JP3707188B2 - Insulation deterioration diagnosis device - Google Patents

Insulation deterioration diagnosis device Download PDF

Info

Publication number
JP3707188B2
JP3707188B2 JP06770397A JP6770397A JP3707188B2 JP 3707188 B2 JP3707188 B2 JP 3707188B2 JP 06770397 A JP06770397 A JP 06770397A JP 6770397 A JP6770397 A JP 6770397A JP 3707188 B2 JP3707188 B2 JP 3707188B2
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
frequency band
insulation deterioration
deterioration diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06770397A
Other languages
Japanese (ja)
Other versions
JPH10260166A (en
Inventor
英紀 渡邉
正 守屋
昌純 吉沢
美菜 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP06770397A priority Critical patent/JP3707188B2/en
Publication of JPH10260166A publication Critical patent/JPH10260166A/en
Application granted granted Critical
Publication of JP3707188B2 publication Critical patent/JP3707188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧機器を対象として超音波によって絶縁劣化診断を行なう装置に関する。
【0002】
【従来の技術】
高電圧機器の絶縁診断技術としては、種々のものがあり、例えば内部ボイド,クラック,剥離などによる部分放電を測定し、放電電荷量や発生頻度を推定する方法、部分放電により生ずる電磁波や超音波を測定し位置を評定する方法、メグ値や漏れ電流など絶縁抵抗により吸湿劣化や汚損劣化を診断する方法、 tanδ値や静電容量を測定することにより熱劣化,吸湿,汚損劣化を診断する方法、警報接点付き温度計,光ファイバ温度計により機器表面の温度を測定し過負荷や局部短絡による過熱を診断する方法、Ae耐電圧,インパルス耐電圧試験により絶縁耐力を測定する方法などがある。
【0003】
【発明が解決しようとする課題】
このような各種絶縁診断にあって、クラック等の欠陥の検出に当っては、部分放電や電磁波の検出方法があるが、かかる診断には、一般的に、ノイズにうもれた信号検出でありノイズの影響を無視できないという問題、運転中には測定しにくいという問題、正確な欠陥位置標定が難しいという問題が存在し、また超音波を捕える方法では運転中の発生超音波を捕えており、前述のノイズの影響が大きく、また受信のみを行なっているにとどまっている。
【0004】
本発明は、上述の問題に鑑み、欠陥の検出に当り、ノイズの影響を軽くし運転中でも可能で欠陥位置標定が正確な送,受信を行なう自動絶縁劣化診断装置の提供を目的とする。
【0005】
【課題を解決するための手段】
上述の目的を達成する発明特定事項は次の如くである。
(1)超音波発振器からの超音波を対象絶縁物に発射しこの対象絶縁物からの反射波を受信するプローブと、
このプローブによる受信信号を重畳によってノイズが除去可能な回数だけ積算し、この積算したデータの包絡線を正常データの包絡線である標準パターンと比較し、比較結果が「異常」の場合のデータを登録し、上記プローブの変更を初期設定値に応じて行なう機能を有し、前記対象絶縁物に前記プローブから発射する超音波を、まず低周波帯域の超音波パルスとし、この低周波帯域の診断後異常箇所にて高周波帯域の超音波パルスとする指令を出すコンピュータと、
このコンピュータの指令により、前記対象絶縁物に前記プローブから発射する超音波を、まず低周波帯域の超音波パルスとし、この低周波帯域の診断後異常箇所にて高周波帯域の超音波パルスとする指令を前記超音波発信器に出す超音波周波数制御部と、
を有することを特徴とする。
(2)上記(1)において、上記プローブの変更は、対象絶縁物に沿って移動するための駆動部を備えたことを特徴とする。
(3)上記(1)において、上記プローブには、対象絶縁物に沿って複数個配置したプローブの切替によることを特徴とする。
(4)上記(1)において、高周波帯域での絶縁劣化診断にあって、上記比較結果が「異常」の場合のデータの登録内容は、モニタにより表示するようにしたことを特徴とする。
(5)上記(1)において、上記超音波周波数制御部では、樹脂材料内の充填材のレイリー散乱による散乱波を加味して上記充填材粒子径に見合う超音波波長の周波数帯域としたことを特徴とする
【0006】
【発明の実施の形態】
ここで、図を参照しつつ本発明の実施の形態を説明する。図1は、絶縁劣化診断装置の一例の全体ブロック図であり、機能的には電圧印加部1による電圧にて超音波発振器2が駆動され、超音波送受信探触子であるプローブ3より、対象絶縁物に超音波パルスが発射される。この場合、超音波周波数制御部4は、送信する超音波周波数が低周波数帯域か高周波数帯域かを定めて超音波発振器2に指令を出すもので、後述のコンピュータ5からの指令によって制御される。なお、プローブ3の発射周波数は、超音波周波数制御部4へ取り込まれ、超音波発振器2への指令帯域がプローブ3の発射周波数帯域と一致しているか否かの確認をとっている。
【0007】
プローブ3は、超音波パルスを対象絶縁物に発射する送信用の他に、対象絶縁物からの反射パルスを受信するもので、ノイズ除去のため高感度信号検出器例えばボックスカー積分器等が備えられ、高周波・低周波の区別なく、確実な信号検出を可能とする。
【0008】
また、コンピュータ5は、図2に示す構成を有する。すなわち、プローブ3からの対象絶縁物の反射パルスである受信信号を取り込み、まずデータ積算部5aにて積算が行なわれる。このデータの積算は、受信信号であるデータを例えば100回取り込んで重畳させ、この重畳によって所望の信号を抽出しノイズを除去するために行なわれる。つまり、変化しない所望の信号を検査の対象とするためである。
【0009】
ついで、データ積算部5aから出力される信号データは、マッチング処理部5bに入力される。このマッチング処理部5bは、データ積算部5aからのデータの包絡線検波を行なって包絡線を取り出すと共に正常なデータの包絡線との比較と判断を行なうものである。すなわち、正常な欠陥のない絶縁物での受信信号データの包絡線を標準パターン部5cに記憶してこの包絡線によってしきい値を決めておき、マッチング処理部5bではこのしきい値と一定期間毎に計測する反射パルスの包絡線とを比較して「正常」「異常」を判断するものである。
【0010】
マッチング処理部5bの判断が「異常」の場合、そのデータをデータ登録部5dに登録する。そして、この登録後、次のプローブ3による信号の受信のため複数個のプローブの場合にはその切替えを行ない、プローブ移動可能な場合には、その駆動を処理部5eにて行なっている。なお、「異常」でなく「正常」の場合でもそのプローブ3での検査終了後はプローブの切替えや移動が行なわれる。
処理部5eにつながる初期設定部5fには、対象絶縁物に対応するプローブ3の移動距離、すなわち、プローブ3によって計測可能な範囲に応じた移動距離とか、対象絶縁物に応じた超音波周波数、絶縁物が繊維にて強化されているか、充填材が入っているか(これは超音波周波数の選択に影響する)等の検査に当り予め入力すべき設定データが入力されている。
なお、データの「異常」によってデータ登録部5dにデータが登録された場合、後述の高周波帯域による診断では「異常」内容がモニタ6に表示される。
【0011】
図3,図4は、プローブ3と対象絶縁物との配置関係を示しており、図4は複数個のプローブを設置した例、図3はプローブを移動する例を示している。つまり、高電圧導体7を覆う絶縁物8に沿って図4では複数のプローブ3(図4では4個)が配置され、図3では絶縁物8に沿って移動可能にプローブ3が配置される。そして、図3の場合にはプローブ3内に駆動部(図示省略)が備えられている。そして、前述したコンピュータ5の処理部5eでは、図4に示す複数個のプローブ3の切替え指令が出力され、また図3のプローブ3の移動量が初期設定部5fでの移動データに従って出力されることになる。ここで、絶縁物8は例えば熱硬化性樹脂や熱可塑性樹脂のモールドであり、場合によっては充填材が入っていたり繊維にて強化されている樹脂である。
【0012】
さて、コンピュータ5の指令により、詳しくは処理部5eによる一連のプローブ3による診断での超音波制御部4にて制御される超音波の周波数帯域は、低周波帯域と高周波帯域とに分けられ、このうち浸透深度が深い低周波帯域(5MHz〜10MHz)の超音波を使用して、まず大まかな欠陥診断を行ない、欠陥の発見とだいたいの位置標定を行なう。
ついで、欠陥部分が発見された場合、その位置でのプローブ3により高周波帯域(10MHz〜25MHz)の超音波を発射し、欠陥の正確な位置標定を行なうものである。
【0013】
プローブ3からの発射超音波パルスは、前述のように低周波と高周波であるが、この超音波パルス発射後の反射パルスでは超音波は単調な減衰振動を行ない、その包絡線は過渡的に一定の減衰曲線となる。そして、欠陥が存在する場合には、図7に示すように(図7は充填材と欠陥との関係の図であるが)波形が突出するという現象が存在するため、この包絡線付近にしきい値を定めて波形の突出程度を判定することにより、正常・異常を判断することができる。かかる処理が図2のマッチング処理部5bにて行なわれる。
【0014】
図5は、低周波帯域による位置特定処理を示している。ここで、Xはプローブ位置、Yは読み込み回数を示している。図5はプローブ移動の例を示しているが、切替えの場合はプローブ切替えとなる。図5において、プローブ3の位置を変え(ステップS1,S2)、超音波の反射波を100個取込み(ステップS3〜S6)、この積算後包絡線検波によるデータ変換(ステップS7)を行ない、入力データと標準データの比較(ステップS8)後、「異常」か否かの判定を行ない(ステップS9)、異常の場合は登録部5dに入力(ステップS10)し、例えばプローブ位置50cmの長さにて位置Xの変更を行なうものである。ここでX>50は50cmの長さをとしてもよいし、50分割した場合の数値としてもよい(ステップS11)。
【0015】
図6は高周波による劣化診断を示しており、図5との違いはプローブ位置Xは「異常」があった登録部まで移動させ(ステップS12)、ここで改めて「異常」が出た場合にはX値をモニタ出力するものである(ステップS13)。
【0016】
包絡線による異常検出は、上述のとおりであるが、更にニューラルネットワークとパターン認識により、オンラインによる絶縁診断や欠陥の画像処理化も可能である。すなわち、ニューラルネットワークによる並列処理にて異常モデルとその標準パターンを作成し、パターン認識の結果、劣化の診断を行なうと同時に、パターン認識の結果、欠陥の特徴パターンより画像化することができる。そして、この画像化では実験上10μm程度又はそれ以上細かな欠陥を得ることができる。かかる処理にあっては、絶縁物の完全な自動診断及び画像化が可能となる。
【0017】
次に、絶縁物8に樹脂を用いる場合であっても充填材が入っている場合、等材質の違いが絶縁の目的と強度に応じて変ってくる。本例での樹脂による絶縁物8にあって充填材が入っている場合、例えば充填量30%程度、粒子径11μm程度の絶縁物8でも測定可能となっている。すなわち、充填材入りの樹脂材料中の進行超音波特性を把握することにより、かかる材料に対しても欠陥検出が可能となる。すなわち、充填材粒子による進行超音波の散乱についてはレイリー散乱理論が適用でき、充填材粒子は全て球形でその大きさは超音波の波長に比べて充分小さいとしたときの、散乱波の強さは次式[数1]となる。
【0018】
【数1】

Figure 0003707188
ここで、θ=180°すなわち後方散乱の強さψbsとして計算すると、ka=1程度で透明領域,不透明領域に分けられるので、ka<1になるように充填材粒径を選ぶのがよい。すなわち、充填材粒子径と超音波波長とが細粒子で長波長、大きめの粒子では短波長となる傾向にて充填材粒子と超音波波長とを決めてやれば、図7に示すようにクラック等の欠陥が発生した時点で樹脂(充填材)からの反射信号と欠陥部からの反射信号を区別することができる。
【0019】
【発明の効果】
以上説明したように本発明によれば、超音波による送受信を利用して、高電圧機器の絶縁診断を非破壊にて行なうことができ、また機器を停止することなく運転中の絶縁診断をすることができるのみならず、高感度信号検出器による確実な信号検出と、低周波と高周波の各帯域での測定による欠陥位置の標定及び認識が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態を説明する一例のためのブロック図。
【図2】コンピュータ5の細部ブロック図。
【図3】プローブ配置状態図。
【図4】プローブ配置状態図。
【図5】低周波による位置特定処理フローチャート。
【図6】高周波による劣化診断処理フローチャート。
【図7】反射信号波形図。
【符号の説明】
2 超音波発振器
3 プローブ
4 超音波周波数制御部
5 コンピュータ
5a データ積算部
5b マッチング処理部
5c 標準パターン部
5d データ登録部
5e 処理部
5f 初期設定部
6 モニタ
8 絶縁物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to equipment for performing insulation degradation diagnosis by ultrasound targeting the high voltage equipment.
[0002]
[Prior art]
There are various types of insulation diagnosis technology for high-voltage equipment. For example, partial discharge due to internal voids, cracks, peeling, etc. is measured, and the amount of discharge charge and frequency of occurrence are estimated. A method of measuring the position and measuring the position, a method of diagnosing moisture absorption and fouling deterioration by insulation resistance such as Meg value and leakage current, and a method of diagnosing heat deterioration, moisture absorption and fouling deterioration by measuring tanδ value and capacitance There are methods such as a thermometer with an alarm contact and an optical fiber thermometer to measure the surface temperature of the device and diagnose overheating due to overload and local short circuit, and a method of measuring dielectric strength by Ae withstanding voltage and impulse withstanding voltage tests.
[0003]
[Problems to be solved by the invention]
In such various insulation diagnoses, there are methods for detecting partial discharges and electromagnetic waves in detecting defects such as cracks. In general, such diagnoses are signal detection that is affected by noise, and noise. There is a problem that the influence of noise cannot be ignored, a problem that it is difficult to measure during operation, a problem that accurate defect location is difficult, and the method of capturing ultrasonic waves captures the generated ultrasonic waves during operation. The influence of noise is large, and only reception is performed.
[0004]
In view of the above problems, hit the detection of the defect, impact lightly possible defect position location even during operation of the noise accurate transmission, and to provide an automatic insulation degradation diagnosis equipment for receiving.
[0005]
[Means for Solving the Problems]
The invention specific items for achieving the above-described object are as follows.
(1) a probe that emits ultrasonic waves from an ultrasonic oscillator to a target insulator and receives a reflected wave from the target insulator;
The received signal from this probe is integrated as many times as noise can be removed by superposition, the envelope of this integrated data is compared with the standard pattern that is the envelope of normal data, and the data when the comparison result is `` abnormal '' It has a function of registering and changing the probe according to an initial setting value, and the ultrasonic wave emitted from the probe to the target insulator is first converted into an ultrasonic pulse of a low frequency band, and this low frequency band diagnosis A computer that issues a command to make an ultrasonic pulse in a high frequency band at a later abnormal point ;
By this computer command, the ultrasonic wave emitted from the probe to the target insulator is first converted into an ultrasonic pulse in a low frequency band, and an ultrasonic pulse in a high frequency band at an abnormal location after diagnosis in the low frequency band. An ultrasonic frequency control unit for outputting to the ultrasonic transmitter ;
It is characterized by having.
(2) In the above (1), the change of the probe includes a drive unit for moving along the target insulator.
(3) In the above (1), the probe is characterized by switching a plurality of probes arranged along the target insulator.
(4) In the above (1), in the insulation deterioration diagnosis in the high frequency band, the registered content of data when the comparison result is “abnormal” is displayed on a monitor.
(5) In the above (1), the ultrasonic frequency control unit takes into account the scattered wave due to Rayleigh scattering of the filler in the resin material and sets the frequency band of the ultrasonic wavelength to match the filler particle diameter. Features .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Here, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall block diagram of an example of an insulation deterioration diagnosis apparatus. Functionally, an ultrasonic oscillator 2 is driven by a voltage applied by a voltage application unit 1, and an object is detected by a probe 3 which is an ultrasonic transmission / reception probe. An ultrasonic pulse is emitted to the insulator. In this case, the ultrasonic frequency control unit 4 determines whether the ultrasonic frequency to be transmitted is a low frequency band or a high frequency band and issues a command to the ultrasonic oscillator 2 and is controlled by a command from the computer 5 described later. . Note that the emission frequency of the probe 3 is taken into the ultrasonic frequency control unit 4 to check whether or not the command band for the ultrasonic oscillator 2 matches the emission frequency band of the probe 3.
[0007]
The probe 3 receives a reflected pulse from the target insulator in addition to the transmission for emitting an ultrasonic pulse to the target insulator, and includes a high-sensitivity signal detector such as a boxcar integrator for noise removal. Therefore, reliable signal detection is possible without distinguishing between high and low frequencies.
[0008]
The computer 5 has the configuration shown in FIG. That is, a reception signal that is a reflected pulse of the target insulator from the probe 3 is captured, and integration is first performed by the data integration unit 5a. The integration of this data is performed in order to extract and superimpose data which is a received signal, for example, 100 times, extract a desired signal by this superposition, and remove noise. In other words, this is because the desired signal that does not change is to be inspected.
[0009]
Next, the signal data output from the data integration unit 5a is input to the matching processing unit 5b. The matching processing unit 5b performs envelope detection of the data from the data integration unit 5a to extract the envelope, and compares and determines the envelope with normal data. That is, the envelope of the received signal data of an insulator having no normal defect is stored in the standard pattern portion 5c, and a threshold value is determined by this envelope, and the matching processing portion 5b determines this threshold value and a certain period of time. The “normal” and “abnormal” are determined by comparing the envelope of the reflected pulse measured every time.
[0010]
When the judgment of the matching processing unit 5b is “abnormal”, the data is registered in the data registration unit 5d. After this registration, in order to receive a signal by the next probe 3, switching is performed in the case of a plurality of probes, and when the probe is movable, the processing unit 5e drives it. Even if “normal” instead of “abnormal”, the probe is switched or moved after the inspection with the probe 3 is completed.
The initial setting unit 5f connected to the processing unit 5e includes a moving distance of the probe 3 corresponding to the target insulator, that is, a moving distance corresponding to a range measurable by the probe 3, an ultrasonic frequency corresponding to the target insulator, Setting data to be input in advance for inspection such as whether the insulator is reinforced with fibers or contains a filler (this affects the selection of the ultrasonic frequency) is input.
When data is registered in the data registration unit 5d due to data “abnormality”, the content of “abnormality” is displayed on the monitor 6 in the diagnosis using the high frequency band described later.
[0011]
3 and 4 show the positional relationship between the probe 3 and the target insulator, FIG. 4 shows an example in which a plurality of probes are installed, and FIG. 3 shows an example in which the probe is moved. That is, in FIG. 4, a plurality of probes 3 (four in FIG. 4) are arranged along the insulator 8 covering the high voltage conductor 7, and in FIG. 3, the probes 3 are arranged so as to be movable along the insulator 8. . In the case of FIG. 3, a drive unit (not shown) is provided in the probe 3. Then, in the processing unit 5e of the computer 5 described above, a switching command for the plurality of probes 3 shown in FIG. 4 is output, and the movement amount of the probe 3 in FIG. 3 is output according to the movement data in the initial setting unit 5f. It will be. Here, the insulator 8 is a mold of, for example, a thermosetting resin or a thermoplastic resin, and in some cases, is a resin containing a filler or reinforced with fibers.
[0012]
By the command of the computer 5, in detail, the frequency band of the ultrasonic wave controlled by the ultrasonic control unit 4 in the diagnosis by the series of probes 3 by the processing unit 5e is divided into a low frequency band and a high frequency band, Of these, first, a rough defect diagnosis is performed using ultrasonic waves in a low frequency band (5 MHz to 10 MHz) having a deep penetration depth, and a defect is found and a position is roughly determined.
Next, when a defective portion is found, an ultrasonic wave in a high frequency band (10 MHz to 25 MHz) is emitted by the probe 3 at that position to accurately position the defect.
[0013]
The ultrasonic pulse emitted from the probe 3 has a low frequency and a high frequency as described above, but the ultrasonic wave monotonously attenuates in the reflected pulse after the ultrasonic pulse is emitted, and the envelope is transiently constant. The attenuation curve becomes. When there is a defect, as shown in FIG. 7 (FIG. 7 is a diagram of the relationship between the filler and the defect), there is a phenomenon in which the waveform protrudes, so the threshold is near the envelope. Normality / abnormality can be determined by determining the degree of protrusion of the waveform by determining the value. Such processing is performed by the matching processing unit 5b in FIG.
[0014]
FIG. 5 shows the position specifying process by the low frequency band. Here, X indicates the probe position, and Y indicates the number of readings. FIG. 5 shows an example of probe movement. In the case of switching, probe switching is performed. In FIG. 5, the position of the probe 3 is changed (steps S1 and S2), 100 reflected ultrasonic waves are captured (steps S3 to S6), and data conversion is performed by this envelope detection after integration (step S7). After the comparison between the data and the standard data (step S8), it is determined whether or not “abnormal” (step S9). If abnormal, it is input to the registration unit 5d (step S10). The position X is changed. Here, X> 50 may be a length of 50 cm, or may be a numerical value when divided into 50 (step S11).
[0015]
FIG. 6 shows deterioration diagnosis by high frequency, and the difference from FIG. 5 is that the probe position X is moved to the registration section where “abnormal” has occurred (step S12). The X value is output on a monitor (step S13).
[0016]
Abnormality detection by the envelope is as described above, but further, insulation diagnosis and defect image processing can be performed online by using a neural network and pattern recognition. That is, an abnormal model and its standard pattern are created by parallel processing using a neural network, and the pattern recognition and deterioration are diagnosed as a result of pattern recognition. In this imaging, a fine defect of about 10 μm or more can be obtained experimentally. Such processing allows for fully automatic diagnosis and imaging of the insulator.
[0017]
Next, even when a resin is used for the insulator 8, when a filler is contained, the difference in the material varies depending on the purpose and strength of the insulation. In the case of the insulator 8 made of resin in this example and containing a filler, for example, the insulator 8 having a filling amount of about 30% and a particle diameter of about 11 μm can be measured. That is, by detecting the traveling ultrasonic characteristics in the resin material containing the filler, it becomes possible to detect defects even for such a material. In other words, the Rayleigh scattering theory can be applied to the scattering of traveling ultrasonic waves by filler particles, and the intensity of the scattered wave when the filler particles are all spherical and the size is sufficiently smaller than the wavelength of the ultrasonic waves. Is expressed by the following equation [Formula 1].
[0018]
[Expression 1]
Figure 0003707188
Here, when calculating as θ = 180 °, that is, the backscattering intensity ψ bs , it is divided into a transparent region and an opaque region when ka = 1, so it is preferable to select the filler particle size so that ka <1. . In other words, if the filler particle and the ultrasonic wavelength are determined so that the filler particle diameter and the ultrasonic wavelength tend to be long for fine particles and short for larger particles, cracks as shown in FIG. When a defect such as this occurs, the reflected signal from the resin (filler) and the reflected signal from the defective portion can be distinguished.
[0019]
【The invention's effect】
As described above, according to the present invention, insulation diagnosis of high-voltage equipment can be performed nondestructively using transmission and reception using ultrasonic waves, and insulation diagnosis during operation can be performed without stopping the equipment. In addition, it is possible to reliably detect a signal by a high-sensitivity signal detector, and to determine and recognize a defect position by measurement in each of a low frequency band and a high frequency band.
[Brief description of the drawings]
FIG. 1 is a block diagram for an example illustrating an embodiment of the present invention.
FIG. 2 is a detailed block diagram of the computer 5;
FIG. 3 is a probe arrangement state diagram.
FIG. 4 is a probe arrangement state diagram.
FIG. 5 is a flowchart of position specifying processing by low frequency.
FIG. 6 is a flowchart of deterioration diagnosis processing using high frequencies.
FIG. 7 is a reflected signal waveform diagram.
[Explanation of symbols]
2 Ultrasonic oscillator 3 Probe 4 Ultrasonic frequency control unit 5 Computer 5a Data integration unit 5b Matching processing unit 5c Standard pattern unit 5d Data registration unit 5e Processing unit 5f Initial setting unit 6 Monitor 8 Insulator

Claims (5)

超音波発振器からの超音波を対象絶縁物に発射しこの対象絶縁物からの反射波を受信するプローブと、
このプローブによる受信信号を重畳によってノイズが除去可能な回数だけ積算し、この積算したデータの包絡線を正常データの包絡線である標準パターンと比較し、比較結果が「異常」の場合のデータを登録し、上記プローブの変更を初期設定値に応じて行なう機能を有し、前記対象絶縁物に前記プローブから発射する超音波を、まず低周波帯域の超音波パルスとし、この低周波帯域の診断後異常箇所にて高周波帯域の超音波パルスとする指令を出すコンピュータと、
このコンピュータの指令により、前記対象絶縁物に前記プローブから発射する超音波を、まず低周波帯域の超音波パルスとし、この低周波帯域の診断後異常箇所にて高周波帯域の超音波パルスとする指令を前記超音波発信器に出す超音波周波数制御部と、
を有する絶縁劣化診断装置。
A probe for emitting ultrasonic waves from an ultrasonic oscillator to a target insulator and receiving a reflected wave from the target insulator;
The received signal from this probe is integrated as many times as noise can be removed by superposition, the envelope of this integrated data is compared with the standard pattern that is the envelope of normal data, and the data when the comparison result is `` abnormal '' It has a function of registering and changing the probe according to an initial setting value, and the ultrasonic wave emitted from the probe to the target insulator is first converted into an ultrasonic pulse of a low frequency band, and this low frequency band diagnosis A computer that issues a command to make an ultrasonic pulse in a high frequency band at a later abnormal point ;
By this computer command, the ultrasonic wave emitted from the probe to the target insulator is first converted into an ultrasonic pulse in a low frequency band, and an ultrasonic pulse in a high frequency band at an abnormal location after diagnosis in the low frequency band. An ultrasonic frequency control unit for outputting to the ultrasonic transmitter ;
Insulation deterioration diagnosis device having
上記プローブには、対象絶縁物に沿って移動するための駆動部を備えた請求項1記載の絶縁劣化診断装置。  The insulation deterioration diagnosis apparatus according to claim 1, wherein the probe includes a drive unit for moving along the target insulator. 上記プローブの変更は、対象絶縁物に沿って複数個配置したプローブの切替による請求項1記載の絶縁劣化診断装置。  The insulation deterioration diagnosis apparatus according to claim 1, wherein the probe is changed by switching a plurality of probes arranged along the target insulator. 高周波帯域での絶縁劣化診断にあって、上記比較結果が「異常」の場合のデータの登録内容は、モニタにより表示するようにした請求項1記載の絶縁劣化診断装置。  The insulation deterioration diagnosis apparatus according to claim 1, wherein in the insulation deterioration diagnosis in a high frequency band, the registered content of data when the comparison result is "abnormal" is displayed on a monitor. 上記超音波周波数制御部では、樹脂材料内の充填材のレイリー散乱による散乱波を加味して上記充填材粒子径に見合う超音波波長の周波数帯域とした請求項1記載の絶縁劣化診断装置。  2. The insulation deterioration diagnosis apparatus according to claim 1, wherein the ultrasonic frequency control unit takes into account a scattered wave due to Rayleigh scattering of the filler in the resin material to obtain an ultrasonic wavelength frequency band suitable for the filler particle diameter.
JP06770397A 1997-03-21 1997-03-21 Insulation deterioration diagnosis device Expired - Lifetime JP3707188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06770397A JP3707188B2 (en) 1997-03-21 1997-03-21 Insulation deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06770397A JP3707188B2 (en) 1997-03-21 1997-03-21 Insulation deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH10260166A JPH10260166A (en) 1998-09-29
JP3707188B2 true JP3707188B2 (en) 2005-10-19

Family

ID=13352593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06770397A Expired - Lifetime JP3707188B2 (en) 1997-03-21 1997-03-21 Insulation deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP3707188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023478A1 (en) * 2001-09-11 2003-03-20 Pirelli & C. S.P.A. Method and apparatus for monitoring cable stranding
KR101012462B1 (en) * 2008-09-09 2011-02-08 한국전력공사 Insulation Diagnostic Method Using Ultrasonic Scanning for Epoxy Insulator of Mold Transformers
US20220018811A1 (en) * 2020-07-14 2022-01-20 Saudi Arabian Oil Company Machine learning method for the denoising of ultrasound scans of composite slabs and pipes

Also Published As

Publication number Publication date
JPH10260166A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US7555954B2 (en) In-track wheel inspection system
US6823736B1 (en) Nondestructive acoustic emission testing system using electromagnetic excitation and method for using same
US3929006A (en) Measuring article thickness ultrasonically
JP2015516072A (en) Industrial ultrasonic inspection system and method using phased array probe and flaw size measurement by distance-amplification-size
US8522615B1 (en) Simplified direct-reading porosity measurement apparatus and method
CA1096033A (en) System and method for residual tire life prediction by ultrasound
CN109490730A (en) Cable discharge detection method, device, storage medium and processor
CN102565186B (en) The nondestructive inspection of the structure in aircraft
CN108414623A (en) A kind of resistance spot welding quality evaluation method based on ultrasonic scanning imaging
JP3707188B2 (en) Insulation deterioration diagnosis device
CN101644745B (en) Method for dual-frequency ultrasonic detection of defect of generator stator insulator
CN105806449B (en) Method for detecting dielectric liquid level in closed porcelain cover through ultrasonic non-interventive method
US20180156728A1 (en) Characterization of multilayer structures
Jongen et al. Identification of partial discharge defects in transformer oil
CN111141825A (en) Ultrasonic time domain segmented imaging detection method for small-diameter steel pipe
CN116242261A (en) Coating thickness nondestructive testing method, equipment and storage medium
JP6274957B2 (en) Coupling monitoring method of oblique angle ultrasonic probe
KR20050016740A (en) A diagnostic method for a dangerous condition of electrical power equipment using abnormal signals
JPS6229023B2 (en)
KR100497501B1 (en) Detection Method for Defect of piston gallery and The apparatus used thereto
JP2676557B2 (en) Method for detecting internal defects in polymer
JPH09304364A (en) Method and device for determining flaw in subject for examination
JP4779574B2 (en) Polymer material degradation diagnosis method
CN117849560B (en) Valve side sleeve insulation monitoring method and system combining end screen voltage and partial discharge
JPS5940268B2 (en) Acoustic emission signal detection sensitivity testing method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

EXPY Cancellation because of completion of term