JP3706060B2 - Method for correcting black defect in mask for EUV lithography - Google Patents

Method for correcting black defect in mask for EUV lithography Download PDF

Info

Publication number
JP3706060B2
JP3706060B2 JP2001357534A JP2001357534A JP3706060B2 JP 3706060 B2 JP3706060 B2 JP 3706060B2 JP 2001357534 A JP2001357534 A JP 2001357534A JP 2001357534 A JP2001357534 A JP 2001357534A JP 3706060 B2 JP3706060 B2 JP 3706060B2
Authority
JP
Japan
Prior art keywords
defect
ion beam
mask
black
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357534A
Other languages
Japanese (ja)
Other versions
JP2003158063A (en
Inventor
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2001357534A priority Critical patent/JP3706060B2/en
Publication of JP2003158063A publication Critical patent/JP2003158063A/en
Application granted granted Critical
Publication of JP3706060B2 publication Critical patent/JP3706060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はEUVリソグラフィー用の反射マスクの黒欠陥修正方法に関するものである。
【0002】
【従来の技術】
現在KrFやArFエキシマレーザを用いた光学式の投影露光装置がウェーハへのパターン転写に用いられている。0.10μmルールまでは光学式の投影露光装置で対応可能であるが、0.07μmルール以降では解像限界に達するため、電子線描画装置(EB)の直描やセルプロジェクション以外に電子線投影リソグラフィ(Electron beam Projection Lithography、EPL)や低エネルギー電子線投影リソグラフィ(Low Energy Electron beam Projection Lithography、LEEPL)やイオンビーム投影リソグラフィ(Ion beam Projection Lithography、IPL)や軟X線縮小露光(Extreme Ultra Violet Lithography、EUVL)のような新しい転写方法が提案されている。EUVLは波長約13nmの軟X線を反射光学系で縮小して露光する技術で、紫外線露光の短波長化の極限と見なされ、二世代以上に渡って利用できるリソグラフィ技術として最近特に注目を集めている。
技術で、紫外線露光の短波長化の極限と見なされ、二世代以上に渡って利用できるリソグラフィ技術として最近特に注目を集めている。
【0003】
EUVLではMo/Si多層膜からなる反射マスク上にTaNやTiN等の吸収体パターンを形成したものやMo/Si多層膜をパターンに応じてエッチングしたものが用いられている。EUVLマスクにおいてもフォトマスク同様、マスクフォトマスクに欠陥が存在すると、欠陥がウェーハに転写されて歩留まりを減少する原因となるので、欠陥が存在する場合にはウェーハへ転写する前に欠陥修正装置により欠陥修正処理を行わなければならない。
【0004】
吸収体を有するタイプのEUVLマスクの欠陥修正に関してはイオンビームによる修正方法が報告されている(J. Vac. Sci. Technol. B18 3216(2000))。この報告ではEUVマスクにイオンビームによるダメージを低減するために、吸収体とMo/Si多層膜の間にRuやSiO2等のバッファーレイヤーが設けられている。黒欠陥はCl2やBr2によるガスアシストエッチングにより除去され、白欠陥はW(CO)6のFIB-CVDにより吸収体膜を形成することで修正されている。
【0005】
上記の報告では、白欠陥修正・黒欠陥修正ともに高加速電圧のイオンビームを用いており、欠陥認識時や欠陥修正時にはどうしてもイオンビームによりダメージがあるため、EUVLマスクのバッファーレイヤーを薄くすることはできなかった。バッファーレイヤはマスク生成プロセスが増える上に、欠陥修正後選択エッチングにより取り除かねばならなかった。バッファーレイヤの選択エッチングにドライエッチングを用いると、選択エッチング時のMo/Si多層膜へのダメージにも配慮しなければならない。低加速電圧のイオンビームを用いると、Mo/Si多層膜へのダメージを小さくすることができるが、それでも10nm程度のGaの注入によるダメージは避けられない。
【0006】
【発明が解決しようとする課題】
本発明は、バッファーレイヤのないEUVLマスクに対しても適応可能な低ダメージで高スループットの黒欠陥修正を可能にしようとするものである。
【0007】
【課題を解決するための手段】
欠陥認識は非接触モードの原子間力顕微鏡のイメージで行い、イオンビーム欠陥修正装置で欠陥外縁部とその内部は下地へダメージが及ばない厚みを残して黒欠陥を除去し、次に残した欠陥の縁部と内部を高さを固定した原子間力顕微鏡のEUVLマスクの吸収体材料よりも硬い探針で下地のMo/Si多層膜と同じ高さまで物理的に削ることで黒欠陥修正を行う。
【0008】
近接場光学顕微鏡とフェムト秒レーザーを組み合わせることにより、基板へのダメージが殆どないバイナリマスクの修正が報告されている(J. Microscopy 194 537(1999))。欠陥認識は近接場光学顕微鏡の探針先端を試料と垂直な平面内で横方向に加振し、試料と探針間に働く力学的相互作用(シアフォース)によって探針先端が制振されることを利用して、その振動振幅が一定になるように探針を駆動するピエゾ素子にフィードバックをかけて得られる走査顕微鏡像で行う。認識した黒欠陥に対して、イオンビーム欠陥修正装置で欠陥外縁部とその内部は下地へダメージが及ばない厚みを残して黒欠陥を除去し、次に残した欠陥の縁部と内部を高さを固定したフェムト秒レーザーを有する開口型照の近接場光学顕微鏡のレーザーアブレーションにより下地のMo/Si多層膜と同じ高さまで削ることで黒欠陥修正を行う。
【0009】
【作用】
第一段階のイオンビームでの修正では、イオンビームの広がりとイオンビームの注入を考慮してイオンビームを照射するため、Mo/Si多層膜にダメージを与えることはない。第二段階の原子間力顕微鏡の硬い探針による物理的除去は探針の高さを制御すれば、削りすぎてMo/Si多層膜にダメージを与えるようなことはない。イオンビームの加工は原子間力顕微鏡の硬い探針による物理的除去よりも高速に加工できるので、原子間力顕微鏡の硬い探針による物理的除去単体よりもスループットを向上することができる。
【0010】
上記同様、第一段階のイオンビームでの修正では、イオンビームの広がりとイオンビームの注入を考慮してイオンビームを照射するため、Mo/Si多層膜にダメージを与えることはない。第二段階の近接場光学顕微鏡のフェムト秒レーザーの加工では、近接場は距離に対して敏感なので、高さを制御すれば削りすぎてMo/Si多層膜にダメージを与えることはない。イオンビームの加工は近接場光学顕微鏡のフェムト秒レーザーの加工よりも高速な加工ができるので、近接場光学顕微鏡のフェムト秒レーザーの加工のみで修正するときよりもスループットを向上することができる。
【0011】
【発明の実施の形態】
以下に、原子間力顕微鏡を用いた場合の本発明の一実施例について説明する。
吸収体に黒欠陥を含むEUVLマスクをイオンビーム欠陥修正装置と原子間力顕微鏡を複合した装置の真空チャンバ内に導入し、まずXYステージ10で搭載されたEUVLマスク6を原子間力顕微鏡11のある位置に移動し、原子間力顕微鏡の非接触モードで黒欠陥を含む領域の画像を取得する。画像取得後、吸収体上に原子間力顕微鏡の硬い探針で転写に影響しないようなマーカを形成する。マーカ形成後、もう一度原子間力顕微鏡11の非接触モードで黒欠陥を含む領域の画像を取得する。取得した原子間力顕微鏡像から黒欠陥の認識を行い、さらにイオンビームのテールを考慮してイオンビームの選択走査を行う領域を決定する。次にXYステージ10をイオンビーム欠陥修正装置22の位置に移動する。イオン源1から放出されコンデンサレンズ3と対物レンズ4により集束されたイオンビーム2を偏向器5で走査しながら二次電子検出器8で二次電子7を同期して取り込み黒欠陥とマーカを含む領域の二次電子像を表示する。まずイオンビーム2の照射量を極力小さくして黒欠陥とマーカを含む領域の二次電子像を取りこみ、次にMo/Si多層膜16にイオンビーム2があたらないように吸収体上のマーカのみ高倍率で観察し、この像から原子間力顕微鏡で得た像との合わせこみを行う。下地のMo/Si多層膜16にダメージを与えないようにイオンビーム2をイオンビームのテールを考慮してイオンビームの選択走査を行う領域のみ選択的に走査してイオンビーム2の注入を考慮して厚さを残して除去する(図1(a))。イオンビームの注入を考慮して除去は物理スパッタもしくは被加工領域13近傍に配置されたガス銃9の先端から供給されたハロゲン系のガスの増速効果を用いて行う。
【0012】
XYステージ10で搭載されたEUVLマスク6を原子間力顕微鏡11のある位置に移動し、まずイオンビーム2で加工した部分14を含む領域を原子間力顕微鏡11の非接触モードで観察し、残された黒欠陥の外縁部とイオンビーム2の注入を考慮して残した部分を加工領域として認識する。この場合、高さの情報のみで材質に関する情報がないので、下地のバッファーレイヤ17もしくはMo/Si多層膜16の高さを標準とし、これよりも高い部分を正常な吸収体パターン13もしくは原子間力顕微鏡で修正する黒欠陥部分15と見なす。欠陥部分(加工領域)は他の正常なパターンもしくは設計データと比較することにより抽出される。加工領域と認識した部分だけ、高さを制御した、例えばダイヤモンドをコートした探針のような被加工材質(TiNやTaN等)よりも固い原子間力顕微鏡探針12で走査して物理的に削り取っていき、残された黒欠陥部分15の修正を行う(図1(b))。原子間力顕微鏡探針12の高さの下限を下地のバッファーレイヤ17もしくはMo/Si多層膜16にしておけば、Mo/Si多層膜が彫れることがないので、下地のMo/Si多層膜16へのダメージのないEUVLマスクの黒欠陥修正を実現できる。イオンビームの加工は原子間力顕微鏡の硬い探針による物理的除去よりも高速に加工できるので、原子間力顕微鏡の硬い探針による物理的除去単体よりもスループットを向上することができる。
【0013】
以下に、フェムト秒レーザーを備えた近接場光学顕微鏡を用いた場合の本発明の一実施例について説明する。
上記実施例同様、吸収体に黒欠陥を含むEUVLマスクをイオンビーム欠陥修正装置とフェムト秒レーザーを備えた近接場光学顕微鏡を複合した装置の真空チャンバ内に導入し、まずXYステージ10で搭載されたEUVLマスク6を近接場光学顕微鏡18のある位置に移動し、近接場光学顕微鏡でシアフォースを検出して黒欠陥を含む領域の画像を取得する。上記実施例同様、吸収体上にマーカを形成し、再び近接場光学顕微鏡でシアフォースを検出して黒欠陥を含む領域の画像を取得する。取得したシアフォースイメージから黒欠陥の認識を行い、さらにイオンビームのテールを考慮してイオンビーム2の選択走査を行う領域を決定する。次にXYステージ10をイオンビーム欠陥修正装置22の位置に移動する。イオンビーム欠陥修正装置での加工は上記実施例と同じ手順で行う(図2(a))。
【0014】
XYステージ10で搭載されたEUVLマスク6をフェムト秒レーザーを備えた近接場光学顕微鏡18のある位置に移動し、まずイオンビーム2で加工した部分を含む領域を近接場光学顕微鏡でシアフォースを検出して観察し、残された黒欠陥の外縁部19とイオンビーム2の注入を考慮して残した部分を加工領域として認識する。この場合、高さの情報のみで材質に関する情報がないので、下地のバッファーレイヤ17もしくはMo/Si多層膜16の高さを標準とし、これよりも高い部分を正常な吸収体パターン13もしくは欠陥部分19と見なす。欠陥部分(加工領域)は他の正常なパターンもしくは設計データと比較することにより抽出される。加工領域と認識した部分だけ、フェムト秒レーザー20を有する開口型の近接場光学顕微鏡18のレーザーアブレーションで下地のバッファーレイヤ17もしくはMo/Si多層膜16と同じ高さまで削ることで黒欠陥修正を行う(図2(b))。近接場光学顕微鏡探針19の高さの下限を下地のバッファーレイヤ17もしくはMo/Si多層膜16にしておけば、近接場は距離に対して敏感であり、またフェムト秒レーザーのアブレーションでは照射領域のみ加工され熱の拡散により加工されることがないため、下地のMo/Si多層膜16へのダメージのないEUVLマスク6の黒欠陥修正を実現できる。イオンビームの加工は近接場光学顕微鏡のフェムト秒レーザーの加工よりも高速な加工ができるので、近接場光学顕微鏡のフェムト秒レーザーの加工のみで修正するときよりもスループットを向上することができる。
【0015】
【発明の効果】
以上説明したように、この発明によれば、EUVLマスクのMo/Si多層膜へのダメージを少なくできるので、バッファーレイヤのないEUVLマスクに対しても適応可能である。なおかつ近接場光学顕微鏡のフェムト秒レーザーアブレーションや原子間力顕微鏡の硬い探針による物理的除去単体よりも高スループットの黒欠陥修正を行うことができる。
【図面の簡単な説明】
【図1】本発明の特徴を最も良く示す、走査プローブ顕微鏡として原子間力顕微鏡を用いて加工する場合を説明するための概略断面図である。
【図2】フェムト秒レーザーを備えた近接場光学顕微鏡で加工する場合を説明するための概略断面図である。
【図3】原子間力顕微鏡を用いる場合の加工手順を説明するための図である。
【図4】フェムト秒レーザーを備えた近接場光学顕微鏡を用いる場合の加工手順を説明するための図である。
【符号の説明】
1 イオン源
2 イオンビーム
3 コンデンサレンズ
4 対物レンズ
5 偏向電極
6 EUVLマスク
7 二次電子
8 二次電子検出器
9 ガス銃
10 X-Yステージ
11 原子間力顕微鏡
12 原子間力顕微鏡探針
13 正常な吸収体パターン
14 イオンビームで修正する黒欠陥領域
15 原子間力顕微鏡で修正する黒欠陥領域
16 下地のMo/Si多層膜
17 バッファーレイヤ
18 近接場光学顕微鏡
19 近接場光学顕微鏡探針
20 フェムト秒レーザー
21 近接場光学顕微鏡で修正する黒欠陥領域
22 イオンビーム欠陥修正装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for correcting black defects in a reflective mask for EUV lithography.
[0002]
[Prior art]
At present, an optical projection exposure apparatus using a KrF or ArF excimer laser is used for pattern transfer onto a wafer. Up to the 0.10 μm rule can be handled with an optical projection exposure apparatus, but since the resolution limit is reached after the 0.07 μm rule, electron beam lithography (in addition to direct drawing of electron beam lithography equipment (EB) and cell projection) ( Electron beam Projection Lithography (EPL), Low Energy Electron Beam Projection Lithography (LEEPL), Ion Beam Projection Lithography (IPL), Soft X-ray reduction exposure (Extreme Ultra Violet Lithography, EUVL) New transfer methods such as) have been proposed. EUVL is a technology that reduces and exposes soft X-rays with a wavelength of about 13 nm using a reflection optical system. It is regarded as the limit of shortening the wavelength of ultraviolet exposure, and has recently attracted particular attention as a lithography technology that can be used for more than two generations. ing.
The technology is regarded as the limit of shortening the wavelength of ultraviolet exposure and has recently attracted particular attention as a lithography technology that can be used for more than two generations.
[0003]
EUVL uses a reflective mask made of a Mo / Si multilayer film on which an absorber pattern such as TaN or TiN is formed, or a Mo / Si multilayer film etched according to the pattern. In EUVL masks, as with photomasks, if there are defects in the mask photomask, the defects are transferred to the wafer and cause a reduction in yield. Defect correction processing must be performed.
[0004]
Regarding the defect correction of the type of EUVL mask having an absorber, a correction method using an ion beam has been reported (J. Vac. Sci. Technol. B18 3216 (2000)). In this report, in order to reduce the damage caused by the ion beam on the EUV mask, a buffer layer such as Ru or SiO 2 is provided between the absorber and the Mo / Si multilayer. Black defects are removed by gas-assisted etching with Cl 2 or Br 2 , and white defects are corrected by forming an absorber film by FIB-CVD of W (CO) 6 .
[0005]
In the above report, high-acceleration voltage ion beams are used for both white defect correction and black defect correction, and it is unavoidable that ion beams are damaged during defect recognition and defect correction. could not. In addition to increasing the mask generation process, the buffer layer had to be removed by selective etching after defect correction. When dry etching is used for selective etching of the buffer layer, it is necessary to consider the damage to the Mo / Si multilayer film during selective etching. Using an ion beam with a low accelerating voltage can reduce the damage to the Mo / Si multilayer, but it is still unavoidable that damage is caused by the implantation of about 10 nm of Ga.
[0006]
[Problems to be solved by the invention]
The present invention is intended to enable low-damage and high-throughput black defect correction that can be applied to an EUVL mask without a buffer layer.
[0007]
[Means for Solving the Problems]
Defect recognition is performed with an image of a non-contact mode atomic force microscope, and the defect outer edge and the inside of the defect are removed with a thickness that does not damage the substrate with an ion beam defect repair device, and then the remaining defect is left. Fix black defects by physically cutting to the same height as the underlying Mo / Si multilayer with a probe harder than the absorber material of the EUVL mask of the atomic force microscope with fixed height at the edges and inside .
[0008]
A combination of a near-field optical microscope and a femtosecond laser has been reported to correct a binary mask with little damage to the substrate (J. Microscopy 194 537 (1999)). In defect recognition, the probe tip of a near-field optical microscope is vibrated laterally in a plane perpendicular to the sample, and the probe tip is damped by a mechanical interaction (shear force) acting between the sample and the probe. This is performed using a scanning microscope image obtained by applying feedback to the piezo element that drives the probe so that the vibration amplitude becomes constant. With respect to the recognized black defect, the defect outer edge and the inside of the defect are removed with a thickness that does not cause damage to the base, and the defect edge and the inside of the remaining defect are raised. The black defect is corrected by cutting to the same height as the underlying Mo / Si multilayer by laser ablation of a near-field optical microscope with an aperture-type illumination with a femtosecond laser fixed in place.
[0009]
[Action]
In the first-stage ion beam modification, the ion beam is irradiated in consideration of the spread of the ion beam and the ion beam implantation, so that the Mo / Si multilayer film is not damaged. The physical removal of the second stage atomic force microscope with a hard probe does not damage the Mo / Si multilayer if it is controlled by controlling the height of the probe. Since the processing of the ion beam can be performed at a higher speed than the physical removal by the hard probe of the atomic force microscope, the throughput can be improved as compared with the physical removal alone by the hard probe of the atomic force microscope.
[0010]
As described above, in the first-stage ion beam correction, the ion beam is irradiated in consideration of the spread of the ion beam and the ion beam implantation, so that the Mo / Si multilayer film is not damaged. In the processing of the femtosecond laser of the second stage near-field optical microscope, the near-field is sensitive to distance, so if the height is controlled, it will not be damaged too much and the Mo / Si multilayer film will not be damaged. Since the processing of the ion beam can be performed at a higher speed than the processing of the femtosecond laser of the near-field optical microscope, the throughput can be improved as compared with the case of correcting only by the processing of the femtosecond laser of the near-field optical microscope.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention using an atomic force microscope will be described.
An EUVL mask containing black defects in the absorber is introduced into the vacuum chamber of a device that combines an ion beam defect repair device and an atomic force microscope, and the EUVL mask 6 mounted on the XY stage 10 is first installed in the atomic force microscope 11 Move to a certain position and acquire an image of the area containing black defects in the non-contact mode of the atomic force microscope. After the image acquisition, a marker that does not affect the transfer is formed on the absorber with a hard probe of an atomic force microscope. After the marker formation, an image of a region including a black defect is acquired once again in the non-contact mode of the atomic force microscope 11. A black defect is recognized from the acquired atomic force microscope image, and an ion beam selective scanning region is determined in consideration of the ion beam tail. Next, the XY stage 10 is moved to the position of the ion beam defect correcting device 22. The secondary electron detector 8 synchronously captures the secondary electrons 7 while scanning with the deflector 5 the ion beam 2 emitted from the ion source 1 and focused by the condenser lens 3 and the objective lens 4 and includes black defects and markers. Displays the secondary electron image of the region. First, reduce the ion beam 2 dose as much as possible to capture a secondary electron image of the area containing black defects and markers, and then only the markers on the absorber so that the Mo / Si multilayer 16 does not hit the ion beam 2. Observe at high magnification and match this image with an image obtained with an atomic force microscope. In order to prevent damage to the underlying Mo / Si multilayer 16, the ion beam 2 is selectively scanned only in the region where ion beam selective scanning is performed in consideration of the tail of the ion beam, and ion beam 2 implantation is considered. To remove the thickness (FIG. 1 (a)). In consideration of ion beam implantation, the removal is performed by physical sputtering or by using the effect of accelerating the halogen-based gas supplied from the tip of the gas gun 9 disposed in the vicinity of the region 13 to be processed.
[0012]
The EUVL mask 6 mounted on the XY stage 10 is moved to a position where the atomic force microscope 11 is located. First, the region including the portion 14 processed by the ion beam 2 is observed in the non-contact mode of the atomic force microscope 11, and the remaining portion is observed. The outer edge of the black defect and the portion left in consideration of the implantation of the ion beam 2 are recognized as a processing region. In this case, since there is no information about the material, only the height information, the height of the underlying buffer layer 17 or Mo / Si multilayer film 16 is the standard, and the higher part is the normal absorber pattern 13 or between the atoms. Considered as black defect 15 to be corrected with a force microscope. The defective part (processed area) is extracted by comparing with other normal patterns or design data. Only the part recognized as the processing area is controlled by the atomic force microscope probe 12 whose height is controlled and harder than the workpiece material (TiN, TaN, etc.) such as a diamond-coated probe, and physically The remaining black defect portion 15 is corrected by scraping (FIG. 1 (b)). If the lower limit of the height of the atomic force microscope probe 12 is set to the underlying buffer layer 17 or the Mo / Si multilayer film 16, the Mo / Si multilayer film will not be carved, so the underlying Mo / Si multilayer film The black defect correction of EUVL mask without damage to 16 can be realized. Since the processing of the ion beam can be performed at a higher speed than the physical removal by the hard probe of the atomic force microscope, the throughput can be improved as compared with the physical removal alone by the hard probe of the atomic force microscope.
[0013]
Hereinafter, an embodiment of the present invention in the case of using a near-field optical microscope equipped with a femtosecond laser will be described.
As in the previous example, an EUVL mask containing black defects in the absorber was introduced into the vacuum chamber of a device that combined an ion beam defect correction device and a near-field optical microscope equipped with a femtosecond laser, and was first mounted on the XY stage 10. The EUVL mask 6 is moved to a position where the near-field optical microscope 18 is located, and shear force is detected by the near-field optical microscope to acquire an image of a region including a black defect. As in the above embodiment, a marker is formed on the absorber, and a shear force is again detected with a near-field optical microscope to acquire an image of a region including a black defect. A black defect is recognized from the acquired shear force image, and a region for selective scanning of the ion beam 2 is determined in consideration of the tail of the ion beam. Next, the XY stage 10 is moved to the position of the ion beam defect correcting device 22. Processing in the ion beam defect repair apparatus is performed in the same procedure as in the above embodiment (FIG. 2 (a)).
[0014]
The EUVL mask 6 mounted on the XY stage 10 is moved to a position on the near-field optical microscope 18 equipped with a femtosecond laser, and the area including the part processed by the ion beam 2 is first detected with the near-field optical microscope. Thus, the remaining edge 19 of the black defect and the remaining portion in consideration of the implantation of the ion beam 2 are recognized as a processing region. In this case, since there is no information about the material, only the height information, the height of the underlying buffer layer 17 or Mo / Si multilayer film 16 is standard, and the higher part is the normal absorber pattern 13 or defective part. 19 is considered. The defective part (processed area) is extracted by comparing with other normal patterns or design data. Black defects are corrected by cutting only the part recognized as the processing region to the same height as the underlying buffer layer 17 or Mo / Si multilayer film 16 by laser ablation with an aperture-type near-field optical microscope 18 having a femtosecond laser 20. (Figure 2 (b)). If the lower limit of the height of the near-field optical microscope probe 19 is set to the underlying buffer layer 17 or the Mo / Si multilayer film 16, the near-field is sensitive to the distance, and the irradiation area in the ablation of femtosecond laser Since this is only processed and not processed by thermal diffusion, it is possible to realize black defect correction of the EUVL mask 6 without damaging the underlying Mo / Si multilayer film 16. Since the processing of the ion beam can be performed at a higher speed than the processing of the femtosecond laser of the near-field optical microscope, the throughput can be improved as compared with the case of correcting only by the processing of the femtosecond laser of the near-field optical microscope.
[0015]
【The invention's effect】
As described above, according to the present invention, damage to the Mo / Si multilayer film of the EUVL mask can be reduced, so that it can be applied to an EUVL mask without a buffer layer. In addition, it is possible to correct black defects with a higher throughput than femtosecond laser ablation of a near-field optical microscope or physical removal using a hard probe of an atomic force microscope.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view for explaining a case where an atomic force microscope is used as a scanning probe microscope and best illustrates the characteristics of the present invention.
FIG. 2 is a schematic cross-sectional view for explaining the case of processing with a near-field optical microscope equipped with a femtosecond laser.
FIG. 3 is a diagram for explaining a processing procedure when an atomic force microscope is used.
FIG. 4 is a diagram for explaining a processing procedure in the case of using a near-field optical microscope equipped with a femtosecond laser.
[Explanation of symbols]
1 Ion source
2 Ion beam
3 Condenser lens
4 Objective lens
5 Deflection electrode
6 EUVL mask
7 Secondary electrons
8 Secondary electron detector
9 Gas gun
10 XY stage
11 Atomic force microscope
12 Atomic force microscope probe
13 Normal absorber pattern
14 Black defect area to be corrected by ion beam
15 Black defect area to be corrected by atomic force microscope
16 Underlayer Mo / Si multilayer
17 Buffer layer
18 Near-field optical microscope
19 Near-field optical microscope probe
20 femtosecond laser
21 Black defect area to be corrected by near-field optical microscope
22 Ion beam defect repair system

Claims (3)

イオンビーム欠陥修正装置で欠陥外縁部と下地へダメージが及ばない厚みを残して黒欠陥を除去する工程と、次に残した欠陥の縁部と内部を、高さを固定した走査プローブ顕微鏡を用いて加工する工程とからなることにより下地のMo/Si多層膜へのダメージのない修正を行うことを特徴とするEUVマスクの黒欠陥修正方法。Using a scanning probe microscope in which the height of the edge and inside of the remaining defect is fixed, with the ion beam defect repairing device removing the black defect leaving a thickness that does not damage the outer edge of the defect and the substrate. A method for correcting black defects in an EUV mask, characterized in that the repair is performed without damage to the underlying Mo / Si multilayer film. 請求項1記載のマスクの黒欠陥修正方法において、残した欠陥の縁部と内部を、高さを固定した原子間力顕微鏡の硬い探針で下地のMo/Si多層膜と同じ高さまで物理的に削ることで下地のMo/Si多層膜へのダメージのない修正を行うことを特徴とするEUVマスクの黒欠陥修正方法。2. The mask black defect correction method according to claim 1, wherein the remaining defect edge and inside are physically made to the same height as the underlying Mo / Si multilayer film by a hard probe of an atomic force microscope with a fixed height. A method for correcting black defects in an EUV mask, characterized in that the underlying Mo / Si multilayer film is repaired without being damaged. 請求項1記載のマスクの黒欠陥修正方法において、残した欠陥の縁部と内部を、高さを固定したフェムト秒レーザーを有する近接場光学顕微鏡のレーザーアブレーションにより下地のMo/Si多層膜と同じ高さまで削ることで下地へのダメージのない修正を行うことを特徴とするEUVマスクの黒欠陥修正方法。2. The mask black defect correction method according to claim 1, wherein the edge and inside of the remaining defect are the same as the underlying Mo / Si multilayer film by laser ablation of a near-field optical microscope having a femtosecond laser with a fixed height. A method for correcting black defects in EUV masks, characterized by performing repairs without damage to the substrate by cutting to a height.
JP2001357534A 2001-11-22 2001-11-22 Method for correcting black defect in mask for EUV lithography Expired - Fee Related JP3706060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357534A JP3706060B2 (en) 2001-11-22 2001-11-22 Method for correcting black defect in mask for EUV lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357534A JP3706060B2 (en) 2001-11-22 2001-11-22 Method for correcting black defect in mask for EUV lithography

Publications (2)

Publication Number Publication Date
JP2003158063A JP2003158063A (en) 2003-05-30
JP3706060B2 true JP3706060B2 (en) 2005-10-12

Family

ID=19168867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357534A Expired - Fee Related JP3706060B2 (en) 2001-11-22 2001-11-22 Method for correcting black defect in mask for EUV lithography

Country Status (1)

Country Link
JP (1) JP3706060B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084582A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Method for removing particle from photomask
JP5581797B2 (en) * 2010-05-11 2014-09-03 大日本印刷株式会社 Method for manufacturing a reflective mask
DE102011079382B4 (en) * 2011-07-19 2020-11-12 Carl Zeiss Smt Gmbh Method and device for analyzing and eliminating a defect in an EUV mask

Also Published As

Publication number Publication date
JP2003158063A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP4728553B2 (en) Method and apparatus for modifying a lithographic mask using a charged particle beam system
US7504182B2 (en) Photolithography mask repair
US6753538B2 (en) Electron beam processing
US6038015A (en) Electron-beam-projection-exposure apparatus with integrated mask inspection and cleaning portions
EP1710327B1 (en) Method of beam-induced selective etching of a material from a quartz substrate
JP4820740B2 (en) Machining method of diamond probe for machining
JP4219715B2 (en) Defect correction method for photomask
US20070048631A1 (en) Mask defect repairing method and semiconductor device manufacturing method
JP4550801B2 (en) Electron beam processing to repair the mask
JP2009188047A (en) Method of remedying dark defect of euvl mask
JP3706060B2 (en) Method for correcting black defect in mask for EUV lithography
JP3706055B2 (en) Method for correcting white defect of mask for EUV lithography
JP2005260057A (en) Method for correcting black defect of mask for euv lithography
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP4426730B2 (en) Mask black defect correction method
US20080073522A1 (en) Method of correcting opaque defect of chrome mask, in which atomic force microscope fine working apparatus has been used
JP2000010260A (en) Method for correcting black defect of mask correction apparatus
JP2009086428A (en) Method and apparatus for photomask defect correction using charged particle beam
JP2005260056A (en) Method for correcting defect of dlc membrane mask
JP2003133203A (en) Method of correcting defect of stencil mask
Lee Mask Repair
Amano et al. Study of EUVL mask defect repair using FIB-GAE method
JP2003318093A (en) Method for manufacturing mask and method for manufacturing semiconductor device
Kaufmann et al. Fib Mask Repair With Microtrim
Prewett et al. Effects on IC quality of 5X reticle repair using FIB with stain reduction

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees