JP3706835B2 - Thin film photoelectric converter - Google Patents

Thin film photoelectric converter Download PDF

Info

Publication number
JP3706835B2
JP3706835B2 JP2002041893A JP2002041893A JP3706835B2 JP 3706835 B2 JP3706835 B2 JP 3706835B2 JP 2002041893 A JP2002041893 A JP 2002041893A JP 2002041893 A JP2002041893 A JP 2002041893A JP 3706835 B2 JP3706835 B2 JP 3706835B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
thin film
fine particles
conversion device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002041893A
Other languages
Japanese (ja)
Other versions
JP2003243676A (en
Inventor
裕子 多和田
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2002041893A priority Critical patent/JP3706835B2/en
Publication of JP2003243676A publication Critical patent/JP2003243676A/en
Application granted granted Critical
Publication of JP3706835B2 publication Critical patent/JP3706835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜光電変換装置に関し、特に薄膜光電変換装置の低コスト化と性能改善に関するものである。なお、本願明細書において、「結晶質」と「微結晶」の用語は、部分的に非晶質を含むものをも意味するものとする。
【0002】
【従来の技術】
近年、光電変換装置の低コスト化、高効率化を両立するために資源面での問題もほとんど無い薄膜光電変換装置が注目され、開発が精力的に行われている。薄膜光電変換装置の一つである非晶質シリコン太陽電池は、低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が期待できる。この非晶質シリコン太陽電池の変換効率を向上させるために、従来、太陽光の吸収量を増加させる方法として、光電変換層に入射する光の光路長を増加させる工夫がなされてきた。ガラス基板を使用した非晶質シリコン太陽電池の場合は、ガラス表面を研磨する方法、熱CVD法により酸化錫(SnO2)膜を形成する方法など、基板表面に凹凸を形成させることが行われている。(特開昭58−57756、特開平2−164077等)
【0003】
【発明が解決しようとする課題】
しかしながら、ガラスを研磨する方法では微細な凹凸を有する表面を得ることが難しく、また熱CVD法によりSnO2膜を形成する場合は、大きな設備が必要で、生産性が悪くコスト高になるという欠点がある。
【0004】
一方、薄膜光電変換装置の低コスト化と高効率化の両立を目指すという点では、太陽光の主波長領域(400〜1200nm)を有効に利用できる光電変換層材料が検討されており、近年、結晶質シリコンを含む薄膜、例えば低温で形成する多結晶シリコンや微結晶シリコン薄膜等を用いた光電変換装置の開発が精力的に行われている。これらの材料は、非晶質シリコンで利用される波長(〜800nm程度)に加えて、さらに長波長の光を利用することから、光電変換層に入射する光の光路長を増加させるための基板表面形状も従来非晶質シリコン光電変換装置用に最適化されてきた形状を改良する必要が生じてきた。しかし、熱CVD法により形成されるSnO2膜単独では、透明電極として必要な導電性と透過率を維持した状態で凹凸形状を大きく変えることは困難である。
【0005】
【課題を解決するための手段】
本発明者等は上記課題に鑑み鋭意検討を行った結果、ガラス基板の表面に形成する透明で均一な絶縁性微粒子によって微細な凹凸を形成することにより、光電変換効率が高く、しかも安価に薄膜光電変換装置を提供できることを見出した。即ち、本発明の一つの態様による薄膜光電変換装置は、ガラス基板上に順次堆積された絶縁性微粒子およびバインダーからなる薄膜、前面透明電極、少なくとも1つの結晶質光電変換ユニット、裏面電極を含み、絶縁性微粒子の平均粒径は0.1〜1.0μmであり、前記絶縁性微粒子およびバインダーからなる薄膜とこの上に形成される層の界面が凹凸形状を有しており、前記絶縁性微粒子およびバインダーからなる薄膜は、その80%以上の領域が絶縁性微粒子により占められており、かつ、概ね緻密な単微粒子層を形成していることを特徴としている。ここで、前記絶縁性微粒子およびバインダーからなる薄膜が、ガラス基板上にロールコート法により形成されてなる薄膜であることが好ましい。
【0006】
本発明のもう一つの態様による薄膜光電変換装置は、結晶質光電変換ユニットに加えて、非晶質光電変換ユニットをさらに含むことを特徴としている。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明において使用されるガラス基板は、光電変換層へより多くの太陽光を吸収させるために、できるだけ透明であることが好ましい。同様の意図から、太陽光が入射するガラス表面での光反射ロスを低減させるために無反射コーティングを行うと高効率化が図れる。
【0008】
本発明において使用される絶縁性微粒子は、屈折率がガラスに近い材料が好ましく、例えば、シリカ(SiO2)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化ジルコニウム(ZrO2)、酸化インジウム錫(ITO)またはフッ化マグネシウム(MgF2)等が用いられる。屈折率の値としては、1.4〜2.5のものが好ましい。材料の透明度やガラス基板との相性という点では、シリカ微粒子が特に好ましい。微粒子の平均粒径は、0.1〜1.0μmである。該範囲は、太陽光の主波長400〜1200nmの範囲に対応したものであり、0.1μm未満あるいは1.0μmを超えると光路長の増加効果が減少し、光線吸収効率が低下するので好ましくない。また、できるだけ微細な凹凸を均一に形成するために、微粒子の形状は球状であることが好ましい。
【0009】
絶縁性微粒子の薄膜をガラスの表面に形成させる方法は特に限定されないが、溶媒を含んだバインダー形成材料と共に微粒子を塗布する方法が望ましい。微粒子同士、および微粒子とガラスとの間の付着強度を向上させる役目を果たすバインダーは、長期信頼性や光電変換層形成条件(特に温度)に対する耐久性を考慮すると、無機材料が好ましい。具体的には、シリコン酸化物、アルミニウム酸化物、チタン酸化物、ジルコニウム酸化物およびタンタル酸化物のうち、少なくとも一つの金属酸化物が好ましい。特に、ガラス基板にシリカ微粒子を付着させる場合、同じシリコンを主成分とするシリコン酸化物をバインダーとして用いると、付着力が強く、透明性も良く、屈折率も基板や微粒子に近いため、好ましい。
【0010】
ガラス基板の表面に上記塗布液を塗布する方法としては、ディッピング法、スピンコート法、バーコート法、スプレー法、ダイコート法、ロールコート法、フローコート法等が挙げられるが、特に緻密な単微粒子層を形成するにはロールコート法が好適に用いられる。塗布操作が完了したら、直ちに塗布薄膜を加熱乾燥する。加熱乾燥の方法は、乾燥の初期を無風状態で乾燥し、溶媒が飛散したら400℃程度まで昇温し薄膜を形成させる。形成された、絶縁性微粒子およびバインダーからなる薄膜の80%以上の領域が絶縁性微粒子により占められており、凹凸形状を形成していることが好ましい。ここで言う、前記絶縁性微粒子およびバインダーからなる薄膜の80%以上の領域が絶縁性微粒子により占められているとは、ガラス基板に垂直な方向から見た時に、絶縁性微粒子とバインダーからなる薄膜の80%以上の面積に絶縁性微粒子が配置されていることを意味する。このような膜は、微粒子が緻密に並んでいるため、凹凸形状の均一性が良く、凹凸の高さも揃っている。従って、後に形成される薄膜光電変換ユニットの電気的または機械的な短絡を防止できる。
【0011】
その上に前面透明電極となる透明導電膜、たとえばAlドープされたZnOを形成し、光電変換装置用基板とする。透明電極の材料としては、Al、B、Ga等がドープされたZnOやITO、SnO2等の酸化物が用いられる。微粒子にて微細な凹凸がガラス基板上に形成されていることから、酸化物自体には特に凹凸は必要ない。従って、透明電極部の形成方法は、大きな設備を要する熱CVD法よりも簡便なスパッタ法や蒸着法、MOCVD法等を用いることができる。本基板を用いた薄膜光電変換装置は、基板上に形成された微小な凹凸により入射した太陽光の光路長を増加させ、吸収量を増大することにより、光電変換効率を向上できる(光閉じ込め効果)。加えて、微粒子の球面形状を反映し、丸みを帯びた電極の凹凸形状は、その上に形成される結晶質薄膜光電変換ユニットの電気的または機械的な短絡を防止し、歩留まりが向上する。
【0012】
本発明の第一の形態による薄膜光電変換装置の模式的な断面を図1に示す。この薄膜光電変換装置では、ガラス板1上に絶縁性微粒子およびバインダーからなる層10および透明導電膜11がこの順に形成された導電膜付きガラス基板上に、光電変換ユニット12が形成され、さらに裏面電極13が形成されている。
【0013】
光電変換層は図示したように単層としてもよいが、複数層を積層してもよい。光電変換ユニットとしては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましく、結晶質シリコン系薄膜や非晶質シリコン系薄膜を光電変換層としたユニットが挙げられる。特に約800nmまでしか吸収を有しない非晶質シリコン系薄膜に比べ、結晶質シリコン系薄膜は1200nmあたりまで吸収を有することから、光電変換層として好適である。また、「シリコン系」の材料には、非晶質または結晶質のシリコンに加え、非晶質または結晶質のシリコンカーバイドやシリコンゲルマニウムなど、シリコンを50%以上含む半導体材料も該当するものとする。
【0014】
非晶質シリコン系薄膜光電変換ユニットや結晶質シリコン系薄膜光電変換ユニットは、pin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン系層、光電変換層となる真性結晶質シリコン層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として非晶質シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。
【0015】
真性結晶質シリコン層はプラズマCVD法によって下地温度400℃以下の低温で形成することが好ましい。低温で形成することにより、結晶粒界や粒内における欠陥を終端させて不活性化させる水素原子を多く含む。具体的には、光電変換層の水素含有量は1〜30原子%の範囲内にある。この層は、導電型決定不純物原子の密度が1×1018cm-3以下である実質的に真性半導体である薄膜として形成される。さらに、真性結晶質シリコン層に含まれる結晶粒の多くは、前面電極側から柱状に延びて成長しており、その膜面に平行に(110)の優先配向面を有することが好ましい。真性結晶質シリコン層の膜厚は0.1μm以上10μm以下が好ましい。ただし、薄膜光電変換ユニットとしては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましいため、真性結晶質シリコン層に代えて、合金材料である非晶質シリコンカーバイド層(例えば10原子%以下の炭素を含有する非晶質シリコンからなる非晶質シリコンカーバイド層)や非晶質シリコンゲルマニウム層(例えば30原子%以下のゲルマニウムを含有する非晶質シリコンからなる非晶質シリコンゲルマニウム層)を形成してもよい。
【0016】
裏面電極としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニットと金属電極との間に、ITO、SnO2、ZnO等の導電性酸化物からなる層を形成しても構わない。
【0017】
本発明の光電変換装置のもう一つの形態は、図2に示されるような非晶質シリコン系光電変換ユニット20と結晶質シリコン系光電変換ユニット21を順に積層したタンデム型薄膜光電変換装置である。非晶質シリコン系光電変換層は約360〜800nmの光に感度を有し、結晶質シリコン系光電変換層はそれより長い約1200nmまでの光を光電変換することが可能であるため、光入射側から非晶質シリコン系光電変換ユニット、結晶質シリコン系光電変換ユニットの順で配置される光電変換装置は、入射光をより広い範囲で有効に利用可能なため、高効率の光電変換装置となる。
【0018】
【実施例】
以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。
【0019】
(実施例1)
実施例1として図1に示されるような薄膜光電変換装置を作製した。
厚み4mm、127mm角のガラス板1の片面にゾルゲル法によりシリカ微粒子膜10を形成した。コーティング液は、平均粒径が0.3μmの球状シリカ分散液、テトラエトキシシラン、水、エチルセロソルブおよび塩酸を混合したものを用いた。コーティング液を塗布した後、90℃で30分乾燥し、その後400℃で10分間加熱焼成して表面に微小な凹凸が形成されたガラス基板を得た。この基板の表面を走査型電子顕微鏡(SEM)で観察したところ、球状シリカが均一に分散され一層配列されており、シリカ微粒子でガラスの表面が90%以上被覆された緻密な凹凸が確認された。
【0020】
また、この基板の透過率を分光光度計で、球状シリカの積層されていない側から光を入射し、測定した。波長400nm〜1200nmの範囲で88%以上の透過率を示した。
【0021】
得られたガラス基板のシリカ微粒子が積層されている側に、スパッタ法でAlドープされたZnO膜を0.5μmの厚みで形成し、透明電極11とした。透明電極のシート抵抗は約9Ω/□であった。この透明電極の上に、厚さ15nmのp型微結晶シリコン層121、厚さ2μmの真性結晶質シリコン光電変換層122、及び厚さ15nmのn型微結晶シリコン層123からなる結晶質シリコン光電変換層ユニット12を順次プラズマCVD法で形成した。その後、裏面電極13として厚さ90nmのAlドープされたZnO131と厚さ300nmのAg132をスパッタ法にて順次形成した。
【0022】
以上のようにして得られたシリコン系薄膜光電変換装置(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.511V、短絡電流密度(Jsc)が27.3mA/cm2、曲線因子(F.F.)が69.3%、そして変換効率が9.7%であった。
【0023】
(実施例2)
実施例2においても、実施例1と同様にシリコン系薄膜光電変換装置を作製した。ただし、実施例1と異なるのは、ガラス基板として厚み1.1mmのものを用いた点である。シリカ微粒子付きガラス基板の透過率は、波長400nm〜1200nmの範囲で90%以上を示した。
【0024】
得られたシリコン系薄膜光電変換装置(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.520V、Jscが28.0mA/cm2、F.F.が69.1%、そして変換効率が10.1%であった。
【0025】
実施例1よりも変換効率が改善された理由は、ガラス基板の透過率が高く透明性が優れていたために、光電変換層へ吸収される太陽光の量が多くなり、Jscの向上につながったものと考えられる。従って、使用するガラス基板およびそれを構成するガラス板、微粒子、バインダーのそれぞれは、透過率の高いものが好ましい。
【0026】
(実施例3)
実施例3においても、実施例1と同様にシリコン系薄膜光電変換装置を作製した。ただし、実施例1と異なるのは、シリカ微粒子付きガラス基板上に形成する前面透明電極のZnO膜厚を0.8μmとした点である。透明電極のシート抵抗は約7.5Ω/□であった。
【0027】
得られたシリコン系薄膜光電変換装置(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.526V、Jscが27.0mA/cm2、F.F.が70.1%、そして変換効率が9.9%であった
実施例1よりもVocおよびF.F.が改善された理由は、厚めに形成したZnOにより、シリカ微粒子凹凸形状の特に凹部がなだらかになり、続いて堆積される結晶質シリコン層の膜質が改善されたためと考えられる。また、F.F.が改善されているもう一つの理由としては、出力特性の直列抵抗が低下していることより、透明電極のシート抵抗値が低いことに起因していると考えられる。従って、用いられる前面電極部は、透過率とともに抵抗が低いこと、そして、微粒子の凹凸形状をなだらかにする役割を有するものが好ましい。
【0028】
(実施例4)
実施例4においても、実施例1と同様にシリコン系薄膜光電変換装置を作製した。ただし、実施例1と異なるのは、シリカ微粒子の粒径が0.11μmのものを用いた点である。この場合も球状シリカが均一に分散され一層配列されており、シリカ微粒子でガラスの表面が90%以上被覆された緻密な凹凸が確認された。シリカ微粒子付きガラス基板の透過率は、波長400nm〜1200nmの範囲で88%以上を示した。
【0029】
得られたシリコン系薄膜光電変換装置(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.528V、Jscが26.2mA/cm2、F.F.が70.3%、そして変換効率が9.7%であった
実施例1よりもVocおよびF.F.が改善された理由は、シリカ微粒子の粒径が小さいことにより、前面透明電極上の凹凸形状がなだらかになり、続いて堆積される結晶質シリコン層の膜質が改善されたためと考えられる。しかし、Jscが若干低くなっていることから、実施例1ほど光が光電変換層内に閉じ込められていないと考えられる。
【0030】
(実施例5)
実施例1と同様の前面電極付きガラス基板を用いて図2に示すタンデム型薄膜光電変換装置を作製した。前面電極付きガラス基板上に、プラズマCVD法により、厚さ15nmのp型非晶質シリコン層201、厚さ300nmの真性非晶質シリコン光電変換層202、及び厚さ15nmのn型微結晶シリコン層203からなる非晶質シリコン光電変換層ユニット20を形成し、続いて実施例1と同様に結晶質シリコン光電変換層ユニット21を形成した。その後、裏面電極13として厚さ90nmのAlドープされたZnO131と厚さ300nmのAg132をスパッタ法にて順次形成し、タンデム型シリコン系薄膜光電変換装置を得た。得られたシリコン系薄膜光電変換装置(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが1.35V、Jscが12.2mA/cm2、F.F.が70.5%、そして変換効率が11.6%であった。
【0031】
(比較例1)
厚み4mm、127mm角のガラス板の片面に、熱CVD法にて厚さ800nmのピラミッド状SnO2膜を形成した。このSnO2膜の形状は、非晶質シリコン薄膜光電変換装置用に最適化された形状をしている。
【0032】
得られた透明電極付きガラス基板のシート抵抗は約8Ω/□であった。この透明電極の上に、実施例1と同様の厚さ15nmのp型微結晶シリコン層、厚さ2μmの真性結晶質シリコン光電変換層、及び厚さ15nmのn型微結晶シリコン層からなる結晶質シリコン光電変換層ユニットを順次プラズマCVD法で形成した。その後、裏面電極として厚さ90nmのAlドープされたZnOと厚さ300nmのAgをスパッタ法にて順次形成した。
【0033】
以上のようにして得られたシリコン系薄膜光電変換装置(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.490V、Jscが25.6mA/cm2、F.F.が62.3%、そして変換効率が7.8%であった。
【0034】
実施例1〜5と比較して、実施例ほどのJscや光電変換効率が得られていないことから、実施例の方が結晶質を含む薄膜光電変換装置に適した前面透明電極の凹凸であることを示している。
【0035】
(比較例2)
比較例2においては、比較例1で用いた透明電極付きガラス基板に厚さ50nmのZnO膜を形成した以外は同じ方法で結晶質シリコン系薄膜光電変換装置を作製した。
【0036】
以上のようにして得られたシリコン系薄膜光電変換装置(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.495V、Jscが26.0mA/cm2、曲線因子F.F.が63.7%、そして変換効率が8.2%であった。
【0037】
比較例1と比較してJscが若干改善されているのは、厚さ50nmのZnO膜により、結晶質シリコン層形成時のプラズマによって前面電極であるSnO2膜が還元されるのを防止することができたためと考えられる。しかし、実施例ほどのJscや光電変換効率が得られていないことから、実施例の方が結晶質を含む薄膜光電変換装置に適した前面透明電極の凹凸であることを示している。
【0038】
【発明の効果】
以上詳細に説明したように本発明によれば、製造工程が複雑でなく安価に製造可能な薄膜光電変換装置用基板を用いて、性能の改善された薄膜光電変換装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明に係る薄膜光電変換装置の一例を示す断面図。
【図2】 本発明に係るタンデム型薄膜光電変換装置の一例を示す断面図。
【符号の説明】
1 ガラス板
10 絶縁性微粒子およびバインダーからなる薄膜
11 前面透明電極
12 結晶質光電変換ユニット
121 p型層
122 真性結晶質光電変換層
123 n型層
13 裏面電極
131 導電性酸化物膜
132 金属層
20 非晶質光電変換ユニット
201 p型層
202 真性非晶質光電変換層
203 n型層
21 結晶質光電変換ユニット
211 p型層
212 真性結晶質光電変換層
213 n型層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film photoelectric conversion device, and more particularly to cost reduction and performance improvement of a thin film photoelectric conversion device. In the specification of the present application, the terms “crystalline” and “microcrystal” are intended to mean those partially containing an amorphous material.
[0002]
[Prior art]
In recent years, in order to achieve both cost reduction and high efficiency of a photoelectric conversion device, a thin film photoelectric conversion device that has almost no problem in terms of resources has attracted attention and has been vigorously developed. An amorphous silicon solar cell, which is one of thin film photoelectric conversion devices, can be formed on a large-area glass substrate or stainless steel substrate at a low temperature, so that cost reduction can be expected. In order to improve the conversion efficiency of this amorphous silicon solar cell, conventionally, as a method for increasing the amount of absorption of sunlight, contrivance has been made to increase the optical path length of light incident on the photoelectric conversion layer. In the case of an amorphous silicon solar cell using a glass substrate, unevenness is formed on the substrate surface, such as a method of polishing the glass surface or a method of forming a tin oxide (SnO 2 ) film by a thermal CVD method. ing. (Japanese Patent Laid-Open No. 58-57756, Japanese Patent Laid-Open No. 2-164077, etc.)
[0003]
[Problems to be solved by the invention]
However, it is difficult to obtain a surface with fine irregularities by the method of polishing glass, and when forming a SnO 2 film by a thermal CVD method, a large facility is required, resulting in poor productivity and high cost. There is.
[0004]
On the other hand, in terms of aiming to achieve both low cost and high efficiency of the thin film photoelectric conversion device, a photoelectric conversion layer material that can effectively use the main wavelength region (400 to 1200 nm) of sunlight has been studied. Photoelectric conversion devices using thin films containing crystalline silicon, such as polycrystalline silicon and microcrystalline silicon thin films formed at low temperatures, have been vigorously developed. Since these materials use light having a longer wavelength in addition to the wavelength used for amorphous silicon (about 800 nm), a substrate for increasing the optical path length of light incident on the photoelectric conversion layer It has become necessary to improve the shape of the surface which has been conventionally optimized for an amorphous silicon photoelectric conversion device. However, it is difficult for the SnO 2 film formed by the thermal CVD method alone to change the concavo-convex shape greatly while maintaining the conductivity and transmittance required for the transparent electrode.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations in view of the above problems, the present inventors have formed a thin film with high photoelectric conversion efficiency and low cost by forming fine irregularities with transparent and uniform insulating fine particles formed on the surface of the glass substrate. It has been found that a photoelectric conversion device can be provided. That is, a thin film photoelectric conversion device according to one embodiment of the present invention includes a thin film comprising insulating fine particles and a binder sequentially deposited on a glass substrate, a front transparent electrode, at least one crystalline photoelectric conversion unit, and a back electrode. The average particle diameter of the insulating fine particles is 0.1 to 1.0 μm, and the interface between the thin film composed of the insulating fine particles and the binder and the layer formed thereon has an uneven shape, and the insulating fine particles In addition, the thin film made of the binder is characterized in that 80% or more of the thin film is occupied by insulating fine particles and that a dense single fine particle layer is formed . Here, the thin film made of the insulating fine particles and the binder is preferably a thin film formed on a glass substrate by a roll coating method .
[0006]
The thin film photoelectric conversion device according to another aspect of the present invention is characterized by further including an amorphous photoelectric conversion unit in addition to the crystalline photoelectric conversion unit.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The glass substrate used in the present invention is preferably as transparent as possible in order to absorb more sunlight into the photoelectric conversion layer. From the same intention, high efficiency can be achieved by applying anti-reflection coating in order to reduce light reflection loss on the glass surface on which sunlight is incident.
[0008]
The insulating fine particles used in the present invention are preferably made of a material having a refractive index close to that of glass. For example, silica (SiO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ). ), Indium tin oxide (ITO), magnesium fluoride (MgF 2 ), or the like. The refractive index is preferably 1.4 to 2.5. Silica fine particles are particularly preferable in terms of transparency of the material and compatibility with the glass substrate. The average particle diameter of the fine particles is 0.1 to 1.0 μm. This range corresponds to the range of the main wavelength of sunlight of 400 to 1200 nm, and if it is less than 0.1 μm or exceeds 1.0 μm, the effect of increasing the optical path length is reduced and the light absorption efficiency is lowered, which is not preferable. . Further, in order to uniformly form as fine as possible unevenness, the shape of the fine particles is preferably spherical.
[0009]
A method for forming a thin film of insulating fine particles on the surface of glass is not particularly limited, but a method of applying fine particles together with a binder-forming material containing a solvent is desirable. In view of long-term reliability and durability against photoelectric conversion layer formation conditions (particularly temperature), the binder that plays the role of improving the adhesion strength between the fine particles and between the fine particles and the glass is preferably an inorganic material. Specifically, at least one metal oxide is preferable among silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, and tantalum oxide. In particular, when silica fine particles are attached to a glass substrate, it is preferable to use silicon oxide containing silicon as a main component as a binder because it has high adhesion, good transparency, and a refractive index close to that of the substrate or fine particles.
[0010]
Examples of the method for applying the coating solution on the surface of the glass substrate include a dipping method, a spin coating method, a bar coating method, a spray method, a die coating method, a roll coating method, and a flow coating method. A roll coating method is preferably used for forming the layer. When the coating operation is completed, the coated thin film is immediately dried by heating. In the heat drying method, the initial stage of drying is performed in a windless state, and when the solvent is scattered, the temperature is raised to about 400 ° C. to form a thin film. It is preferable that 80% or more of the formed thin film composed of the insulating fine particles and the binder is occupied by the insulating fine particles to form an uneven shape. Here, 80% or more of the thin film composed of the insulating fine particles and the binder is occupied by the insulating fine particles when viewed from a direction perpendicular to the glass substrate. This means that the insulating fine particles are arranged in an area of 80% or more of the above. In such a film, fine particles are densely arranged, so that the uneven shape is uniform and the height of the unevenness is uniform. Therefore, an electrical or mechanical short circuit of a thin film photoelectric conversion unit formed later can be prevented.
[0011]
A transparent conductive film to be a front transparent electrode, for example, Al-doped ZnO is formed thereon to form a photoelectric conversion device substrate. As a material for the transparent electrode, an oxide such as ZnO doped with Al, B, Ga or the like, ITO or SnO 2 is used. Since fine irregularities are formed on the glass substrate with fine particles, the oxide itself does not require any irregularities. Therefore, a sputtering method, a vapor deposition method, a MOCVD method, or the like that is simpler than a thermal CVD method that requires a large facility can be used as a method for forming the transparent electrode portion. The thin film photoelectric conversion device using this substrate can improve the photoelectric conversion efficiency by increasing the optical path length of the incident sunlight due to minute irregularities formed on the substrate and increasing the amount of absorption (light confinement effect). ). In addition, the uneven shape of the rounded electrode reflecting the spherical shape of the fine particles prevents an electrical or mechanical short circuit of the crystalline thin film photoelectric conversion unit formed thereon, thereby improving the yield.
[0012]
A schematic cross section of the thin film photoelectric conversion device according to the first embodiment of the present invention is shown in FIG. In this thin-film photoelectric conversion device, a photoelectric conversion unit 12 is formed on a glass substrate with a conductive film in which a layer 10 made of insulating fine particles and a binder and a transparent conductive film 11 are formed in this order on a glass plate 1, and a back surface. An electrode 13 is formed.
[0013]
The photoelectric conversion layer may be a single layer as illustrated, or a plurality of layers may be laminated. As a photoelectric conversion unit, what has absorption in the main wavelength range (400-1200 nm) of sunlight is preferable, and the unit which used the crystalline silicon type thin film and the amorphous silicon type thin film as the photoelectric conversion layer is mentioned. In particular, a crystalline silicon-based thin film has absorption up to about 1200 nm compared to an amorphous silicon-based thin film having absorption only up to about 800 nm, and thus is suitable as a photoelectric conversion layer. In addition to amorphous or crystalline silicon, “silicon-based” materials also include semiconductor materials containing 50% or more of silicon, such as amorphous or crystalline silicon carbide and silicon germanium. .
[0014]
The amorphous silicon-based thin film photoelectric conversion unit and the crystalline silicon-based thin film photoelectric conversion unit are formed by stacking semiconductor layers by plasma CVD in the order of the pin type. Specifically, for example, a p-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity type determining impurity atom, an intrinsic crystalline silicon layer serving as a photoelectric conversion layer, and a conductivity type determining impurity atom An n-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of certain phosphorus may be deposited in this order. However, these layers are not limited to the above. For example, an amorphous silicon film may be used as the p-type layer. Further, an alloy material such as amorphous or microcrystalline silicon carbide or silicon germanium may be used for the p-type layer. Note that the film thickness of the conductive (p-type, n-type) microcrystalline silicon-based layer is preferably 3 nm to 100 nm, and more preferably 5 nm to 50 nm.
[0015]
The intrinsic crystalline silicon layer is preferably formed by a plasma CVD method at a base temperature of 400 ° C. or lower. By forming it at a low temperature, it contains many hydrogen atoms that terminate and inactivate defects in grain boundaries and grains. Specifically, the hydrogen content of the photoelectric conversion layer is in the range of 1 to 30 atomic%. This layer is formed as a thin film that is substantially an intrinsic semiconductor having a conductivity type determining impurity atom density of 1 × 10 18 cm −3 or less. Further, most of the crystal grains contained in the intrinsic crystalline silicon layer are grown in a columnar shape from the front electrode side, and preferably have a (110) preferential orientation plane parallel to the film surface. The film thickness of the intrinsic crystalline silicon layer is preferably 0.1 μm or more and 10 μm or less. However, since the thin film photoelectric conversion unit preferably has absorption in the main wavelength region (400 to 1200 nm) of sunlight, instead of the intrinsic crystalline silicon layer, an amorphous silicon carbide layer (for example, an alloy material) Amorphous silicon carbide layer made of amorphous silicon containing carbon of 10 atomic% or less) or amorphous silicon germanium layer (for example, amorphous silicon made of amorphous silicon containing 30 atomic% or less of germanium) A germanium layer) may be formed.
[0016]
As the back electrode, it is preferable to form at least one metal layer made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. A layer made of a conductive oxide such as ITO, SnO 2 , or ZnO may be formed between the photoelectric conversion unit and the metal electrode.
[0017]
Another form of the photoelectric conversion device of the present invention is a tandem thin film photoelectric conversion device in which an amorphous silicon photoelectric conversion unit 20 and a crystalline silicon photoelectric conversion unit 21 are sequentially stacked as shown in FIG. . The amorphous silicon photoelectric conversion layer is sensitive to light of about 360 to 800 nm, and the crystalline silicon photoelectric conversion layer can photoelectrically convert light up to about 1200 nm longer than that. Since the photoelectric conversion device arranged in this order from the amorphous silicon photoelectric conversion unit and the crystalline silicon photoelectric conversion unit can effectively use incident light in a wider range, Become.
[0018]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following description examples, unless the meaning is exceeded.
[0019]
(Example 1)
As Example 1, a thin film photoelectric conversion device as shown in FIG.
A silica fine particle film 10 was formed on one surface of a glass plate 1 having a thickness of 4 mm and a 127 mm square by a sol-gel method. The coating liquid used was a mixture of a spherical silica dispersion having an average particle diameter of 0.3 μm, tetraethoxysilane, water, ethyl cellosolve and hydrochloric acid. After coating the coating solution, it was dried at 90 ° C. for 30 minutes, and then heated and fired at 400 ° C. for 10 minutes to obtain a glass substrate having fine irregularities formed on the surface. When the surface of this substrate was observed with a scanning electron microscope (SEM), spherical silica was uniformly dispersed and arranged in a single layer, and fine irregularities in which 90% or more of the glass surface was covered with silica fine particles were confirmed. .
[0020]
Further, the transmittance of the substrate was measured with a spectrophotometer by making light incident from the side where the spherical silica was not laminated. A transmittance of 88% or more was exhibited in the wavelength range of 400 nm to 1200 nm.
[0021]
An Al-doped ZnO film having a thickness of 0.5 μm was formed by sputtering on the side of the obtained glass substrate on which the silica fine particles were laminated to form a transparent electrode 11. The sheet resistance of the transparent electrode was about 9Ω / □. On this transparent electrode, a crystalline silicon photoelectric layer composed of a p-type microcrystalline silicon layer 121 having a thickness of 15 nm, an intrinsic crystalline silicon photoelectric conversion layer 122 having a thickness of 2 μm, and an n-type microcrystalline silicon layer 123 having a thickness of 15 nm. The conversion layer unit 12 was sequentially formed by a plasma CVD method. Thereafter, Al-doped ZnO 131 having a thickness of 90 nm and Ag 132 having a thickness of 300 nm were sequentially formed as the back electrode 13 by sputtering.
[0022]
When the silicon thin film photoelectric conversion device (light-receiving area 1 cm 2 ) obtained as described above was irradiated with AM1.5 light at a light amount of 100 mW / cm 2 and the output characteristics were measured, the open circuit voltage (Voc) was The short-circuit current density (Jsc) was 27.3 mA / cm 2 , the fill factor (FF) was 69.3%, and the conversion efficiency was 9.7%.
[0023]
(Example 2)
Also in Example 2, a silicon-based thin film photoelectric conversion device was produced in the same manner as in Example 1. However, the difference from Example 1 is that a glass substrate having a thickness of 1.1 mm was used. The transmittance of the glass substrate with silica fine particles was 90% or more in the wavelength range of 400 nm to 1200 nm.
[0024]
When the obtained silicon-based thin film photoelectric conversion device (light-receiving area 1 cm 2 ) was irradiated with AM 1.5 light at a light quantity of 100 mW / cm 2 and the output characteristics were measured, Voc was 0.520 V and Jsc was 28.0 mA. / Cm 2 , F.I. F. Of 69.1% and a conversion efficiency of 10.1%.
[0025]
The reason why the conversion efficiency was improved as compared with Example 1 was that the transmittance of the glass substrate was high and the transparency was excellent, so that the amount of sunlight absorbed into the photoelectric conversion layer increased, leading to an improvement in Jsc. It is considered a thing. Therefore, it is preferable that the glass substrate to be used and the glass plate, fine particles, and binder constituting the glass substrate have high transmittance.
[0026]
(Example 3)
Also in Example 3, a silicon-based thin film photoelectric conversion device was produced in the same manner as in Example 1. However, the difference from Example 1 is that the ZnO film thickness of the front transparent electrode formed on the glass substrate with silica fine particles was 0.8 μm. The sheet resistance of the transparent electrode was about 7.5Ω / □.
[0027]
When the obtained silicon-based thin film photoelectric conversion device (light-receiving area 1 cm 2 ) was irradiated with AM 1.5 light at a light amount of 100 mW / cm 2 and the output characteristics were measured, Voc was 0.526 V and Jsc was 27.0 mA. / Cm 2 , F.I. F. Of Voc and F. of Example 1 which was 70.1% and the conversion efficiency was 9.9%. F. It is considered that the reason why the thickness of the crystalline silicon layer deposited by the thickly formed ZnO was that the concave portions of the silica fine particles became smooth, and the film quality of the crystalline silicon layer deposited subsequently was improved. F.F. F. Another reason for the improvement is that the sheet resistance value of the transparent electrode is low because the series resistance of the output characteristics is reduced. Therefore, it is preferable that the front electrode part to be used has a low resistance as well as a transmittance, and has a role of smoothing the uneven shape of the fine particles.
[0028]
(Example 4)
In Example 4 as well, a silicon-based thin film photoelectric conversion device was produced in the same manner as in Example 1. However, the difference from Example 1 is that silica particles having a particle diameter of 0.11 μm were used. Also in this case, spherical silica was uniformly dispersed and arranged in a single layer, and dense irregularities in which 90% or more of the glass surface was covered with silica fine particles were confirmed. The transmittance of the glass substrate with silica fine particles was 88% or more in the wavelength range of 400 nm to 1200 nm.
[0029]
When the obtained silicon-based thin film photoelectric conversion device (light-receiving area 1 cm 2 ) was irradiated with AM 1.5 light at a light amount of 100 mW / cm 2 and the output characteristics were measured, Voc was 0.528 V and Jsc was 26.2 mA. / Cm 2 , F.I. F. Was 70.3%, and Voc and F. were higher than those of Example 1 in which the conversion efficiency was 9.7%. F. The reason for the improvement is considered to be that the unevenness shape on the front transparent electrode became gentle due to the small particle size of the silica fine particles, and the film quality of the crystalline silicon layer deposited subsequently was improved. However, since Jsc is slightly low, it is considered that light is not confined in the photoelectric conversion layer as in Example 1.
[0030]
(Example 5)
A tandem-type thin film photoelectric conversion device shown in FIG. 2 was produced using the same glass substrate with a front electrode as in Example 1. On a glass substrate with a front electrode, a p-type amorphous silicon layer 201 having a thickness of 15 nm, an intrinsic amorphous silicon photoelectric conversion layer 202 having a thickness of 300 nm, and an n-type microcrystalline silicon having a thickness of 15 nm are formed by plasma CVD. An amorphous silicon photoelectric conversion layer unit 20 composed of the layer 203 was formed, and then a crystalline silicon photoelectric conversion layer unit 21 was formed in the same manner as in Example 1. Thereafter, Al-doped ZnO 131 having a thickness of 90 nm and Ag 132 having a thickness of 300 nm were sequentially formed as the back electrode 13 by sputtering to obtain a tandem silicon thin film photoelectric conversion device. When the obtained silicon-based thin film photoelectric conversion device (light-receiving area 1 cm 2 ) was irradiated with AM 1.5 light at a light quantity of 100 mW / cm 2 and the output characteristics were measured, Voc was 1.35 V and Jsc was 12.2 mA. / Cm 2 , F.I. F. Was 70.5%, and the conversion efficiency was 11.6%.
[0031]
(Comparative Example 1)
A pyramidal SnO 2 film having a thickness of 800 nm was formed on one surface of a glass plate having a thickness of 4 mm and a 127 mm square by a thermal CVD method. The SnO 2 film has a shape optimized for an amorphous silicon thin film photoelectric conversion device.
[0032]
The sheet resistance of the obtained glass substrate with a transparent electrode was about 8Ω / □. On this transparent electrode, a crystal composed of a p-type microcrystalline silicon layer having a thickness of 15 nm, an intrinsic crystalline silicon photoelectric conversion layer having a thickness of 2 μm, and an n-type microcrystalline silicon layer having a thickness of 15 nm, as in Example 1. Quality silicon photoelectric conversion layer units were sequentially formed by plasma CVD. Thereafter, Al-doped ZnO having a thickness of 90 nm and Ag having a thickness of 300 nm were sequentially formed as a back electrode by a sputtering method.
[0033]
When the silicon-based thin film photoelectric conversion device (light-receiving area 1 cm 2 ) obtained as described above was irradiated with AM 1.5 light at a light amount of 100 mW / cm 2 and the output characteristics were measured, Voc was 0.490 V, Jsc is 25.6 mA / cm 2 , F.I. F. Was 62.3%, and the conversion efficiency was 7.8%.
[0034]
Compared to Examples 1 to 5, Jsc and photoelectric conversion efficiency as high as those of Examples are not obtained, and therefore, the examples are more uneven on the front transparent electrode suitable for a thin film photoelectric conversion device containing crystalline material. It is shown that.
[0035]
(Comparative Example 2)
In Comparative Example 2, a crystalline silicon-based thin film photoelectric conversion device was produced in the same manner except that a 50 nm thick ZnO film was formed on the glass substrate with a transparent electrode used in Comparative Example 1.
[0036]
When the silicon-based thin film photoelectric conversion device (light-receiving area 1 cm 2 ) obtained as described above was irradiated with AM 1.5 light at a light amount of 100 mW / cm 2 and the output characteristics were measured, Voc was 0.495 V, Jsc is 26.0 mA / cm 2 , fill factor F.V. F. Of 63.7% and a conversion efficiency of 8.2%.
[0037]
Compared with Comparative Example 1, Jsc is slightly improved because the ZnO film having a thickness of 50 nm prevents the SnO 2 film, which is the front electrode, from being reduced by the plasma during the formation of the crystalline silicon layer. This is thought to be due to this. However, since Jsc and photoelectric conversion efficiency as in the example are not obtained, it is shown that the example is a concavity and convexity of the front transparent electrode suitable for the thin film photoelectric conversion device containing a crystalline substance.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a thin film photoelectric conversion device with improved performance can be provided by using a substrate for a thin film photoelectric conversion device that is not complicated in manufacturing process and can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of a thin film photoelectric conversion device according to the present invention.
FIG. 2 is a cross-sectional view showing an example of a tandem thin film photoelectric conversion device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass plate 10 Thin film 11 which consists of insulating fine particles and binder 11 Front transparent electrode 12 Crystalline photoelectric conversion unit 121 p-type layer 122 Intrinsic crystalline photoelectric conversion layer 123 n-type layer 13 Back electrode 131 Conductive oxide film 132 Metal layer 20 Amorphous photoelectric conversion unit 201 p-type layer 202 intrinsic amorphous photoelectric conversion layer 203 n-type layer 21 crystalline photoelectric conversion unit 211 p-type layer 212 intrinsic crystalline photoelectric conversion layer 213 n-type layer

Claims (7)

ガラス基板上に順次堆積された絶縁性微粒子およびバインダーからなる薄膜、前面透明電極、少なくとも1つの結晶質光電変換ユニット、裏面電極を含み、前記絶縁性微粒子の平均粒径が0.1〜1.0μmであり、前記絶縁性微粒子およびバインダーからなる薄膜とこの上に形成される層の界面が凹凸形状を有しており、前記絶縁性微粒子およびバインダーからなる薄膜は、その80%以上の領域が絶縁性微粒子により占められており、かつ、概ね緻密な単微粒子層を形成していることを特徴とする薄膜光電変換装置。A thin film comprising insulating fine particles and a binder sequentially deposited on a glass substrate, a front transparent electrode, at least one crystalline photoelectric conversion unit, and a back electrode, wherein the insulating fine particles have an average particle size of 0.1 to 1. The interface between the thin film composed of the insulating fine particles and the binder and the layer formed thereon has an uneven shape, and the thin film composed of the insulating fine particles and the binder has an area of 80% or more. A thin film photoelectric conversion device characterized in that it is occupied by insulating fine particles and forms a substantially fine single fine particle layer . 前記絶縁性微粒子およびバインダーからなる薄膜が、ガラス基板上にロールコート法により形成されてなる薄膜であることを特徴とする請求項1に記載の薄膜光電変換装置 The thin film photoelectric conversion device according to claim 1, wherein the thin film composed of the insulating fine particles and the binder is a thin film formed on a glass substrate by a roll coating method . 前記バインダーがシリカからなることを特徴とする請求項1または2に記載の薄膜光電変換装置。  The thin film photoelectric conversion device according to claim 1, wherein the binder is made of silica. 前記絶縁性微粒子は透明でかつ1.4〜2.5の屈折率を有する材料であることを特徴とする請求項1から3の各項に記載の薄膜光電変換装置。  4. The thin film photoelectric conversion device according to claim 1, wherein the insulating fine particles are transparent and have a refractive index of 1.4 to 2.5. 前記透明電極は酸化亜鉛、酸化錫、またはインジウム錫酸化物の透明導電性酸化物を少なくとも1つ含むことを特徴とする請求項1から4の各項に記載の薄膜光電変換装置。  5. The thin film photoelectric conversion device according to claim 1, wherein the transparent electrode includes at least one transparent conductive oxide of zinc oxide, tin oxide, or indium tin oxide. 6. 前記裏面電極は順に積層された酸化物透明導電層と金属層とを含むことを特徴とする請求項1から5の各項に記載の薄膜光電変換装置。  6. The thin film photoelectric conversion device according to claim 1, wherein the back electrode includes an oxide transparent conductive layer and a metal layer that are sequentially stacked. 前記結晶質光電変換ユニットに加えて、非晶質光電変換ユニットの少なくとも1つを積層していることを特徴とする請求項1から6の各項に記載の薄膜光電変換装置。  The thin film photoelectric conversion device according to any one of claims 1 to 6, wherein at least one of amorphous photoelectric conversion units is stacked in addition to the crystalline photoelectric conversion unit.
JP2002041893A 2002-02-19 2002-02-19 Thin film photoelectric converter Expired - Fee Related JP3706835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041893A JP3706835B2 (en) 2002-02-19 2002-02-19 Thin film photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041893A JP3706835B2 (en) 2002-02-19 2002-02-19 Thin film photoelectric converter

Publications (2)

Publication Number Publication Date
JP2003243676A JP2003243676A (en) 2003-08-29
JP3706835B2 true JP3706835B2 (en) 2005-10-19

Family

ID=27782172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041893A Expired - Fee Related JP3706835B2 (en) 2002-02-19 2002-02-19 Thin film photoelectric converter

Country Status (1)

Country Link
JP (1) JP3706835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235687A (en) * 2007-03-22 2008-10-02 Kaneka Corp Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device
WO2009142156A1 (en) 2008-05-23 2009-11-26 株式会社カネカ Substrate for thin-film photoelectric conversion device, thin-film photoelectric conversion including the same, and method for producing substrate for thin-film photoelectric conversion device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792146B2 (en) * 2004-02-25 2011-10-12 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
WO2005093854A1 (en) * 2004-03-25 2005-10-06 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2005311292A (en) * 2004-03-25 2005-11-04 Kaneka Corp Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
JP2006121011A (en) * 2004-10-25 2006-05-11 Kaneka Corp Method for processing transparent layer and thin-film photoelectric converting device using same
WO2006046397A1 (en) * 2004-10-28 2006-05-04 Kaneka Corporation Substrate for thin film photoelectric converter and integrated thin film photoelectric converter employing it
JP4959127B2 (en) * 2004-10-29 2012-06-20 三菱重工業株式会社 Photoelectric conversion device and substrate for photoelectric conversion device
JP4634129B2 (en) 2004-12-10 2011-02-16 三菱重工業株式会社 Light scattering film and optical device using the same
KR100728194B1 (en) * 2005-11-11 2007-06-13 삼성에스디아이 주식회사 Dye-sensitized solar cell and method for producing same
JP4989549B2 (en) * 2007-08-24 2012-08-01 三洋電機株式会社 Solar cell and solar cell module
DE102009006718A1 (en) * 2009-01-29 2010-08-12 Schott Ag Thin film solar cell
JP2011029288A (en) * 2009-07-22 2011-02-10 Toray Eng Co Ltd Substrate provided with thin film, and solar cell using the substrate
JP2011029289A (en) * 2009-07-22 2011-02-10 Toray Eng Co Ltd Substrate provided with thin film, and solar cell using the substrate
KR101032433B1 (en) * 2010-06-14 2011-05-03 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
KR101033286B1 (en) * 2010-06-14 2011-05-09 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
FI20105982A0 (en) * 2010-09-23 2010-09-23 Beneq Oy SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND ITS PRODUCTION METHOD
KR101209966B1 (en) * 2011-01-21 2012-12-07 엘지이노텍 주식회사 Solar cell and method of fabricating the same
JP5650057B2 (en) * 2011-05-31 2015-01-07 株式会社カネカ Transparent electrode substrate and manufacturing method thereof
EP2728623B1 (en) 2011-06-30 2019-05-01 Kaneka Corporation Thin film solar cell and method for manufacturing same
JP2013102064A (en) * 2011-11-09 2013-05-23 Toray Ind Inc Thin-film solar cell substrate
WO2014185339A1 (en) 2013-05-17 2014-11-20 日本碍子株式会社 Photovoltaic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235687A (en) * 2007-03-22 2008-10-02 Kaneka Corp Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device
WO2009142156A1 (en) 2008-05-23 2009-11-26 株式会社カネカ Substrate for thin-film photoelectric conversion device, thin-film photoelectric conversion including the same, and method for producing substrate for thin-film photoelectric conversion device

Also Published As

Publication number Publication date
JP2003243676A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
JP3706835B2 (en) Thin film photoelectric converter
JP5600660B2 (en) Thin film solar cell substrate and method for manufacturing thin film solar cell
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
US8203073B2 (en) Front electrode for use in photovoltaic device and method of making same
US8022291B2 (en) Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
US7964788B2 (en) Front electrode for use in photovoltaic device and method of making same
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
US20080105302A1 (en) Front electrode for use in photovoltaic device and method of making same
US20090194155A1 (en) Front electrode having etched surface for use in photovoltaic device and method of making same
US20080302414A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
US20090194157A1 (en) Front electrode having etched surface for use in photovoltaic device and method of making same
JP2005311292A (en) Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JPWO2006046397A1 (en) Substrate for thin film photoelectric conversion device and integrated thin film photoelectric conversion device using the same
JP2002222972A (en) Laminated solar battery
WO2008063305A2 (en) Front electrode for use in photovoltaic device and method of making same
JP2000058892A (en) Silicon based thin film photoelectric converter
JP5490031B2 (en) Photovoltaic device and photovoltaic module
JP5650057B2 (en) Transparent electrode substrate and manufacturing method thereof
JP3253449B2 (en) Method for manufacturing photovoltaic device
JP2010103347A (en) Thin film photoelectric converter
WO2013018287A1 (en) Photovoltaic device
JP2000252499A (en) Manufacture of thin-film photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Ref document number: 3706835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees