JP3705572B2 - Laminated body having snow melting and heat shielding properties - Google Patents

Laminated body having snow melting and heat shielding properties Download PDF

Info

Publication number
JP3705572B2
JP3705572B2 JP35877299A JP35877299A JP3705572B2 JP 3705572 B2 JP3705572 B2 JP 3705572B2 JP 35877299 A JP35877299 A JP 35877299A JP 35877299 A JP35877299 A JP 35877299A JP 3705572 B2 JP3705572 B2 JP 3705572B2
Authority
JP
Japan
Prior art keywords
infrared
weight
parts
layer
binder component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35877299A
Other languages
Japanese (ja)
Other versions
JP2001171032A (en
Inventor
茂人 上村
誠一 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP35877299A priority Critical patent/JP3705572B2/en
Publication of JP2001171032A publication Critical patent/JP2001171032A/en
Application granted granted Critical
Publication of JP3705572B2 publication Critical patent/JP3705572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の屋根や屋上等の表面に適用することで、冬期には融雪効果を、夏期には遮熱効果を発揮することができる積層構造に関するものである。
【0002】
【従来技術】
従来、寒冷地域における建築物の屋根等に対する融雪方法、あるいは凍結防止方法としては、屋根等の内側に電熱線を設置し、その電熱線に電力を供給して発熱させることにより、外側の雪を溶かしたり、凍結を防止するような方法が知られている。しかしながら、このような方法では、雪や氷に対して直接的に熱を与えることができないため、雪や氷の融解に比較的長い時間を要し、電力消費が増加することとなる。
一方、屋根等の表面に、グラファイト、導電性カーボン等の導電性粉体を含有する発熱性塗料を塗付する方法も知られており、この方法では直接的に雪や氷に熱を与えるため、前記のような問題は解消され得る。しかしながら、一般に導電性粉体は黒色等の濃色であるため、形成塗膜が熱線を吸収しやすく、日差しの強い夏期においては室内の温度上昇をまねき、冷房負荷が増し、電力消費も増大してしまうという欠点がある。
【0003】
【発明が解決しようとする課題】
本発明は、上記のような問題点に鑑みてなされたものであり、建築物の屋根や屋上等において、冬期には融雪効果や凍結防止効果を発揮し、さらに夏期における蓄熱を防止し、一年を通して電力消費を節約することのできる積層構造を得ることである。
【0004】
【課題を解決するための手段】
これらの課題を解決するため、本発明者は鋭意検討を行い、その結果、屋根等の表面に、発熱層と、赤外線反射性を有する絶縁層とを積層することを見出し、本発明の完成に至った。
【0005】
即ち、本発明は、下記の積層体を提供するものである。
1.建築物の屋根や屋上の表面に、バインダー成分と導電性粒子を含有し、バインダー成分の樹脂固形分100重量部に対し導電性粒子を30〜600重量部含有する発熱層、
バインダー成分と赤外線反射性粉粒体を含有し、バインダー成分の樹脂固形分100重量部に対し赤外線反射性粉粒体を10〜300重量部含有する絶縁層を順に積層し、
さらにその上にバインダー成分の樹脂固形分100重量部に対し、赤外線透過性を有する着色剤を0〜150重量部含有する赤外線透過性を有する保護層を積層することを特徴とする融雪及び遮熱性を有する積層体。
2.発熱層が、粉体抵抗値10−4〜10Ω・cmの導電性粒子を樹脂固形分100重量部に対し30〜600重量部含有し、かつ電気抵抗値10−2〜10Ω・cmであり、赤外線反射性を有する絶縁層が電気抵抗値10Ω・cm以上であることを特徴とする1.記載の融雪及び遮熱性を有する積層体。
【0006】
【発明の実施の形態】
以下、本発明をその実施の形態とともに詳細に説明する。
【0007】
(1)対象となる基材
本発明の積層構造は、屋根、屋上等の外側に適用するものである。具体的には、例えば、粘土瓦、セメント瓦、スレート板、カラー鋼板、銅板、アルミニウム板、チタン板、ステンレス板、亜鉛めっき鋼板等、あるいはこれらに塗装を施したもの、防水モルタル、シート防水材、塗膜防水材等で施工された陸屋根があげられる。本発明は、新設の屋根は勿論、改修が必要な既存の屋根等にも比較的容易に適用することができる。
対象となる基材が絶縁性を有する場合は、基材上に直接積層構造を重ねることができる。一方、基材が導電性を有する場合は、基材上に合成樹脂膜等の絶縁層を設けることが望ましい。
【0008】
(2)発熱層
発熱層(以下「(2)層」ともいう)は、電力供給により発熱し、雪や氷を溶かす機能を発揮するものである。(2)層は、バインダー成分、導電性粒子を主成分とするものである。この他、本発明の効果を阻害しない範囲内で、その他の粉粒体、添加剤等を含むこともできる。
【0009】
バインダー成分の種類としては、特に限定されず、熱可塑性樹脂、熱硬化性樹脂から選ばれる1種または2種以上が使用される。具体的には、例えば、エチレン系、酢酸ビニル系、アルキッド系、塩化ビニル系、アクリル系、ウレタン系、シリコン系、フッ素系等、あるいはこれらの複合系等を使用することができる。
バインダー成分のガラス転移温度(以下「Tg」ともいう)は、(2)層の発熱による著しい軟化を防止するため、(2)層の発熱温度より高く設定する必要がある。通常、バインダー成分のTgは30〜200℃の範囲内に設定する。
【0010】
導電性粒子としては、粉体抵抗値10−4〜10Ω・cmのものが使用される。本発明における粉体抵抗値は、試料粉体を10MPaの圧力で成形して円柱状の圧粉体(直径18mm、厚さ3mm)とし、その直流抵抗を測定することにより求められる値である。このような導電性粒子としては、例えば、カーボンブラック、グラファイト、銅、銀、金、錫、鉛、アンチモン、鉄、ニッケル、コバルト、インジウム、アンチモン含有酸化錫、リン含有酸化錫、錫含有酸化インジウム等、あるいはこのような粒子がドープされた粉粒体等をあげることができる。このような導電性粒子は、粉末状、繊維状、ウイスカー状等の形態で用いることができる。導電性粒子は、バインダー成分の樹脂固形分100重量部に対し30〜600重量部含有することが望ましい。導電性粒子が30重量部より少ない場合は、電気抵抗値が高くなり、所望の発熱を得るために高い電圧が必要となるため好ましくない。600重量部より多い場合は、(2)層にクラックが生じやすくなり、その結果、導電性が低下してしまう。
【0011】
(2)層は、その電気抵抗値が10−2〜10Ω・cm、好ましくは10〜10Ω・cmの範囲内であることが望ましい。電気抵抗値が10Ω・cmより大きい場合は、所望の発熱を得るために高い電圧が必要となったり、電極間距離を広くすることができないというような欠点が出てくるため好ましくない。10−2Ω・cmより小さい場合は、金属に近い導電性となり、ジュール熱による発熱を得るために多大な電流が必要となり好ましくない。
【0012】
(3)赤外線反射性を有する絶縁層
赤外線反射性を有する絶縁層(以下「(3)層」ともいう)は、前記(2)層を絶縁するとともに、太陽光の赤外線領域を反射し蓄熱を防止する機能を発揮するものである。(3)層は、バインダー成分、赤外線反射性粉粒体を主成分とするものである。この他、絶縁性及び赤外線反射性を阻害しない範囲内であれば、着色剤、添加剤等を含むこともできる。
【0013】
バインダー成分としては、絶縁性を有し、さらに太陽光の赤外線領域を吸収せず、透過する性質を有するものが使用される。樹脂の種類としては、特に限定されず、エチレン系、酢酸ビニル系、アルキッド系、塩化ビニル系、アクリル系、ウレタン系、シリコン系、フッ素系等、あるいはこれらの複合系等を使用することができる。(3)層が最外層となる場合は、アクリル系、ウレタン系、シリコン系、フッ素系から選ばれる1種、または2種以上の樹脂を用いると、耐候性を高めることができ、好ましい。
【0014】
赤外線反射性粉粒体としては、太陽光の赤外線領域の光線を反射する効果を有するものが使用される。具体的には、例えば、アルミニウムフレーク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化マグネシウム、アルミナ、無機系中空ビーズ、有機系中空ビーズ等があげられる。このような粉粒体は、通常、バインダー成分の樹脂固形分100重量部に対し、10〜300重量部配合される。赤外線反射性粉粒体が10重量部より少ない場合は、太陽光に対し十分な赤外線反射性が得られず、温度上昇をまねいてしまう。300重量部より多い場合は、(3)層にクラックが生じやすくなり、赤外線反射性低下のおそれがある。
【0015】
(3)層における赤外線反射率は20%以上、好ましくは50%以上、さらに好ましくは80%以上である。このような反射性を有することにより、太陽光による蓄熱を十分に抑制することができる。なお、本発明における赤外線反射率は、波長1μmの光に対する分光反射率を測定することにより得られる値である。
【0016】
また、(3)層の電気抵抗値は10Ω・cm以上であることが望ましい。このような電気抵抗値を有することにより、(2)層の導電性に対する絶縁を確実に行うことができる。
【0017】
(4)赤外線透過性を有する保護層
本発明においては、必要に応じ、(4)赤外線透過性を有する保護層(以下「(4)層」ともいう)を設けることができる。(4)層を設けることにより、耐候性、防水性、傷つき防止性、等を高めることができる。さらに(4)層は赤外線透過性を有するため、蓄熱を防止することもできる。
【0018】
(4)層は、バインダー成分を主成分とするもので、必要に応じ、赤外線透過性を有する着色剤を含有することもできる。これらの着色剤を含有することにより、通常白または金属色などの色相に限定される赤外線反射層に、任意の色相で着色仕上げを行うことが可能となり、特に屋根材として好まれる濃色系色相の仕上げにおいても、蓄熱を防止することができる。その他の成分としては、紫外線吸収剤、酸化防止剤、防カビ剤、防藻剤、等を本発明の効果を阻害しない範囲内で添加することもできる。
【0019】
バインダー成分としては、太陽光の赤外線領域を吸収せず、透過する性質を有するものが使用される。樹脂の種類としては、特に限定されず、エチレン系、酢酸ビニル系、アルキッド系、塩化ビニル系、アクリル系、ウレタン系、シリコン系、フッ素系等、あるいはこれらの複合系等を使用することができる。このうち本発明では、アクリル系、ウレタン系、シリコン系、フッ素系から選ばれる1種、または2種以上の樹脂を用いると、耐候性を高めることができ好ましい。
【0020】
赤外線透過性を有する着色剤としては、ペリレン系顔料、アゾ系顔料、黄鉛、弁柄、朱、チタニウムレッド、カドミウムレッド、キナクリドンレッド、イソインドリノン、ベンズイミダゾロン、コバルトブルー、フタロシアニンブルー、インダスレンブルー、群青、紺青等があげられる。このような着色剤は、通常、バインダー成分の樹脂固形分100重量部に対し、0〜150重量部配合される。
【0021】
(4)層においては、赤外線透過率が50%以上、さらには70%以上であることが望ましい。このような透過性を有することにより、太陽光による蓄熱を防止することができる。なお、本発明における赤外線透過率は、波長1μmの光に対する分光透過率を測定することにより得られる値である。
【0022】
(5)積層方法
本発明積層構造は、対象となる基材(1)の上に、(2)層、(3)層が順に積層されたもの、または、(2)層、(3)層、(4)層が順に積層されたものである。(1)の導電性が高い場合は、(1)と(2)層の間に絶縁層を設けることもできる。また、(2)層から発生した熱の屋内への温度放出を防止するために、(1)と(2)層の間に断熱層を設けることもできる。
本発明積層の形成方法としては特に限定されず、例えば、塗料を塗付することによって積層する方法、予め作製したシート状物を積層する方法等を採用することができる。シート状物を用いる場合は、本発明の効果を阻害しない限り、隣接する層との間に接着層を設けることもできる。
【0023】
本発明では、最外層となる(3)層または(4)層に、蓄熱源となるおそれのあるカーボン等の黒色汚染物質を表面に付着させない機能を付与することにより、蓄熱防止効果を長期にわたり維持することが可能となる。このような機能は、層表面の水に対する接触角を小さくする、層表面の硬度を高くする、層表面の帯電性を低下させる等の手法により発現される。このような層は、具体的には、シリケート等のアルコキシシラン化合物、あるいはこれらの縮合物や変性物等を含有する塗料を塗付することによって得ることができる。
【0024】
【実施例】
以下に実施例及び比較例を示し、本発明の特徴をより明確にする。
【0025】
[導電発熱塗料の作製]
Tg80℃のアクリル樹脂の樹脂固形分100重量部に対して、黒鉛(粉体抵抗値16Ω・cm)を160重量部配合して導電発熱塗料Pを作製した。この導電発熱塗料Pによって得られる乾燥膜(膜厚1.0mm)の電気抵抗値は90Ω・cmであった。なお、電気抵抗値については、デジタルマルチメーターによる2端子法で測定した(以下の測定も同様)。
【0026】
[赤外線反射性塗料の作製]
(赤外線反射性塗料A)
アクリル系樹脂の樹脂固形分100重量部に対して、酸化チタンを80重量部配合し、赤外線反射性塗料Aを得た。この赤外線反射性塗料Aによって得られる乾燥膜(膜厚30μm)の赤外線反射率は60%であり、電気抵抗値は無限大であった。なお、赤外線反射率については、分光光度計「UV−3100」(島津製作所製)を用いて波長1μmの光に対する分光反射率を測定して求めた(以下の測定も同様)。
(赤外線反射性塗料B)
アクリル系樹脂の樹脂固形分100重量部に対して、中空ガラスビーズを200重量部配合し、赤外線反射性塗料Bを得た。この赤外線反射性塗料Bによって得られる乾燥膜(膜厚30μm)の赤外線反射率は70%であり、電気抵抗値は無限大であった。
(赤外線反射性塗料C)
アクリル系樹脂の樹脂固形分100重量部に対して、アルミニウム粉体を50重量部配合し、赤外線反射性塗料Cを得た。この赤外線反射性塗料Cによって得られる乾燥膜(膜厚30μm)の赤外線反射率は60%であり、電気抵抗値は無限大であった。
【0027】
[赤外線透過性塗料の作製]
アクリルポリオール樹脂の樹脂固形分100重量部に対して、イソシアネート化合物14.3重量部、フタロシアニンブルー顔料を20重量部配合し、赤外線透過性塗料Qを得た。この赤外線透過性塗料Qによって得られる乾燥膜(膜厚30μm)の赤外線透過率は82%、電気抵抗値は無限大であった。なお、赤外線透過率については、フーリエ変換近赤外分析装置「Spectrum Identi Check」(パーキンエルマー社製)を用いて波長1μmの光に対する分光透過率を測定して求めた。
【0028】
塗料作製に用いた原料を表1に示す。
【表1】

Figure 0003705572
【0029】
[実施例1]
厚さ0.5mmのカラートタン(着色合成樹脂塗料による塗装を施した亜鉛めっき鋼板)上に、導電発熱塗料Pを乾燥膜厚が1.0mmとなるように塗付・乾燥して、発熱層を形成した。次にこの発熱層の上に、赤外線反射性塗料Aを乾燥膜厚が30μmとなるように塗付・乾燥して、試験体を得た。作製した試験体について、下記の試験方法に従い遮熱性試験及び発熱特性試験を行ったところ、表2に示す結果を得た。
【0030】
[遮熱性試験方法]
23℃下にて、赤外線(250Wの赤外線ランプ)を試験体表面に10分間照射し、その裏面温度を測定した。
[発熱特性試験]
23℃下にて試験体に50Vの電圧を加え、30分後、その試験体の表面温度を測定した。
【0031】
[実施例2]
赤外線反射性塗料Aに代えて、赤外線反射性塗料Bを用いた以外は実施例1と同様にして試験を行った。
[実施例3]
赤外線反射性塗料Aに代えて、赤外線反射性塗料Cを用いた以外は実施例1と同様にして試験を行った。
[実施例4]
赤外線反射性塗料Aによって形成された層の上に、さらに赤外線透過性塗料Qを乾燥膜厚が30μmとなるように塗付・乾燥して試験体を作製し、実施例1と同様にして試験を行った。
[比較例1]
赤外線反射性塗料Aに代えて、赤外線透過性塗料Qを用いた以外は実施例1と同様にして試験を行った。
【0032】
【表2】
Figure 0003705572
【0033】
[試験結果]
表2に示すように、本発明の積層体である実施例1〜4では、発熱性が阻害されることなく、遮熱性に優れる結果となった。
【0034】
【発明の効果】
本発明積層構造を建築物の屋根や屋上等に適応すると、冬期には、比較的短時間で容易に融雪効果や凍結防止効果を発揮することができる。一方、夏期には、太陽光の熱線による屋根や屋上等の蓄熱を防止し、建築物内部の温度上昇を抑制することができる。従って、本発明積層構造は、一年を通じて優れた機能性を発揮するとともに、通年の電力消費を節約することが可能となる。また、本発明積層構造は既存の屋根等の表面に適応するため、屋根構造を大きく変える必要がなく、比較的容易に施工することができ、改修工事を兼ねることもできる。
【図面の簡単な説明】
【図1】本発明積層構造の一例を示す断面図
【図2】本発明積層構造の別の例を示す断面図
【符号の説明】
1:基材
2:発熱層
3:赤外線反射性を有する絶縁層
4:赤外線透過性を有する保護層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated structure that can exert a snow melting effect in winter and a heat shielding effect in summer by being applied to the surface of a building roof or rooftop.
[0002]
[Prior art]
Conventionally, as a method for melting snow on a roof of a building in a cold region, or a method for preventing freezing, a heating wire is installed on the inside of the roof, etc., and electric power is supplied to the heating wire to generate heat, thereby removing the outside snow. Methods are known that melt or prevent freezing. However, in such a method, since heat cannot be directly applied to snow or ice, a relatively long time is required for melting snow or ice, and power consumption increases.
On the other hand, a method of applying a heat-generating paint containing conductive powder such as graphite or conductive carbon to the surface of a roof or the like is also known, and this method directly heats snow and ice. The above problems can be solved. However, since the conductive powder is generally dark in color such as black, the formed coating film easily absorbs heat rays, and in summer when the sunlight is strong, the indoor temperature rises, the cooling load increases, and the power consumption also increases. There is a disadvantage that it ends up.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems. On the roof and rooftop of a building, the snow melting effect and the anti-freezing effect are exhibited in winter, and further, heat storage in summer is prevented. It is to obtain a laminated structure that can save power consumption throughout the year.
[0004]
[Means for Solving the Problems]
In order to solve these problems, the present inventor has intensively studied, and as a result, found that a heating layer and an insulating layer having infrared reflectivity are laminated on the surface of a roof or the like, and completed the present invention. It came.
[0005]
That is, the present invention provides the following laminate.
1. A heating layer containing a binder component and conductive particles on the roof or roof surface of a building, and containing 30 to 600 parts by weight of conductive particles with respect to 100 parts by weight of the resin solid content of the binder component,
An insulating layer containing 10 to 300 parts by weight of the infrared-reflective powder particles in order with respect to 100 parts by weight of the resin solid content of the binder component, containing a binder component and infrared-reflective powder particles;
Further, a protective layer having infrared transparency that contains 0 to 150 parts by weight of a colorant having infrared transparency is laminated on 100 parts by weight of the resin solid content of the binder component. A laminate having thermal properties.
2. The heating layer contains 30 to 600 parts by weight of conductive particles having a powder resistance value of 10 −4 to 10 2 Ω · cm with respect to 100 parts by weight of the resin solid content, and an electric resistance value of 10 −2 to 10 4 Ω · cm. and an insulating layer having infrared reflectivity has an electric resistance of 10 6 Ω · cm or more. The laminated body which has the snow melting and heat insulation of description.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail together with embodiments thereof.
[0007]
(1) Base material to be used The laminated structure of the present invention is applied to the outside of a roof, a rooftop or the like. Specifically, for example, clay roof tile, cement roof tile, slate plate, color steel plate, copper plate, aluminum plate, titanium plate, stainless steel plate, galvanized steel plate, etc., or those coated with these, waterproof mortar, sheet waterproofing material And a flat roof constructed with a waterproof coating material. The present invention can be applied relatively easily to existing roofs that need to be refurbished as well as to new roofs.
In the case where the target base material has insulating properties, the laminated structure can be directly stacked on the base material. On the other hand, when the substrate has conductivity, it is desirable to provide an insulating layer such as a synthetic resin film on the substrate.
[0008]
(2) Heat generation layer The heat generation layer (hereinafter also referred to as “(2) layer”) generates heat by supplying electric power and exhibits a function of melting snow and ice. (2) The layer is mainly composed of a binder component and conductive particles. In addition, other granular materials, additives, and the like can be included within a range that does not impair the effects of the present invention.
[0009]
It does not specifically limit as a kind of binder component, 1 type, or 2 or more types chosen from a thermoplastic resin and a thermosetting resin are used. Specifically, for example, ethylene, vinyl acetate, alkyd, vinyl chloride, acrylic, urethane, silicon, fluorine, or a composite of these can be used.
The glass transition temperature (hereinafter also referred to as “Tg”) of the binder component needs to be set higher than the heat generation temperature of the (2) layer in order to prevent significant softening due to heat generation of the (2) layer. Usually, Tg of a binder component is set in the range of 30-200 degreeC.
[0010]
As the conductive particles, those having a powder resistance value of 10 −4 to 10 2 Ω · cm are used. The powder resistance value in the present invention is a value obtained by molding a sample powder at a pressure of 10 MPa to form a cylindrical green compact (diameter 18 mm, thickness 3 mm) and measuring the DC resistance. Examples of such conductive particles include carbon black, graphite, copper, silver, gold, tin, lead, antimony, iron, nickel, cobalt, indium, antimony-containing tin oxide, phosphorus-containing tin oxide, and tin-containing indium oxide. Or a granular material doped with such particles. Such conductive particles can be used in the form of powder, fiber, whisker or the like. The conductive particles are desirably contained in an amount of 30 to 600 parts by weight with respect to 100 parts by weight of the resin solid content of the binder component. When the amount of the conductive particles is less than 30 parts by weight, the electric resistance value is increased, and a high voltage is required to obtain a desired heat generation, which is not preferable. When the amount is more than 600 parts by weight, cracks are likely to occur in the layer (2), resulting in a decrease in conductivity.
[0011]
(2) The layer has an electric resistance value of 10 −2 to 10 4 Ω · cm, preferably 10 1 to 10 3 Ω · cm. When the electric resistance value is larger than 10 4 Ω · cm, it is not preferable because a high voltage is required to obtain a desired heat generation, and the distance between the electrodes cannot be increased. If it is smaller than 10 −2 Ω · cm, it becomes conductive close to metal, and a large amount of current is required to obtain heat generated by Joule heat, which is not preferable.
[0012]
(3) Insulating layer having infrared reflectivity The insulating layer having infrared reflectivity (hereinafter also referred to as “(3) layer”) insulates the layer (2) and reflects the infrared region of sunlight to store heat. The function to prevent is exhibited. (3) The layer is mainly composed of a binder component and an infrared reflective granular material. In addition, a colorant, an additive, and the like can be included as long as the insulating property and the infrared reflectivity are not impaired.
[0013]
As the binder component, one having an insulating property and further having a property of transmitting without transmitting the infrared region of sunlight is used. The type of resin is not particularly limited, and ethylene, vinyl acetate, alkyd, vinyl chloride, acrylic, urethane, silicon, fluorine, or a composite of these can be used. . (3) When the layer is the outermost layer, it is preferable to use one kind or two or more kinds of resins selected from acrylic, urethane, silicon, and fluorine, since the weather resistance can be improved.
[0014]
As the infrared reflective powder particles, those having an effect of reflecting light rays in the infrared region of sunlight are used. Specific examples include aluminum flakes, titanium oxide, barium sulfate, zinc oxide, magnesium oxide, alumina, inorganic hollow beads, and organic hollow beads. Such a granular material is normally blended in an amount of 10 to 300 parts by weight per 100 parts by weight of the resin solid content of the binder component. When the amount of infrared reflective powder is less than 10 parts by weight, sufficient infrared reflectivity cannot be obtained with respect to sunlight, resulting in an increase in temperature. When the amount is more than 300 parts by weight, cracks are likely to occur in the layer (3), and there is a risk of reducing infrared reflectivity.
[0015]
(3) The infrared reflectance in the layer is 20% or more, preferably 50% or more, and more preferably 80% or more. By having such reflectivity, heat storage by sunlight can be sufficiently suppressed. The infrared reflectance in the present invention is a value obtained by measuring the spectral reflectance with respect to light having a wavelength of 1 μm.
[0016]
The electrical resistance value of the (3) layer is preferably 10 6 Ω · cm or more. By having such an electric resistance value, it is possible to reliably insulate the conductivity of the (2) layer.
[0017]
(4) Protective layer having infrared transparency In the present invention, (4) a protective layer having infrared transparency (hereinafter also referred to as “(4) layer”) can be provided as necessary. (4) By providing a layer, weather resistance, waterproofness, damage prevention, etc. can be improved. Furthermore, since the (4) layer has infrared transparency, heat storage can also be prevented.
[0018]
(4) The layer is mainly composed of a binder component, and may contain a colorant having infrared transparency as required. By containing these colorants, it is possible to carry out a color finish with an arbitrary hue on an infrared reflective layer that is usually limited to a hue such as white or metallic color, and particularly a dark color hue that is preferred as a roofing material. In the finishing, heat storage can be prevented. As other components, an ultraviolet absorber, an antioxidant, a fungicide, an algae, and the like can be added within a range that does not impair the effects of the present invention.
[0019]
As the binder component, a binder component that does not absorb the infrared region of sunlight and transmits it is used. The type of resin is not particularly limited, and ethylene, vinyl acetate, alkyd, vinyl chloride, acrylic, urethane, silicon, fluorine, or a composite of these can be used. . Among these, in the present invention, it is preferable to use one or two or more resins selected from acrylic, urethane, silicon, and fluorine, because the weather resistance can be improved.
[0020]
Examples of colorants having infrared transparency include perylene pigments, azo pigments, yellow lead, petals, vermilion, titanium red, cadmium red, quinacridone red, isoindolinone, benzimidazolone, cobalt blue, phthalocyanine blue, and indus. Examples include ren blue, ultramarine blue, and bitumen. Such a colorant is usually blended in an amount of 0 to 150 parts by weight with respect to 100 parts by weight of the resin solid content of the binder component.
[0021]
In the (4) layer, the infrared transmittance is desirably 50% or more, and more desirably 70% or more. By having such permeability, heat storage by sunlight can be prevented. The infrared transmittance in the present invention is a value obtained by measuring the spectral transmittance with respect to light having a wavelength of 1 μm.
[0022]
(5) Laminating method The laminated structure of the present invention is obtained by sequentially laminating (2) layer and (3) layer on the target substrate (1), or (2) layer and (3) layer. (4) The layers are laminated in order. When the conductivity of (1) is high, an insulating layer can be provided between the (1) and (2) layers. Further, in order to prevent the heat generated from the layer (2) from being released into the room, a heat insulating layer may be provided between the layers (1) and (2).
The method for forming the laminate of the present invention is not particularly limited. For example, a method of laminating by applying a paint, a method of laminating a sheet-like material prepared in advance, and the like can be employed. When using a sheet-like material, an adhesive layer can be provided between adjacent layers as long as the effects of the present invention are not impaired.
[0023]
In the present invention, by providing the outermost layer (3) or (4) with a function of preventing black contaminants such as carbon, which may be a heat storage source, from adhering to the surface, the heat storage prevention effect can be provided over a long period of time. Can be maintained. Such a function is expressed by techniques such as reducing the contact angle of the layer surface with water, increasing the hardness of the layer surface, and reducing the chargeability of the layer surface. Specifically, such a layer can be obtained by applying a paint containing an alkoxysilane compound such as silicate, or a condensate or modified product thereof.
[0024]
【Example】
Examples and Comparative Examples are shown below to clarify the features of the present invention.
[0025]
[Preparation of conductive heating paint]
A conductive heat-generating paint P was prepared by blending 160 parts by weight of graphite (powder resistance value 16 Ω · cm) with respect to 100 parts by weight of the resin solid content of an acrylic resin having a Tg of 80 ° C. The electric resistance value of the dry film (film thickness 1.0 mm) obtained by this conductive heat-generating paint P was 90 Ω · cm. The electrical resistance value was measured by a two-terminal method using a digital multimeter (the same applies to the following measurements).
[0026]
[Production of infrared reflective paint]
(Infrared reflective paint A)
80 parts by weight of titanium oxide was blended with 100 parts by weight of the resin solid content of the acrylic resin to obtain an infrared reflective paint A. The infrared reflectance of the dry film (thickness 30 μm) obtained by the infrared reflective paint A was 60%, and the electric resistance value was infinite. The infrared reflectance was obtained by measuring the spectral reflectance with respect to light having a wavelength of 1 μm using a spectrophotometer “UV-3100” (manufactured by Shimadzu Corporation) (the same applies to the following measurements).
(Infrared reflective paint B)
Infrared reflective paint B was obtained by blending 200 parts by weight of hollow glass beads with respect to 100 parts by weight of the resin solid content of the acrylic resin. The infrared reflectance of the dry film (film thickness 30 μm) obtained by this infrared reflective paint B was 70%, and the electric resistance value was infinite.
(Infrared reflective paint C)
50 parts by weight of aluminum powder was blended with 100 parts by weight of the resin solid content of the acrylic resin to obtain an infrared reflective paint C. The infrared reflectance of the dry film (thickness 30 μm) obtained by this infrared reflective paint C was 60%, and the electric resistance value was infinite.
[0027]
[Production of infrared transparent paint]
An infrared transmitting paint Q was obtained by blending 14.3 parts by weight of the isocyanate compound and 20 parts by weight of the phthalocyanine blue pigment with respect to 100 parts by weight of the resin solid content of the acrylic polyol resin. The infrared ray transmittance of the dry film (thickness 30 μm) obtained by this infrared ray transmissive paint Q was 82%, and the electric resistance value was infinite. The infrared transmittance was obtained by measuring the spectral transmittance with respect to light having a wavelength of 1 μm using a Fourier transform near-infrared analyzer “Spectrum Identity Check” (manufactured by Perkin Elmer).
[0028]
Table 1 shows the raw materials used for preparing the paint.
[Table 1]
Figure 0003705572
[0029]
[Example 1]
A conductive heat generating paint P is applied and dried to a thickness of 1.0 mm on a color totan (galvanized steel sheet coated with a colored synthetic resin paint) having a thickness of 0.5 mm, and a heat generating layer is formed. Formed. Next, on this heat generating layer, the infrared reflective paint A was applied and dried so as to have a dry film thickness of 30 μm to obtain a test specimen. About the produced test body, when the thermal-insulation test and the heat-generation characteristic test were done according to the following test method, the result shown in Table 2 was obtained.
[0030]
[Thermal insulation test method]
At 23 ° C., the surface of the test body was irradiated with infrared rays (infrared lamp of 250 W) for 10 minutes, and the back surface temperature was measured.
[Heat generation characteristic test]
A voltage of 50 V was applied to the specimen at 23 ° C., and after 30 minutes, the surface temperature of the specimen was measured.
[0031]
[Example 2]
A test was conducted in the same manner as in Example 1 except that the infrared reflective paint B was used in place of the infrared reflective paint A.
[Example 3]
A test was conducted in the same manner as in Example 1 except that the infrared reflective paint C was used in place of the infrared reflective paint A.
[Example 4]
On the layer formed of the infrared reflective paint A, an infrared transparent paint Q is further applied and dried to a dry film thickness of 30 μm to prepare a test specimen. Went.
[Comparative Example 1]
The test was conducted in the same manner as in Example 1 except that the infrared transmitting paint Q was used in place of the infrared reflecting paint A.
[0032]
[Table 2]
Figure 0003705572
[0033]
[Test results]
As shown in Table 2, in Examples 1-4 which are the laminated bodies of this invention, it became the result excellent in heat-shielding property, without the exothermic property being inhibited.
[0034]
【The invention's effect】
When the laminated structure of the present invention is applied to a roof or a roof of a building, a snow melting effect and an anti-freezing effect can be easily achieved in a relatively short time in winter. On the other hand, in summer, it is possible to prevent heat accumulation on the roof, the rooftop, and the like due to the heat rays of sunlight, and to suppress the temperature rise inside the building. Therefore, the laminated structure of the present invention exhibits excellent functionality throughout the year, and can save power consumption throughout the year. Further, since the laminated structure of the present invention is adapted to the surface of an existing roof or the like, it is not necessary to change the roof structure greatly, it can be constructed relatively easily, and it can also serve as a repair work.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of the laminated structure of the present invention. FIG. 2 is a cross-sectional view showing another example of the laminated structure of the present invention.
1: Base material 2: Heat generation layer 3: Insulating layer having infrared reflectivity 4: Protective layer having infrared transparency

Claims (2)

建築物の屋根や屋上の表面に、バインダー成分と導電性粒子を含有し、バインダー成分の樹脂固形分100重量部に対し導電性粒子を30〜600重量部含有する発熱層、
バインダー成分と赤外線反射性粉粒体を含有し、バインダー成分の樹脂固形分100重量部に対し赤外線反射性粉粒体を10〜300重量部含有する絶縁層を順に積層し、
さらにその上にバインダー成分の樹脂固形分100重量部に対し、赤外線透過性を有する着色剤を0〜150重量部含有する赤外線透過性を有する保護層を積層することを特徴とする融雪及び遮熱性を有する積層体。
A heating layer containing a binder component and conductive particles on the roof or rooftop of a building, and containing 30 to 600 parts by weight of conductive particles with respect to 100 parts by weight of resin solids of the binder component,
An insulating layer containing 10 to 300 parts by weight of an infrared-reflective powder is sequentially laminated to 100 parts by weight of the resin solid content of the binder component, containing a binder component and an infrared-reflective powder,
Furthermore, a snow-melting and shielding layer characterized by laminating a protective layer having infrared transparency containing 0 to 150 parts by weight of a colorant having infrared transparency with respect to 100 parts by weight of the resin solid content of the binder component. A laminate having thermal properties.
発熱層が、粉体抵抗値10−4〜10Ω・cmの導電性粒子を樹脂固形分100重量部に対し30〜600重量部含有し、かつ電気抵抗値10−2〜10Ω・cmであり、赤外線反射性を有する絶縁層が電気抵抗値10Ω・cm以上であることを特徴とする請求項1記載の融雪及び遮熱性を有する積層The heat generation layer contains 30 to 600 parts by weight of conductive particles having a powder resistance value of 10 −4 to 10 2 Ω · cm with respect to 100 parts by weight of the resin solid content, and an electric resistance value of 10 −2 to 10 4 Ω · cm. The laminated body having snow melting and heat shielding properties according to claim 1, wherein the insulating layer having an infrared reflectivity of 10 cm has an electric resistance value of 10 6 Ω · cm or more.
JP35877299A 1999-12-17 1999-12-17 Laminated body having snow melting and heat shielding properties Expired - Fee Related JP3705572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35877299A JP3705572B2 (en) 1999-12-17 1999-12-17 Laminated body having snow melting and heat shielding properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35877299A JP3705572B2 (en) 1999-12-17 1999-12-17 Laminated body having snow melting and heat shielding properties

Publications (2)

Publication Number Publication Date
JP2001171032A JP2001171032A (en) 2001-06-26
JP3705572B2 true JP3705572B2 (en) 2005-10-12

Family

ID=18461035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35877299A Expired - Fee Related JP3705572B2 (en) 1999-12-17 1999-12-17 Laminated body having snow melting and heat shielding properties

Country Status (1)

Country Link
JP (1) JP3705572B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4375537B2 (en) * 2003-03-28 2009-12-02 アキレス株式会社 Colored sheet having light shielding effect
US20050142329A1 (en) * 2003-12-24 2005-06-30 Anderson Mark T. Energy efficient construction surfaces

Also Published As

Publication number Publication date
JP2001171032A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
EP1244543B1 (en) Thermochromic laminates and methods for controlling the temperature of a structure
CN102496642B (en) Back sheet of solar cell and preparation method for back sheet
Berdahl et al. Preliminary survey of the solar reflectance of cool roofing materials
JPS597043A (en) Heat-wave shielding laminate
CN104070734B (en) A kind of coated glass with high reflectivity and preparation method thereof
US20100288333A1 (en) Heat dissipating protective sheets and encapsulant for photovoltaic modules
JP6498202B2 (en) Low radiation coating and functional building materials for joinery including the same
JPS58209549A (en) Heat-wave shielding laminate
EP2488365A1 (en) Thermally conducting materials for solar panel components
Mercs et al. Innovative smart selective coating to avoid overheating in highly efficient thermal solar collectors
CN113015769A (en) Metal-free coating capable of reflecting sunlight and emitting infrared light and preparation method thereof
EP3631865A1 (en) Colored photovoltaic module with nanoparticle layer
US20130330570A1 (en) Energy-shielding plastics film
JP6791156B2 (en) Organic photoelectric conversion element and organic thin film solar cell module
JP3705572B2 (en) Laminated body having snow melting and heat shielding properties
Lin et al. Nanoparticle-polymer hybrid dual-layer coating with broadband solar reflection for high-performance daytime passive radiative cooling
US20150144188A1 (en) Black glass and solar cell assembly using the same
JPH1190328A (en) Decrease of temperature of structure
JP3650301B2 (en) Laminated structure with snow melting and heat insulation
JP3311664B2 (en) White paint and its coating
WO2020057599A1 (en) Heating building material and preparation method therefor
CN210887845U (en) Anti-aging water-based paint coating structure
JPH10151412A (en) Surface treated plate with high reflectance
EP4061633A1 (en) Laminated glazing
WO2022272115A1 (en) Building materials comprising graphene and related methods

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees