2 JP 3707650B2 JP 33913597 A JP33913597 A JP 33913597A JP 33913597 A JP33913597 A JP 33913597A JP 3707650 B2 JP3707650 B2 JP 3707650B2
Authority
JP
Japan
Prior art keywords
power supply
battery
voltage
power
output unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33913597A
Other languages
Japanese (ja)
Other versions
JPH11178228A (en
Inventor
智也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP33913597A priority Critical patent/JP3707650B2/en
Publication of JPH11178228A publication Critical patent/JPH11178228A/en
Application granted granted Critical
Publication of JP3707650B2 publication Critical patent/JP3707650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車用電源装置に関する。
【0002】
【従来の技術】
電気自動車において、走行モ−タ給電用の高圧の主バッテリの他に、制御装置や車載補機を駆動するための低圧の補機バッテリを設ける2バッテリ式電源構成が知られている。主バッテリは車載のエンジンや商用電源により充電されるが、車載のエンジンを用いるハイブリッド電気自動車でも場合によって商用電源により充電される。
【0003】
2バッテリ式電源構成の電気自動車における商用電源による充電方式を図2を参照して説明する。
1は走行モータ(図示せず)に給電する高圧(288V)の主バッテリ、2は車載の補機たとえば電池冷却ファン駆動用のファンモータMなどに給電する低圧(12V)の補機バッテリ、3は補機バッテリ2により電源電圧を給電されて主バッテリ1をモニタしつつその充放電を制御する電池ECU(電池コントローラ)、4は商用電源電力を高圧直流電力に変換して主バッテリ1に給電する高圧出力部41を有する直流電源装置、5は主バッテリ1から給電されて補機バッテリ2を充電するDC−DCコンバータ、6は補機バッテリ2からファンモータMへの給電を開閉するリレー、7は高圧出力部11から主バッテリ1への給電を開閉するリレーである。
【0004】
通常は車外に設けられる直流電源装置4の高圧出力部41はリレー7を通じて主バッテリ1に給電し、主バッテリ1はDC−DCコンバータ5を通じて補機バッテリ2に給電する。補機バッテリ2はリレー6を通じてファンモータMに給電し、イグニッションスイッチIGを通じて電池ECU3に電源電圧を印加する。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来の2バッテリ式電源構成の電気自動車では、たとえば直流電源装置4により主バッテリ1の均等充電を行う際など、長時間にわたって補機バッテリ2から電池ECU3へ電源電力を供給せねばならないため、補機バッテリ2の消耗により電池ECU3の電源電圧が低下してその動作が不安定となる可能性が生じた。また、補機バッテリ2から電池ECU3への給電を開閉するイグニッションスイッチなどのスイッチ手段を誤って落とすことにより電池ECU3が落ちてしまう可能性もあった。上述した主バッテリ1の充電動作では、過去の充電履歴を参考に充電電流を制御することもあるので、このような電池ECU3の瞬停は主バッテリ1の充電状態の推定を狂わせて高価な主バッテリ1の過充電などを招く可能性も生じる。
【0006】
もちろん、補機バッテリ2の消耗を電池ECU3にて検出してDC−DCコンバータ5を駆動して補機バッテリ2の充電を行うことも可能であるが、このようにすると電池ECU3の電源電圧が急に変化したり、主バッテリ1の充電電流が急に変化したりするので、制御が複雑となり、更にDC−DCコンバータからの給電は、商用電源電力を高圧の直流電力に変換し、更に、この高圧の直流電力を低圧の直流電力に転換するという複雑な電力変換を必要とするので、電力ロスが大きかった.
また、たとえばサービスセンターに直流電源装置4が設置されており、ここに補機バッテリ2および主バッテリ1の両方とも消耗した電気自動車が持ち込まれた場合を考える。この場合の主バッテリ1の充電において、従来では補機バッテリ2が消耗しているために電池ECU3が立ち上がらないために、直流電源装置4自体が独立に主バッテリ1の充電を制御しなければならない。しかしながら、主バッテリ1の充電動作に際しては、電池ECU3に格納されている主バッテリ1のいままでの充放電履歴や特有の情報を参考に行うことが好ましいにもかかわらず、このように直流電源装置4自体がそれを行う場合には、このようなきめ細かい充電制御ができないという不具合がある。
【0007】
本発明は上記問題点に鑑みなされたものであり、電力ロスが少なくかつ簡素な構成により、商用電源を用いた電気自動車の主バッテリの充電動作の信頼性を従来より格段に向上可能な電気自動車用電源装置を提供することをその目的としている。
【0008】
【課題を解決するための手段】
請求項1記載の電気自動車用電源装置によれば、商用電源から主バッテリへ給電する直流電源に電池コントローラへ電源電圧を給電可能な低圧出力部が新設される。
更に、低圧出力部は、主バッテリの充電時に際して、補機バッテリから電池コントローラへの電源電圧印加に優先して電池コントローラに電源電圧を印加する。
【0009】
このようにすれば、主バッテリの均等充電のような長時間の充電時においても、補機バッテリが消耗したり、それにより電池コントローラの動作が不安定となったりすることがない。
また、補機バッテリから電池コントローラへの給電がなんらかの原因で遮断された場合や、直流電源から電池コントローラへの給電がなんらかの原因で遮断された場合でも、電池コントローラをなんら支障無く作動させることができる。
【0010】
更に、補機バッテリの重度の消耗時でも問題なく電池コントローラによる主バッテリの充電制御を行うことができる。また補機バッテリ充電のために2段階の電力変換を行う必要がないので、主バッテリ充電時における電力使用効率を向上することもできる
また更に、本発明では、補機バッテリおよび直流電源の低圧出力部はそれぞれ異なるダイオ−ドを通じて電池コントローラの電源端子に給電し、更に低圧出力部の出力電圧を補機バッテリのそれより高く設定している。
このようにすれば、上記で説明した低圧出力部の優先給電を一対のダイオードを追加するという簡単な構成追加のみで実現でき、更に片方からの電源電圧が急に遮断されたり、低下したりした場合でも一瞬の停電も無く電池コントローラへの電源電圧印加を維持することができる
請求項記載の構成によれば請求項記載の電気自動車用電源装置において更に、主バッテリはその充電時の少なくともバッテリ温度が所定値以上の場合において冷却ファンにより空冷される。
【0011】
本構成では特に、ファンモータは、直流電源の高圧出力部による主バッテリの充電時に低圧出力部から給電され、かつ、低圧出力部からファンモータへの給電開始時に補機バッテリからファンモータへ給電される。
このようにすれば、低圧出力部の出力インピーダンスが高くても、ファンモータの大きな起動時にその大きな起動電流により低圧出力部の出力電圧が大きく降下して電池コントローラへの印加電圧が低下するという不具合を解消することができる。
【0012】
請求項記載の構成によれば請求項記載の電気自動車用電源装置において更に、主バッテリはその充電時の少なくともバッテリ温度が所定値以上の場合において冷却ファンにより空冷され、冷却ファンを駆動するファンモータは、高圧出力部による充電時には低圧出力部により駆動され、車両走行中は補機バッテリにより駆動される。
【0013】
本構成では特に、高圧出力部におり主バッテリを充電する際に、補機バッテリの電圧が低ければ、補機バッテリからファンモータへ給電する経路のスイッチ手段をオンする。
このようにすれば、上記経路を逆流して低圧出力部により補機バッテリを充電することができ、配線の簡素化を実現することができる。この補機充電は、高圧出力部による主バッテリ充電とはまったく別個に行われるので主バッテリ充電に電位的な影響を与えることがなく、更に、低圧出力部による商用電源から一段回の電力変換により補機バッテリへ給電できるので、電力ロスも少ない。
【0014】
【発明の実施の形態】
本発明の好適な実施態様を以下の実施例を参照して説明する。
なお本発明の電気自動車はエンジンを持たない純電気自動車でもよく、エンジンを併用するハイブリッド自動車でもよい。
【0015】
【実施例】
本発明の電気自動車用電源装置の一実施例を図面を参照して説明する。
(回路説明)
この電気自動車用電源装置の回路構成を図1を参照して説明する。
1は走行モータ(図示せず)に給電する高圧(288V)の主バッテリ、2は車載の補機たとえば電池冷却ファン駆動用のファンモータMなどに給電する低圧(12V)の補機バッテリ、3は補機バッテリ2により電源電圧を給電されて主バッテリ1をモニタしつつその充放電を制御する電池ECU(電池コントローラ)、4は直流電源装置、6は補機バッテリ2からファンモータMへの給電を開閉するリレー、7は高圧出力部11から主バッテリ1への給電を開閉するリレーである。
【0016】
直流電源装置4は、商用電源電力を高圧(約290V)の直流電力に変換して主バッテリ1に給電する高圧出力部41と、商用電源電力を低圧(約14V)の直流電力に変換して補機バッテリ2に給電する低圧出力部42とを有する。これら高圧出力部41および低圧出力部42はDC−DCコンバータとして周知であるので、その詳細説明は省略する。
【0017】
電池ECU3はマイコン装置31と、マイコン装置31に電源電圧を印加する電源回路32と、低圧出力部42から電源回路32に達する高位電源端子320への給電経路に設けられるダイオ−ド33と、補機バッテリ2からイグニッションスイッチIGを通じて電源回路32の高位電源端子320に達する給電経路に設けられるダイオ−ド34とからなる。マイコン装置31は、主バッテリ1や補機バッテリ2の電圧などをモニタし、それに基づいてリレー6、7を開閉制御する。なお、この実施例では、コストダウンおよび車載重量の低減のために、本発明でいう直流電源をなす直流電源装置4のみが地上(サービスステーション)側に固定され、その他の回路や装置は電気自動車に搭載される。もちろん、直流電源装置4を電気自動車に常時搭載してもよいことは当然である。
【0018】
(充電動作説明)
以下、この装置における特徴動作である直流電源装置4による主バッテリ1の充電動作について以下に説明する。
まず、高圧出力部41の両端をリレー7を通じて主バッテリ1の両端に接続し、低圧出力部42の両端を電池ECU3の接地ラインおよびダイオ−ド33のアノードに接続する。更に低圧出力部42の高位出力ラインを直流モータであるファンモータMの高位電源入力端に接続する。また、イグニッションスイッチIGをオンし、電池ECU3を起動する。
【0019】
次に、直流電源装置4のコネクタを商用電源に接続すると、受電完了信号が電池ECU3に送られ、電池ECU3は、リレー6をオンするとともに、直流電源装置4に高圧出力部41および低圧出力部42からの高圧出力および低圧出力の送出を指令する。これにより、高圧出力部41により主バッテリ1が充電され、ファンモータMが起動され、電池ECU3は低圧出力部42から電源電圧を給電される。なお、低圧出力部42の出力電圧は約14Vであり、補機バッテリ2の満充電電圧より少し高く設定されている。
【0020】
ファンモータMには大きな起動電流が流れ、ファンモータMの高位電源入力端の電圧は低下するが、このファンモータMの高位電源入力端の電圧が低下すると、リレー6を通じて補機バッテリ2からファンモータMへ給電されるために、低圧出力部42の出力電圧の低下は抑止される。更に、この実施例では、電池ECU3は補機バッテリ2と低圧出力部42との両方から給電されるので、低圧出力部42の電圧低下の影響によりマイコン装置31の電源電圧が低位するのを良好に防止することができる。
【0021】
電池ECU3は、ファンモータMの起動終了後、遮断されるが、電池ECU3は補機バッテリ2の容量をモニタし、それが所定値以下に低下したらリレー6をオンして低圧出力部42により補機バッテリ2を充電し、補機バッテリ2の容量が所定値以上に回復したらリレー6をオフして低圧出力部42による補機バッテリ2の充電を停止する。
【0022】
その後、主バッテリ1の端子電圧が一定電圧に達したら、リレー7を遮断して充電動作を終了する。
(変形態様1)
上記実施例では、リレー6は、ファンモータMの起動時と補機バッテリ2の電圧低下時のみオンしたが、高圧出力部41による主バッテリ1の充電期間中は常時オンしてもよい。このようにすれば、補機バッテリ2も充電することができる。ただし、この場合には、補機バッテリ2が過充電とならないように、低圧出力部42の出力電圧はファンモータMの作動状態において、その高位電源入力端の電圧がほぼ補機バッテリ2の満充電電圧に等しいレベルとする必要がある。
(変形態様2)
上記実施例ではリレー6はファンモータMの起動時と補機バッテリ2の電圧低下時のみオンし、上記変形態様ではリレー6は高圧出力部41による主バッテリ1の充電期間中は常時オンしたが、この実施例では、リレー6はファンモータMの起動時にオンし、その後、補機バッテリ2の充電状態が所定レベルに達した場合にオフする。このようにすれば、低圧出力部42の出力電圧は変形態様1の場合よりも更に高く設定することができ、補機バッテリ2も充電でき、簡単である。
【図面の簡単な説明】
【図1】この発明の電気自動車用電源装置の一実施例を示すブロック回路図である。
【図2】従来の電気自動車用電源装置を示すブロック回路図である。
【符号の説明】
1は主バッテリ、2は補機バッテリ、3は電池コントローラ(電池ECU)、4は直流電源装置(直流電源)、6はリレー(スイッチング手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device for an electric vehicle.
[0002]
[Prior art]
2. Description of the Related Art In an electric vehicle, a two-battery power supply configuration is known in which a low-voltage auxiliary battery for driving a control device and an on-vehicle auxiliary machine is provided in addition to a high-voltage main battery for powering a running motor. The main battery is charged by an in-vehicle engine or a commercial power source. However, in some cases, a hybrid electric vehicle using the in-vehicle engine is charged by a commercial power source.
[0003]
A charging method using a commercial power source in an electric vehicle having a two-battery power source configuration will be described with reference to FIG.
Reference numeral 1 denotes a high-voltage (288V) main battery for supplying power to a traveling motor (not shown), 2 denotes a low-voltage (12V) auxiliary battery for supplying power to an in-vehicle auxiliary device such as a fan motor M for driving a battery cooling fan, 3 Is a battery ECU (battery controller) that controls the charging / discharging of the main battery 1 while monitoring the main battery 1 by being supplied with the power supply voltage by the auxiliary battery 2, and 4 is for supplying the main battery 1 by converting commercial power to high-voltage DC power A DC power supply device having a high-voltage output unit 41, 5 is a DC-DC converter that is fed from the main battery 1 to charge the auxiliary battery 2, and 6 is a relay that opens and closes the feeding from the auxiliary battery 2 to the fan motor M, A relay 7 opens and closes power supply from the high voltage output unit 11 to the main battery 1.
[0004]
Usually, the high voltage output unit 41 of the DC power supply 4 provided outside the vehicle supplies power to the main battery 1 through the relay 7, and the main battery 1 supplies power to the auxiliary battery 2 through the DC-DC converter 5. The auxiliary battery 2 supplies power to the fan motor M through the relay 6 and applies a power supply voltage to the battery ECU 3 through the ignition switch IG.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional electric vehicle having a two-battery power supply configuration, for example, when the main battery 1 is uniformly charged by the DC power supply device 4, the power source power must be supplied from the auxiliary battery 2 to the battery ECU 3 for a long time. Therefore, there is a possibility that the power supply voltage of the battery ECU 3 decreases due to the consumption of the auxiliary battery 2 and the operation becomes unstable. Further, there is a possibility that the battery ECU 3 may be dropped by accidentally dropping a switch means such as an ignition switch that opens and closes the power supply from the auxiliary battery 2 to the battery ECU 3. In the above-described charging operation of the main battery 1, the charging current may be controlled with reference to the past charging history. Therefore, such a momentary power failure of the battery ECU 3 causes the estimation of the charging state of the main battery 1 to be distorted and is expensive. There is a possibility that the battery 1 may be overcharged.
[0006]
Of course, it is possible to charge the auxiliary battery 2 by detecting the consumption of the auxiliary battery 2 by the battery ECU 3 and driving the DC-DC converter 5, but in this way, the power supply voltage of the battery ECU 3 is reduced. Since sudden changes or the charging current of the main battery 1 suddenly changes, the control becomes complicated, and further, the power supply from the DC-DC converter converts commercial power supply power into high-voltage direct current power, The power loss was large because it required complex power conversion to convert this high voltage DC power into low voltage DC power.
For example, consider a case where a DC power supply device 4 is installed in a service center, and an electric vehicle in which both the auxiliary battery 2 and the main battery 1 are consumed is brought in. In charging of the main battery 1 in this case, since the battery ECU 3 does not start up because the auxiliary battery 2 is conventionally consumed, the DC power supply 4 itself must control the charging of the main battery 1 independently. . However, although it is preferable to perform charging operation of the main battery 1 with reference to the charging / discharging history and specific information of the main battery 1 stored in the battery ECU 3 so far, the DC power supply device is thus configured. When 4 itself does it, there exists a malfunction that such detailed charge control cannot be performed.
[0007]
The present invention has been made in view of the above problems, and an electric vehicle capable of significantly improving the reliability of charging operation of a main battery of an electric vehicle using a commercial power source with a simple configuration with little power loss. It is an object of the present invention to provide a power supply device for a vehicle.
[0008]
[Means for Solving the Problems]
According to the electric vehicle power supply device of the first aspect, the low voltage output unit capable of supplying the power supply voltage to the battery controller is newly installed in the DC power supply that supplies power from the commercial power supply to the main battery.
Furthermore, the low-voltage output unit applies the power supply voltage to the battery controller in preference to the power supply voltage application from the auxiliary battery to the battery controller when the main battery is charged.
[0009]
In this way, even when charging for a long time such as equal charging of the main battery, the auxiliary battery is not consumed and the operation of the battery controller does not become unstable.
In addition, even when the power supply from the auxiliary battery to the battery controller is interrupted for some reason, or even when the power supply from the DC power supply to the battery controller is interrupted for any reason, the battery controller can be operated without any trouble. .
[0010]
Furthermore, even when the auxiliary battery is severely consumed, the charging control of the main battery by the battery controller can be performed without any problem. Further, since it is not necessary to perform two-stage power conversion for charging the auxiliary battery, it is possible to improve the power usage efficiency when charging the main battery .
Furthermore, in the present invention, auxiliary low-voltage output of the battery and the DC power source different diodes respectively - to power the power supply terminal of the battery controller through de sets even higher than the output voltage of the low voltage output of the auxiliary battery ing.
In this way, the priority feeding of the low-voltage output unit described above can be realized only by adding a simple configuration of adding a pair of diodes, and the power supply voltage from one side is suddenly cut off or lowered. Even in this case, it is possible to maintain the power supply voltage application to the battery controller without a momentary power failure .
According to the configuration of the second aspect, in the electric vehicle power supply device according to the first aspect , the main battery is further air-cooled by the cooling fan when the battery temperature at the time of charging is at least a predetermined value.
[0011]
Particularly in this configuration, the fan motor is supplied with power from the low-voltage output unit when the main battery is charged by the high-voltage output unit of the DC power supply, and is supplied from the auxiliary battery to the fan motor when power supply from the low-voltage output unit to the fan motor is started. The
In this way, even when the output impedance of the low-voltage output unit is high, the output voltage of the low-voltage output unit greatly drops due to the large starting current at the time of large start-up of the fan motor, and the applied voltage to the battery controller decreases. Can be eliminated.
[0012]
According to the configuration of claim 3, in the electric vehicle power supply device according to claim 1 , the main battery is further cooled by the cooling fan when at least the battery temperature at the time of charging is equal to or higher than a predetermined value, and drives the cooling fan. The fan motor is driven by the low voltage output unit during charging by the high voltage output unit, and is driven by the auxiliary battery during vehicle travel.
[0013]
Particularly in this configuration, when charging the main battery in the high-voltage output section, if the voltage of the auxiliary battery is low, the switch means for the path for supplying power from the auxiliary battery to the fan motor is turned on.
In this way, the auxiliary battery can be charged by the low-voltage output unit by flowing backward through the path, and the wiring can be simplified. Since this auxiliary charging is performed completely separately from the main battery charging by the high voltage output unit, there is no potential effect on the main battery charging, and further, by one-time power conversion from the commercial power source by the low voltage output unit. Since power can be supplied to the auxiliary battery, there is little power loss.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the invention are described with reference to the following examples.
The electric vehicle of the present invention may be a pure electric vehicle without an engine or a hybrid vehicle using an engine together.
[0015]
【Example】
An embodiment of a power supply device for an electric vehicle according to the present invention will be described with reference to the drawings.
(Circuit explanation)
The circuit configuration of the electric vehicle power supply device will be described with reference to FIG.
Reference numeral 1 denotes a high-voltage (288V) main battery for supplying power to a traveling motor (not shown), 2 denotes a low-voltage (12V) auxiliary battery for supplying power to an in-vehicle auxiliary device such as a fan motor M for driving a battery cooling fan, 3 Is a battery ECU (battery controller) that controls the charging / discharging of the main battery 1 while monitoring the main battery 1 by being supplied with the power supply voltage by the auxiliary battery 2, 4 is a DC power supply device, and 6 is from the auxiliary battery 2 to the fan motor M. A relay 7 that opens and closes power supply, and 7 is a relay that opens and closes power supply from the high voltage output unit 11 to the main battery 1.
[0016]
The DC power supply device 4 converts commercial power supply power into high-voltage (about 290 V) DC power and supplies power to the main battery 1, and converts commercial power supply into low-voltage (about 14 V) DC power. A low voltage output unit 42 for supplying power to the auxiliary battery 2. Since the high voltage output unit 41 and the low voltage output unit 42 are well known as DC-DC converters, detailed description thereof will be omitted.
[0017]
The battery ECU 3 includes a microcomputer device 31, a power supply circuit 32 that applies a power supply voltage to the microcomputer device 31, a diode 33 provided in a power supply path from the low-voltage output unit 42 to the high-level power supply terminal 320 that reaches the power supply circuit 32, It comprises a diode 34 provided in a power supply path from the machine battery 2 through the ignition switch IG to the high power supply terminal 320 of the power supply circuit 32. The microcomputer 31 monitors the voltage of the main battery 1 and the auxiliary battery 2 and controls the opening and closing of the relays 6 and 7 based on the monitored voltage. In this embodiment, in order to reduce the cost and reduce the weight of the vehicle, only the DC power supply 4 that constitutes the DC power supply referred to in the present invention is fixed on the ground (service station) side, and other circuits and devices are electric vehicles. Mounted on. Of course, it is natural that the DC power supply device 4 may be always mounted on the electric vehicle.
[0018]
(Explanation of charging operation)
Hereinafter, the charging operation of the main battery 1 by the DC power supply device 4 which is a characteristic operation in this device will be described below.
First, both ends of the high voltage output unit 41 are connected to both ends of the main battery 1 through the relay 7, and both ends of the low voltage output unit 42 are connected to the ground line of the battery ECU 3 and the anode of the diode 33. Further, the high level output line of the low voltage output unit 42 is connected to the high level power supply input terminal of the fan motor M which is a DC motor. Further, the ignition switch IG is turned on and the battery ECU 3 is activated.
[0019]
Next, when the connector of the DC power supply device 4 is connected to a commercial power supply, a power reception completion signal is sent to the battery ECU 3, and the battery ECU 3 turns on the relay 6, and the high-voltage output unit 41 and the low-voltage output unit are connected to the DC power supply device 4. Command the high pressure output and low pressure output from 42. Thereby, the main battery 1 is charged by the high voltage output unit 41, the fan motor M is started, and the battery ECU 3 is supplied with the power supply voltage from the low voltage output unit 42. The output voltage of the low voltage output unit 42 is about 14 V, which is set slightly higher than the fully charged voltage of the auxiliary battery 2.
[0020]
A large starting current flows through the fan motor M, and the voltage at the high power supply input terminal of the fan motor M decreases. However, when the voltage at the high power supply input terminal of the fan motor M decreases, the fan 6 sends the fan from the auxiliary battery 2 through the relay 6. Since power is supplied to the motor M, a decrease in the output voltage of the low voltage output unit 42 is suppressed. Further, in this embodiment, since the battery ECU 3 is supplied with power from both the auxiliary battery 2 and the low voltage output unit 42, it is preferable that the power supply voltage of the microcomputer device 31 is lowered due to the voltage drop of the low voltage output unit 42. Can be prevented.
[0021]
The battery ECU 3 is shut off after the start of the fan motor M, but the battery ECU 3 monitors the capacity of the auxiliary battery 2, and when it falls below a predetermined value, the relay 6 is turned on and compensated by the low voltage output unit 42. The machine battery 2 is charged, and when the capacity of the auxiliary battery 2 is restored to a predetermined value or more, the relay 6 is turned off to stop the charging of the auxiliary battery 2 by the low voltage output unit 42.
[0022]
Thereafter, when the terminal voltage of the main battery 1 reaches a certain voltage, the relay 7 is disconnected and the charging operation is terminated.
(Modification 1)
In the above embodiment, the relay 6 is turned on only when the fan motor M is started and when the voltage of the auxiliary battery 2 is lowered. However, the relay 6 may be always turned on during the charging period of the main battery 1 by the high voltage output unit 41. In this way, the auxiliary battery 2 can also be charged. However, in this case, the output voltage of the low voltage output unit 42 is almost equal to the voltage of the auxiliary battery 2 when the fan motor M is in an operating state so that the auxiliary battery 2 is not overcharged. The level must be equal to the charging voltage.
(Modification 2)
In the above embodiment, the relay 6 is turned on only when the fan motor M is started and when the voltage of the auxiliary battery 2 is lowered. In the above modification, the relay 6 is always turned on while the main battery 1 is charged by the high voltage output unit 41. In this embodiment, the relay 6 is turned on when the fan motor M is started, and then turned off when the charge state of the auxiliary battery 2 reaches a predetermined level. In this way, the output voltage of the low-voltage output unit 42 can be set higher than in the case of the modified mode 1, and the auxiliary battery 2 can be charged, which is simple.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram showing an embodiment of a power supply device for an electric vehicle according to the present invention.
FIG. 2 is a block circuit diagram showing a conventional electric vehicle power supply device.
[Explanation of symbols]
1 is a main battery, 2 is an auxiliary battery, 3 is a battery controller (battery ECU), 4 is a DC power supply (DC power supply), and 6 is a relay (switching means).

Claims (3)

走行モータに給電する高圧の主バッテリ、
車載の補機に給電する低圧の補機バッテリ、
前記補機バッテリにより電源電圧を給電されて前記主バッテリをモニタしつつその充放電を制御する電池コントローラ、及び、
商用電源電力を高圧直流電力に変換して前記主バッテリに給電する高圧出力部を有する直流電源、
を備え、
前記直流電源は、
前記商用電源電力を低圧直流電力に変換し、前記直流電源による前記主バッテリの充電時に前記補機バッテリから前記電池コントローラへの電源電圧印加に優先して前記電池コントローラに電源電圧を印加する低圧出力部を有する電気自動車の充電装置変換装置において、
前記補機バッテリと前記電池コントローラの電源入力端子との間に前記電源電圧の印加可能に介設されるダイオードと、前記直流電源の前記低圧出力部と前記電池コントローラの電源入力端子との間に前記電源電圧の印加可能に介設されるのダイオードとを備え、
前記直流電源の前記低圧出力部は、前記電池コントローラの許容範囲で前記補機バッテリより高い電源電圧を前記電池コントローラに出力することを特徴とする電気自動車用電源装置。
A high-voltage main battery that feeds the motor,
Low-voltage auxiliary battery that supplies power to the on-vehicle auxiliary machine,
A battery controller that controls the charging and discharging of the main battery while monitoring the main battery with the power supply voltage supplied by the auxiliary battery, and
DC power supply having a high-voltage output unit for converting commercial power supply power to high-voltage DC power and feeding the main battery,
With
The DC power supply is
Low-voltage output that converts the commercial power supply power into low-voltage DC power and applies the power supply voltage to the battery controller in preference to the power supply voltage applied from the auxiliary battery to the battery controller when the main battery is charged by the DC power supply In the electric vehicle charging device conversion device having a section,
A diode interposed between the auxiliary battery and the power input terminal of the battery controller so that the power supply voltage can be applied, and between the low voltage output portion of the DC power source and the power input terminal of the battery controller. A diode interposed so as to be able to apply the power supply voltage,
The low-voltage output unit of the DC power supply outputs a power supply voltage higher than that of the auxiliary battery to the battery controller within an allowable range of the battery controller.
請求項記載の電気自動車用電源装置において、
前記主バッテリを空冷するための冷却ファンを駆動するファンモータを有し、
前記ファンモータは、前記直流電源の高圧出力部による前記主バッテリの充電時に前記低圧出力部から給電され、かつ、前記低圧出力部から前記ファンモータへの給電開始時に前記補機バッテリから前記ファンモータへ給電されることを特徴とする電気自動車用電源装置。
In the electric vehicle power supply device according to claim 1 ,
A fan motor for driving a cooling fan for air-cooling the main battery;
The fan motor is fed from the low-voltage output unit when the main battery is charged by the high-voltage output unit of the DC power supply, and from the auxiliary battery to the fan motor at the start of power feeding from the low-voltage output unit to the fan motor. A power supply device for an electric vehicle, characterized by being fed with electric power.
請求項記載の電気自動車用電源装置において、
前記主バッテリを空冷するための冷却ファンを駆動するファンモータを有し、
前記ファンモータは、前記直流電源の高圧出力部による前記主バッテリの充電時に前記低圧出力部から給電され、
前記補機バッテリは前記スイッチング手段を通じて前記ファンモータへ給電し、
前記電池コントローラは、前記補機バッテリをモニタして、前記補機バッテリの電圧低下時に前記スイッチ手段をオンして前記低圧出力部により前記補機バッテリを充電させる制御を行うことを特徴とする電気自動車用電源装置。
In the electric vehicle power supply device according to claim 1 ,
A fan motor for driving a cooling fan for air-cooling the main battery;
The fan motor is fed from the low voltage output unit when the main battery is charged by the high voltage output unit of the DC power supply,
The auxiliary battery supplies power to the fan motor through the switching means,
The battery controller monitors the auxiliary battery and performs control to turn on the switch means when the voltage of the auxiliary battery drops and to charge the auxiliary battery by the low-voltage output unit. Automotive power supply.
JP33913597A 1997-12-09 1997-12-09 Electric vehicle power supply Expired - Lifetime JP3707650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33913597A JP3707650B2 (en) 1997-12-09 1997-12-09 Electric vehicle power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33913597A JP3707650B2 (en) 1997-12-09 1997-12-09 Electric vehicle power supply

Publications (2)

Publication Number Publication Date
JPH11178228A JPH11178228A (en) 1999-07-02
JP3707650B2 true JP3707650B2 (en) 2005-10-19

Family

ID=18324578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33913597A Expired - Lifetime JP3707650B2 (en) 1997-12-09 1997-12-09 Electric vehicle power supply

Country Status (1)

Country Link
JP (1) JP3707650B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228753A (en) * 2006-02-24 2007-09-06 Toyota Motor Corp Electric vehicle
JP4144646B1 (en) 2007-02-20 2008-09-03 トヨタ自動車株式会社 Electric vehicle, vehicle charging device, and vehicle charging system
JP4586888B2 (en) 2008-06-02 2010-11-24 トヨタ自動車株式会社 Failure diagnosis system and failure diagnosis method for electric vehicle on-vehicle device
JP4438887B1 (en) 2008-09-26 2010-03-24 トヨタ自動車株式会社 Electric vehicle and charging control method for electric vehicle
KR101229441B1 (en) 2011-03-18 2013-02-06 주식회사 만도 Apparatus for charging battery
JP6403107B2 (en) 2013-03-22 2018-10-10 パナソニックIpマネジメント株式会社 In-vehicle charger
ITMO20130315A1 (en) * 2013-11-14 2015-05-15 Meta System Spa EQUIPMENT FOR RECHARGING BATTERIES OF ELECTRIC OR SIMILAR VEHICLES
DE102018214244B4 (en) * 2018-08-23 2024-05-02 Audi Ag High-voltage battery charging cable with integrated low-voltage battery support function
DE102020106347A1 (en) 2020-03-09 2021-09-09 Audi Aktiengesellschaft Energy supply device for providing electrical energy for a motor vehicle, method for operating an energy supply device, method for producing energy supply devices and energy supply arrangement

Also Published As

Publication number Publication date
JPH11178228A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
US6674180B2 (en) Power supply for a hybrid electric vehicle
US9371005B2 (en) Battery management apparatus for an electric vehicle, and method for managing same
US9793722B2 (en) Power source apparatus for vehicle
JP3676184B2 (en) Vehicle power supply
KR101139022B1 (en) On-vehicle power supplying apparatus with two power supplies
US6323608B1 (en) Dual voltage battery for a motor vehicle
US20090001926A1 (en) Electrically Driven Vehicle
US6313546B1 (en) Power supply assembly for a vehicle
JP2012125137A (en) High voltage system of electric vehicle
JP7178892B2 (en) vehicle battery charging controller
US20020149954A1 (en) Multiple-voltage power supply circuitry for motor vehicles
JP3707650B2 (en) Electric vehicle power supply
US11299138B2 (en) Hybrid vehicle control device
JP3661630B2 (en) Hybrid vehicle drive device and control method thereof
JP2003095039A (en) Power source system for automobile
JP2020114079A (en) Charging control device for vehicle
JP7281340B2 (en) vehicle power supply
EP4148933A1 (en) Power switching control system
KR20090054915A (en) Power supply apparatus
JP2022023538A (en) Auxiliary power unit and electric power steering system
KR200182212Y1 (en) Power supply for an electric vehicle
JPH1141706A (en) Electric automobile having engine generator
JP7421871B2 (en) Vehicle power supply device
US11745601B2 (en) In-vehicle power supply system
US11951919B2 (en) In-vehicle power supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term