JP3705489B2 - Honeycomb filter plugging method and honeycomb filter - Google Patents

Honeycomb filter plugging method and honeycomb filter Download PDF

Info

Publication number
JP3705489B2
JP3705489B2 JP2002001386A JP2002001386A JP3705489B2 JP 3705489 B2 JP3705489 B2 JP 3705489B2 JP 2002001386 A JP2002001386 A JP 2002001386A JP 2002001386 A JP2002001386 A JP 2002001386A JP 3705489 B2 JP3705489 B2 JP 3705489B2
Authority
JP
Japan
Prior art keywords
cell opening
opening hole
cell
plugged
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002001386A
Other languages
Japanese (ja)
Other versions
JP2003200010A (en
Inventor
展生 勝部
元秀 西尾
勇 狩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002001386A priority Critical patent/JP3705489B2/en
Publication of JP2003200010A publication Critical patent/JP2003200010A/en
Application granted granted Critical
Publication of JP3705489B2 publication Critical patent/JP3705489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多数のセルを有するハニカムフィルタに関わり、セルの開口端を選択的に封止する栓詰め方法、及び栓詰めされたハニカムフィルタに係わるものである。
【0002】
【従来の技術】
ハニカムフィルタは、主として内燃機関から排出される排気ガス中の固体微粒子を捕捉するために用いられ、多孔質材でつくられたハニカム構造体からなり、仕切り壁で分割されて両端面に開口部を有する多数のセルを備えている。同一セルで見た場合、セルの一端は開口し他端は封止するように製造され、例えば、ハニカムフィルタの一方の端面は、市松模様又はチェッカー盤模様をなすように一つおきのセルの一端に封止材が充填され、他方の端面は残りのセルの一端が前記一方の端面の市松模様と逆の市松模様をなすように封止される場合が多い。以後、セルの端面開口部をセル本体と区別してセル開口穴と呼び、セル開口穴を充填材で封止することを栓詰めと呼ぶ。
【0003】
ハニカムフィルタ製造における栓詰めに係わる技術として、例えば特公平2−45481号公報(公知例1)に開示されたものがある。即ち、ハニカム構造の選択されたセルの端部に流動性材料を充填する方法において、ハニカム構造の端面に溶融可能な材料で形成されたカバーを被せて多数のセル開口穴を閉鎖し、前記カバー上を走査して、選択されたセルの位置を決定し、そのセルの位置を示す第1の信号を発生し、その第1の信号に応じて穿孔手段を位置させるための第2の信号を発生し、その第2の信号に応じて穿孔手段を位置させ、その穿孔手段によって前記カバーに穴をあける工程からなることが記載されている。
【0004】
また、特開2001−300922号公報(公知例2)において、セラミックハニカム成形体の端面に貼り付けたシートの所定のセルに対応した位置に穴を明けてハニカム成形体毎に対応したマスクを作成し、マスクを貼り付けた面を封止用スラリーに浸漬し、マスクに明けられた穴から封止用スラリーをセル中に充填することを特徴としたセラミック体の製造方法が開示されており、セルピッチが、穴明け位置に対して1セル以上の誤差が発生するような直径300mm以上のハニカム成形体に対しても自動化できると記載されている。
【0005】
【発明が解決しようとする課題】
ハニカム構造体が大型になりセル開口穴数が数千から数万個と膨大になると、いかに能率的にかつ正確に、栓詰めすべきセル開口穴の位置情報を得て、該穴を被うカバーを除去するかが重要となる。ハニカム構造体が、ほとんど歪みなく、セル開口穴がほぼ設計図面どおりに成形されていれば、セル穴の配列方向に合わせて回転方向を位置決めし、設計データをもとに数値制御を利用した設備で対応することができる。しかし、セル開口穴の配列が歪んで製品個々に異なったり、セル開口穴自体の形状も変形してくると、数値制御技術だけでは対応できず、画像処理を応用した測定技術と、位置制御の自由度が高い高速加工技術、例えばレーザ加工技術を用いて対応することが考えられる。
前記公知例1においては、選択されたセルの位置を決定するための走査手段としてテレビカメラ等の光学装置を用い、光学装置がセルや仕切り壁の位置を示す信号を出力すること、また、穿孔手段としてピン状の加熱穿孔エレメントやレーザを用いることが記載されているが、どのようにして選択するセルを決め、その位置を決定するのか、また、レーザを用いた場合の具体的な穿孔方法については説明されておらず、実際の栓詰め処理に適用することはできない。
【0006】
また、公知例2においては、セル位置の認識及びシートへの穴明けを、画像処理及びレーザ加工で実施すること、またシートへの穴明けを複数の小ブロックに分割して小ブロック毎に行うことが記載されている。しかし、セル位置の認識は、シートを貼り付ける前に行っており、その後のシートの貼り付け時やハンドリング時にハニカム成形体の位置がずれるとセル位置は認識できなくなる。このため、工程的及び設備的には、ハニカム成形体を撮像した後、その位置情報を保持できる状態でシートを貼り付けなければならないという制約がある。また、穴明けは、基本的には設計値通りのセルピッチで行う数値制御で行っており、セルピッチが大きく変形したハニカム成形体に対しては、端面に一気に実施すると1セル以上の誤差が発生するため、端面のセルを複数の小ブロック群に分割して小ブロック毎に実施することで1セル以内の誤差に収めると説明されている。また、セルの多少のピッチ変動に対しては、四角形のセルに対し小さな丸穴を明けることで対処するとも説明されている。
【0007】
しかし、セルピッチが1セル以内となるような小ブロックをどのようにして設定するかの記載はなく、ハニカム成形体の外径やセルピッチから予め所定範囲を決めておくとすれば、ハニカム成形体の変形程度によっては誤差が1セル以上発生する場合もある。また、セルピッチ誤差が1セル以内であっても、セルの配列が1セル近くもずれると、正しい市松模様になるように穴明けさせられない恐れがあり、交互のセルに開口するという点で信頼性に問題がある。また、確実に栓詰め用封止材を充填するためには開口穴面積は大きい方が好ましいが、この点で封止品質の信頼性に問題がある。なお、画像処理で認識したセル位置情報は、どのような処理に使用されるのか具体的な説明はないが、小ブロックの穴明け基準位置を計算するためにだけ用いられていると推測される。
従って本発明は、ハニカムフィルタの栓詰め方法において、ハニカム構造体に形成されたセル開口穴から、あるがままの連なり状態に対応した適切な栓詰めすべきセル開口穴を選定するための方法を、また、被覆されたシートをセル開口穴から適切に除去する方法を提供することを目的としている。また、前記方法を用いて製造したハニカムフィルタを提供することも目的としている。
【0008】
【課題を解決するための手段】
本発明は、軸方向に延びるセルが多数形成されたハニカム構造体のセル開口穴に栓詰めするハニカムフィルタの栓詰め方法において、所定のセル開口穴を基準として、隣接するセル開口穴のセル仕切壁の方向基づいて規定したセル開口穴に、栓詰め用穴とするか栓詰め不用穴とするかを識別するためのセル穴識別情報を割り付け、栓詰めすべきセル開口穴を選定する工程を有することを特徴としている。なお、栓詰め用穴と栓詰め不用穴の配置はフィルタの仕様に合わせて規定されるが、その配置に基づいて栓詰め穴用と非栓詰め穴用が判定できるデータを割り付ければよい。栓詰め穴が市松模様に配置されるようなフィルタに対しては、栓詰め穴用と非栓詰め穴用データが交互になるように割り付けるとよい。また、前記セル開口穴はシートで被われていてもよい。
【0009】
前記本発明においては、セル穴識別情報を行列番号とし、所定のセル開口穴を基準として順次隣接するセル開口穴に連続した行列番号を割り付け、予め栓詰めすべく設定したセル開口穴に割り付けられた行列番号をもとに、栓詰め穴か非栓詰め穴かを判定して、栓詰めすべきセル開口穴を選定することが好ましい。実施形態としては、予め栓詰めすべく設定したセル開口穴に割り付けられた行列番号を加算又は減算してその値が偶数か奇数かの属性を求めて判定データとし、各セル開口穴に割り付けられた行列番号の行番号と列番号を加算又は減算してその値が偶数か奇数かの属性を求め、前記判定データと同じ属性となるセル開口穴を栓詰めすべきセル開口穴として選定するのが好ましい。
また、前記本発明においては、ハニカム構造体の端面を撮像し、画像処理で算出したセル開口穴の座標情報をもとに、隣接するセル開口穴を順次求めるようにすることが望ましい。好ましくは、シートが被覆された後のハニカム構造体の端面を撮像するとよい。
また、ハニカム構造体の端面を複数のエリアに分割し、隣するエリアの画像には同一セル開口穴が含まれるようにエリア毎に撮像し、各撮像画像で独自に付与されたセル開口穴のセル穴識別情報を、重複して撮像されたセル開口穴をもとに端面全域で統一したセル穴識別情報に割り付け直し、栓詰めすべきセル開口穴を選定するのが望ましい。これにより、大径のハニカム構造体に対するセル開口穴選定処理を容易に行うことができるだけでなく、セル開口穴の座標情報を高い分解能で求めることができ、選定処理だけでなく、その後のシート除去処理を高い精度で行うことができる。
【0010】
また本発明は、軸方向に延びるセルが多数形成されたハニカム構造体のセル開口穴に栓詰めするハニカムフィルタの栓詰め方法において、選定したセル開口穴を被うシートを除去する工程は、ハニカム構造体の端面を複数の加工エリアに分け、該加工エリアの栓詰めすべきセル開口穴を被うシートにレーザ光を偏向させて照射してシート除去処理を行うことを特徴としている。本発明においては、セル開口穴を被うシートを、セル開口穴面積の40%〜90%除去することが好ましい。また、本発明においては、画像処理により算出されたセル開口穴の座標値をもとに、栓詰めすべく選定されたセル開口穴形状が許容範囲にあるか否かを判定し、許容範囲内のものは予め設定したパターンで、また許容範囲外のものについては実形状にあわせて、栓詰めすべきセル開口穴を被うシートにレーザ光を偏向させて照射してシート除去処理を行うようにするとよい。なお、本発明は、前述した栓詰めすべきセル開口穴を選定する発明とともに実施するのが望ましい。なお、上記本発明で述べた栓詰め方法とは、セルの端面開口部であるセル開口穴のうちから封止材を充填して栓詰めすべきセル開口穴を選定する工程と、選定したセル開口穴を被うシートを除去する工程と、シートが除去されたセル開口穴に封止材を充填する工程とを有するものである。
【0011】
本発明のハニカムフィルタは、軸方向に延びるセルが多数形成されたハニカム構造体のセル開口穴が部分的に栓詰めされているハニカムフィルタであって、上記いずれかの栓詰め方法で選択された栓詰めすべきセル開口穴がセラミックで栓詰めされたものであることを特徴としている。
また、本発明のハニカムフィルタは、軸方向に延びるセルが多数形成されたハニカム構造体のセル開口穴が部分的に栓詰めされているハニカムフィルタであって、栓詰め用セラミックは、上記いずれかの栓詰め方法でシートが除去されてなるシート穴部から栓詰めすべきセル開口穴に充填されたことを特徴としている。前記除去率は40%〜80%が好ましく、40%〜65%がさらに好ましい。また、本発明においては、シート穴部の形状はセル開口穴に倣った形状であることが望ましい。
【0012】
【発明の実施の形態】
図1は、本発明の一実施形態を説明するためのシステム例を示図である。
ハニカム構造体1は外周面が外殻をなす柱状で、軸方向に延び、軸方向に直交する断面が格子状をなす多数の仕切り壁で分割された多数のセルを有し、前工程で一端面或は両端面に栓詰め用封止材の侵入防止用のシートが貼られている。ハニカム構造体1は一端面を上にしてXYステージ2にセットされる。XYステージ2の上方には、ハニカム構造体1の端面を撮像する手段としてのCCDカメラ3と、シート除去手段としてのレーザ光を照射するレーザヘッド5が配設されている。XYステージ2は、ハニカム構造体1をセット、取出しする位置と、CCDカメラ3で撮像する位置と、レーザ光を照射する位置との間を移動できるストロークを有している。制御装置4は、XYステージ2の位置制御をするとともに、撮像時のCCDカメラ3からの画像情報及びXYステージの移動情報を取込んで、栓詰めすべきセル開口穴の位置と形状を求め、シート除去時のレーザ光照射制御及びXYステージ2の位置制御を行う。なお、セル開口穴はシートを通して撮像されるので、シートは光透過性を有しており、使用するレーザ光や封止材に合わせた材質、厚さのものを使用する。
【0013】
CCDカメラ3は、セル開口穴の形状を規定するに十分の画像分解能が必要であり、セル開口穴の形状や大きさで視野が決定される。大型のハニカム構造体に対し、1視野で全端面を撮像すると画像分解能が低下し、セル開口穴の位置や形状を算出する座標情報を精度よく得ることができなくなるため、複数視野で端面を撮像することが望ましい。また、レーザ光による加工を高速に行うためには、光ビームをガルバノメータを用いて機械的に或いは電気的に偏向させて進行方向に振って行うのが一般的であり、この時加工できる範囲(以降、加工範囲と呼ぶ)は用いるレーザ加工機により決まってくる。光ビームの振れ幅が大きければ加工範囲は広くなるが、照射中心より離れるほど加工面に対しレーザ光は斜めに照射される。このため、端面全域が加工範囲内にあっても、中心部と周辺部では照射位置及びシート溶融状態に差が生じる。従って、栓詰め不良が発生しないような精度でシートが除去できるようなエリア(以降、加工エリアと呼ぶ)を設定し、これに合わせた加工を行うことが重要となる。
【0014】
以下、格子状に形成された仕切り壁により1辺が約1mmの正方形状のセル開口穴が一端面に約15000個形成された、DPF用に利用される略円柱形状のハニカム構造体1を例に本発明を説明する。
栓詰めすべきセル開口穴は、一方の端面と他方の端面とで逆の市松模様をなすように選定するとする。このためには、基本的には、セル開口穴の連なり状態に応じて合理的に隣接セル開口穴を規定し、予め栓詰めすべく設定したセル開口穴を基準として、隣接するセル開口穴に、栓詰め不用穴とするか栓詰め用穴とするかを識別するためのセル穴識別情報を、栓詰め穴用と非栓詰め穴用データが交互になるように割り付ければよい。このため、栓詰めすべく設定した基準穴には、センサなどで認識できるようなマーキングを施しておくことが好ましい。なお、一端面側においては、栓詰めすべき基準穴としては任意の穴でよいため特にマーキングを施す必要はないが、この場合の他端面側の基準穴は、一端面側の市松模様を構成するセルと異なるセルのうちから、任意に少なくとも一つの開口穴を自動的または人為的に選定する必要がある。以下、一端側の基準穴にも、これを被うシートに画像処理で識別できるマーキング、例えば黒丸印や貫通穴などが施されているとして説明する。
【0015】
栓詰めすべきセル開口穴位置の選定方法の具体例を、図2に従って説明する。最初に、図2のS1に示すように、CCDカメラ3でハニカム構造体1の一端面を撮像する。上記サイズのセル開口穴を良好な精度で計測するための画像分解能は約0.1mm/画素が必要であり、このためには、端面を4分割して撮像すればよいとする。撮像は、端面を4つのエリアに分けるようにXYステージ2を移動して行う。それぞれの撮像画面G1〜G4の模式図を図3の(a)から(d)に示すが、隣接エリアと一部重なるように、かつ重なる部分(斜線で示す)には同じセル開口穴が含まれるように撮像する。続いてS2に示すように、撮像した画像を画像処理し、画面毎に各セル開口穴のエッジ座標情報をもとに、各セル開口穴の図心座標、面積、辺長、対角線長などを求める。
【0016】
次いで、S3に示すように、任意のセル開口穴に対し隣接するセル開口穴を規定し、セル穴識別情報として連続した行列番号を割り付けていく。同一行番号を有するセル開口穴は、列番号順に行方向に合理的な並びで連接されていることを表し、同一列番号を有するセル開口穴は、行番号順に列方向に合理的な並びで連接されていることを表す。しかし、セルの歪み等によりセル配置がずれたりセル開口穴が変形したりしたハニカム構造体を、各セル開口穴の図心位置だけをもとにして隣接するセル開口穴を規定しようとすると、図心間距離のばらつきなどにより合理的な行又は列方向が得られない場合が生ずる。従って、セル仕切り壁の方向も考慮した隣接セル探索ルールで隣接セル開口穴を規定していく。この結果得られる本発明で言う行及び列方向は、固定的に決めた水平及び垂直方向に直線状に伸びた方向ではなく、ハニカム構造体個々に規定され、傾斜していたり、曲線状であったりし、また行と列方向が斜めに交差するなど種々の形態をとることになる。
【0017】
次に、隣接セル開口穴を規定するための隣接セル探索ルールを説明する。
探索開始用のセル開口穴は任意に決めてよいが、本説明では画面内のセル開口穴の図心座標のうち、例えば端面の輪郭線と画面境界線の交点座標に一番近い図心座標を探索し、この図心を擁するセル開口穴を探索開始用のセル開口穴とし、識別情報として例えば1行1列を割り付ける。行方向に隣接するセル開口穴を規定する場合、この1行1列のセル開口穴の図心を最初の起点とし、画面座標のX軸方向に仮走査し、最初に交わる仕切り壁面に対し、その両端から延びる隣接仕切り壁のうち、所定の仕切り壁に沿った方向を算出し、この方向を1行1列のセル開口穴の行方向とし、起点と行方向を基準に所定のサーチエリアを設け、この範囲内にある他の図心座標のうち、起点から直近にある図心座標を求め、この図心座標を擁するセル開口穴を隣接セル開口穴とし1行2列と割り付ける。次に、1行2列のセル開口穴の図心を起点とし、上記と同様な処理を行って隣接セル開口穴を規定し1行3列を割り付ける。以下、順次同様な処理を行って同一行の列付けを行う。同様にして、列方向に隣接するセル開口穴の規定も行うことができる。
【0018】
以下、図3、4を参照しながら、画面G1を例にして、具体的に隣接セル開口穴の規定方法、即ち行列番号の割り付けについて説明する。
画面G1における探索開始用のセル開口穴は、セル開口穴の図心のうち、端面の輪郭線G1Lと画面境界線G1Xの交点GKに最も近い図心を擁するセル開口穴11とし、1行1列と割り付ける。右隣で1行2列と割り付けられるべきセル開口穴は、セル開口穴11の図心11zを最初の起点にして、行方向11gに延びるように設定したサーチエリアE1(点線内のハッチングAで示す)内にある図心座標のうち、直近にある図心座標を擁するセル開口穴12とする。セル開口穴11の行方向11gは、図心11zから画面座標のX軸方向に仮走査し、最初に交わる仕切り壁面に対し、その両端から延びる隣接仕切り壁のうち、例えば上側の仕切り壁に沿った方向とするが、本例のセル開口穴は正方形であることから、最初に交わる仕切り壁面に対し、直交した方向とする。
【0019】
次いで、セル開口穴12の図心12zを起点として、セル開口穴11の行方向11gに仮走査して最初に交わる仕切り壁面に対して直交する方向を求め、この方向をセル加工穴12の行方向12gとし、上記と同様の処理を行うとセル開口穴13が探索され1行3列となる。この処理を順次行うことにより、画面内の1行目に連なるセル開口穴が探索され、連続した列番号がつけられていく。
なお、図4に示したサーチエリアE1は、長手方向が設計上のセル開口穴間隔の1.5倍で、短手方向がセル開口穴間隔の1倍の範囲とし、図心を中心として短手方向を振分けるように設定しているが、セル開口穴形状が歪んだり配置がずれたりしていても、許容範囲内であれば隣接するセル開口穴が探索できるような範囲を設定すればよい。
【0020】
続いて2行目の全列にセル開口穴番号を割り付けるために2行目の最初の起点を求める。本画面における2行目は1行目の上方に位置するので、2行目の最初の起点は、1行1列のセル開口穴11から列方向上方に隣接するセル開口穴を探索することで求める。即ち、1行1列のセル開口穴11の図心11zを起点とし、行方向11gに直交する上向の方向を列方向11rとし、上述した行方向に設定したと同様範囲のサーチエリアE2を、列方向11rに長手方向が延びるように設定し(点線内のハッチングBで示す)、この中にある図心座標を抽出することで行う。図4においてはセル開口穴21の図心21zがこれに相当し、2行目の最初の起点が決まるとともに、セル開口穴21がセル開口穴11の列方向上方に隣接するセル開口穴と規定され、識別情報として2行1列を割り当てる。
【0021】
続いて、セル開口穴21の図心21zを起点とし、上述したと同様にして求めたセル開口穴21の行方向21gにサーチエリアE1を設定し、その中にある図心座標を求め、セル開口穴22を規定し、2行2列を割り付ける。このようにして2行目のセル開口穴に順次列番号を割り付けていく。
なお、前記設定したサーチエリアE2内に、セル開口穴の図心座標がない場合は、2行目の開始点は、1行目の開始点の右隣である1行2列のセル開口穴12の図心から上記と同様にサーチエリアE2を設定することによって求める。この場合に求められた2行目の開始点を有するセル開口穴は、2行2列として割り付ける。
【0022】
以上のようにして、1行目のセル開口穴の上方にあるセル開口穴全てについて行列番号を割付るが、ハニカム構造体1の回転方向セット姿勢によっては、行方向が画面座標軸に対し斜めに設定され、1行目のセル開口穴の下方のセル開口穴が未割り付けとなることがある。この場合は、引続いて1行目のセル開口穴の下方に対して行列番号割り付け処理を行い、行列番号が一連の数字で表されるように適宜修正すればよい。このようにして、画面G1内の全てのセル開口穴に行と列番号を割り振る。同様にして、画面G2、G3、G4内の全てのセル開口穴に行と列番号を割り付ける。なお、行列番号は、同一画面内及び違う画面であっても、番号の昇順方向が画面座標で同じ方向になるようにする。
【0023】
次に、S4に示すように、各画面固有に割り付けた行列番号を、一つのハニカム構造体1の統一的な行列番号に割り付けし直す。前述したように、各画像は、隣接エリアが一部重なるように、かつ重なる部分には同じセル開口穴が必ず含まれるように撮像されているため、まず、重複して撮像されたセル開口穴から任意のセル開口穴を選定し、一方の画面において割り付けられた行列番号が、他方の画面において割り付けられた行列番号に一致するような補正データを算出し、これを一方の画面の行列番号の修正に用いる。例えば図5において、セル開口穴11が、画面G1においては1列1行であり、画面G3においては11行1列であるとすると、画面G1で付けた行列番号を画面G3を基準として付け直すには、画面G1における行列番号の行番号に補正値10を加算すればよいことになる。列番号にもずれがあれば、同様にずれ分を加算または減算すればよい。次いで画面G2、画面G4へと同様の処理を展開する。これにより、ハニカム構造体1の端面全面に形成された全てのセル開口穴に、連続した行と列の番号を重複することなく割り付けることができる。なお、この時に基準とする画面は適宜選定すればよい。
【0024】
次に、S5に示す栓詰めすべきセル開口穴の選定方法について説明する。
前述したように、栓詰めすべき設定したセル開口穴の一つにはマーキングが施されているので、このマーキングを撮像時画像処理で認識し、このセル開口穴に割り付けられた行列番号を求める。この行列番号をもとにすると、栓詰めすべき他のセル開口穴は簡単な数値計算で求めることができ、極めて短時間で規定することができる。即ち、市松模様に栓詰めするには、マーキング部のセル開口穴の行と列番号を加算した値が偶数の時、栓詰めすべき他のセル開口穴は、行と列番号を加算した値が偶数となるセル開口穴である。マーキング部のセル開口穴の行と列番号を加算した値が奇数の場合は、行と列番号を加算した値が奇数となるセル開口穴である。行番号から列番号を減算した場合も同様である。また、各画面内のセル開口穴の図心座標は求められており、各画面の座標位置関係はXYステージの移動量から求めることができるので、端面の全セル開口穴の図心座標は、任意に設定したCCDカメラ座標系で一義的に求めることができ、上記で求めた栓詰めすべきセル開口穴について、その図心や形状などを表す座標情報を行列番号とリンクして制御装置4に記憶させておくことができる。
【0025】
上述したように、本発明における行列番号は、連続的な数値データであり、算術計算で栓詰めすべきセル開口穴を規定することができる識別情報としての機能だけでなく、ハニカム構造体端面内におけるアドレス情報としても使用でき、該セル開口穴の概略位置を知ることができ、後述するように端面を複数箇所に分けてシート除去をするような場合には好適である。また、各セル開口穴の位置、形状等の各種データをコンピュータ処理するときの管理用ラベルとして用いることもできる。
【0026】
以上、栓詰め穴とするか栓詰め不用穴とするかを識別するためのセル穴識別情報として行列番号を用いた例を説明したが、栓詰め穴用と非栓詰め穴用が直接識別できるデータを有するセル穴識別情報を用い、隣接するセル開口穴に、栓詰め穴用と非栓詰め穴用データを交互に付与するようにしてもよい。前記データとしては、コンピュータ処理がし易いように、例えば「1」「0」を用いるとよい。この場合、最初から、栓詰めすべき穴は1、栓詰めしない穴は0として全セル開口穴に仮割り付けを行った後、基準穴に割り付けられたデータを参照し、そのデータが1であれば、各セル開口穴に付与した情報はそのまま保持し、0であればデータを反転して保持するようにしてもよいし、最初は単に1、0を割り付けて基準穴に割り付けられたデータを参照し、そのデータと同じ数値が割り付けられたセル開口穴を栓詰めすべき穴と規定するようにしてもよい。
なお、本説明は、端面を4視野で撮像した場合で行ったが、1視野で撮像した画面に対しても適用できることは言うまでもない。また、セル開口穴がほぼ設計図通りに正確に形成され、セル開口穴が一定方向になるように回転方向が位置決めされる場合は、隣接するセル開口穴は、画像処理で算出した座標情報をもとにして求めなくても、設計図で得られる座標情報から求めることもできる。
【0027】
次に、シート除去方法について説明する。
栓詰めすべきセル開口穴が選定されると、ハニカム構造体1がレーザヘッド5の下方へ来るように、XYステージ2を移動制御する。前述したように、光偏向式レーザ加工機を用いて、シートの所定箇所を良好な精度で除去するためには、光ビームの振れ幅が小さい範囲を加工エリアとすることが重要である。例えば、一辺が100mm四方の加工範囲を有するレーザ加工機を用いた実験では、70mm四方を超える位置にあるセル開口穴は、図心に対する溶融中心のずれが顕著になりシート除去精度が悪くなり、加工エリアを70mm四方以下にすることが好ましく、さらには50mm四方以下にすることが望ましいことを確認している。従って、端面のサイズが設定した加工エリアより大きな場合には、端面を複数の加工エリアに分けるようにハニカム構造体1を移動させ、都度加工する。なお、レーザヘッド座標系における座標情報は、CCDカメラ3とレーザヘッド5の機械的取り合い寸法が決まっているため、前記で求めたCCDカメラ座標系におけるセル開口穴の座標情報を変換して求めることができ、レーザヘッド5はその座標情報をもとに加工を行う。
【0028】
以下、図7に示すように端面を4分割して加工するとして説明する。この場合、上記の端面全域用に設定したCCDカメラ座標系において、端面に外接する矩形エリアを構成する外形線66、67、68、69と、矩形エリアを縦横に2等分する中間線70と71を算出し、端面をこれらの線分で区切られた4つの矩形エリアL1、L2、L3、L4に分けて各矩形エリアを加工エリアとし、加工エリアにおける加工中心は、各加工エリアの対角線の交点61、62、63、64とするとよい。これは、該交点位置が該加工エリアの4箇所のコーナーエッジから等距離の関係にあるからである。なお、各加工エリアの境界付近にあるセル加工穴については、どの加工エリアで加工するかを予め決定しておけばよい。この時、各加工エリアに含まれるセル開口穴を行列番号で管理しておくと、境界付近のセル開口穴を、行列番号で容易に抽出することができる。
【0029】
シート除去加工は、レーザヘッド5の加工範囲の中心に、交点61、62、63、64が来るようにXYステージ2を移動させて行う。例えば、レーザヘッド5の加工範囲の中心が交点61にある時は、図7に示す端面の左下の加工エリアL3にあるセル開口穴についてシート除去加工を行い、この領域の加工が終了すると、レーザヘッド5の加工範囲の中心が交点62に来るようにXYステージ2を移動させ、右下の加工エリアL4にあるセル開口穴についてシート除去加工を行う。加工エリア内におけるシート加工順序は、セル開口穴に割り付けた行列番号に従い、栓詰めすべき開口穴として規定した行列番号順に行ってもよいし、座標系のXY軸方向に従い、図心の座標値順に行うようにしてもよい。
【0030】
また、シート除去に当たっては、封止用セラミックが除去した穴部からセル開口穴全面に浸透するように十分な大きさが必要であり、封止用セラミックの粘度等によっても異なるが、セル開口穴面積に対する除去面積の割合である除去率は40%以上となるようにすることが好ましい。同じ除去率であっても、照射時のレーザ光が仕切り壁に当たる恐れを少なくするためには、円状に除去するより、セル開口穴に倣った形状になるようレーザ光をセル仕切り壁に沿って除去する方がよい。従って、本例の一辺が1mmの正方形状セル開口穴の場合、セル開口穴の画像処理で求めた図心位置を中心にして、一辺が約0.6〜0.95mmの略正方形に除去できるように照射するとよく、パターン照射方式で行うと効率的である。除去率を、円形穴では実現できない80%以上とするためには、略正方形穴の一辺を0.9mmにすればよいことになるが、これはレーザ光強度とレーザビーム径を適切に設定することで対応でき、さらに0.95mm程度までは可能で、この時の除去率は約90%にもなる。なお、仕切り壁を照射する恐れを少なくするためには、一辺が0.8mm平方程度の穴となるようにすることが望ましく、この時の除去率は約65%となる。
【0031】
前述したように大型のハニカム構造体は歪み易く、セル開口穴も変形し易いため、局部的にシールが残ったり、仕切り壁にレーザ光が照射されて損傷する恐れがある。このため、S6で示すように、シート除去すべきセル開口穴の変形程度を判定し、この結果でレーザ光の照射方式を切り替える。変形程度の大小判断は、セル開口穴の面積、辺長、対角線長などを、設計値に対するものと画像処理で求めた値とを比較して行うとよい。
変形が大きく、例えば図6に示すように、形成されたセル開口穴51(実線で示す)が、正方形の設計形状のセル開口穴52(点線で示す)に対して平行四辺形状に大きく変形したような場合、前述のパターン照射方式では開口穴隅53、54の部分はシートが除去できずに塞がれたままとなり、栓詰め不良が生じる恐れがある。従って、変形が小さいと判定された場合は、前述したセル開口穴の画像処理で求めた図心位置を中心としたパターン照射方式でよいが、変形が大きいと判断されるとS7に進み、図6(b)に示すように、画像処理で求めたセル開口穴エッジ部55、56、57、58の座標データをもとに、エッジ部より少し内部の座標点を結ぶような位置制御データを作成し、変形したセル開口穴の壁面に沿ってレーザ光を走査する方式に切り替え、変形形状に合わせた軌跡にレーザ光を照射し、シートを除去する。
【0032】
以上のようにして、一端面に形成され行列番号付けされたセル開口穴についてシート除去処理が終了すると、ハニカム構造体1はXYステージ2から取外され、他端面に既にシートが貼られている場合は反転してセットされ、前述したと同様にして栓詰めすべきセル開口穴が選定され、該セル開口穴を被うシートが除去される。他端面にシートが貼られていない場合には、シート被覆工程でシートが貼られ、栓詰めすべきセル開口穴の一つにマーキングがされた後、他端面を上にしてXYステージにセットされ、前記と同様な処理が行われる。その後、ハニカム構造体は栓詰め工程に送られ、セラミックで栓詰めが行われる。
【0033】
以上、本発明をハニカム構造体をXYステージ上にセットし、XYステージを移動制御して、栓詰めすべきセル開口穴を選定し、次いでシート除去をするようなシステム構成で説明したが、この構成に限定されるものではない。ハニカム構造体をXYθステージ上にセットし、CCDカメラで撮像時、セル開口穴の概略配列を、画面のX又はY方向に合わせるように、ハニカム構造体の回転方向を位置制御しておくと、行列番号の割り付けを簡潔に行うことができる。また、生産量や生産効率等に合わせて構成された、例えば、栓詰めすべきセル開口穴を選定する手段とシート除去手段を同時動作できるよう独立させ、この間をハニカム構造体をセットした治具が必要なデータの授受を行いつつ適宜搬送されるようなシステム形態にも適用することができる。
【0034】
また、セル開口穴形状は正方形に限らず、略格子状の仕切り壁で分割されて形成された矩形、平行四辺形、菱形などの形状であればよく、また、前記各種四辺形状を同方向に2分割して形成した三角形状や、さらには格子状的な仕切り壁で分割された円形状であっても適宜対応できる。
また、レーザ加工方式は、セル開口穴の大きさ、レーザ光の強度などによっては、連続光方式に代えて、スポット光を順次照射していく方式とすることもできる。また、セル開口穴の面積が極めて小さかったり、形状が円形に近い場合は、図心にレーザ光を照射するだけで対応することもできる。なお、レーザ光の種類は、用いるシート材に合わせて、COやYAGなどを適宜選定すればよい。
【0035】
以上、本発明は次のような効果を有している。
1)セル開口穴の連なり状態に応じて合理的に隣接セル開口穴を規定し、隣接するセル開口穴に栓詰め穴用と非栓詰め穴用識別情報を割り付けるので、確実に栓詰めすべきセル開口穴を選定することができる。
2)画像処理で算出したセル座標情報をもとに、隣接セル探索ルールにより所定のセル開口穴を基準として順次隣接するセル開口穴を規定していくことで、セルが歪んでいてもセル開口穴の連接状態を適切に決めることができる。
3)連接したセル開口穴に連続した行列番号を割り付けることにより、栓詰めすべきセル開口穴の一つの行列番号を知ることで、他の栓詰めすべきセル開口穴を極めて容易に、短時間で選定することができる。
4)ハニカム構造体の端面を複数の加工エリアに分け、光偏向の振れ幅が狭い範囲のレーザ光でシート除去加工を行うので、シート残存程度をセル開口穴の位置に係わらず少なくできる。
5)セル開口穴の変形に合わせてシートを除去するので、変形が大きいセル開口穴であっても、シート残存量を少なくすることができる。
【図面の簡単な説明】
【図1】本発明を実施するシステム構成の一例を示す図
【図2】本発明の概要を示すフローチャート
【図3】ハニカム構造体端面を4分割した時の撮像画面を示す図
【図4】行方向及び列方向を規定する方法を説明するための図
【図5】4画面を統合して、行列番号を統一して割り付ける方法を説明するための図
【図6】変形したセル開口穴に対するシート除去方法の違いを説明するための図
【図7】ハニカム構造体端面を4分割してレーザ加工を行うことを説明するための図
【符号の説明】
1…ハニカム構造体、 2…XYステージ、 3…CCDカメラ、
4…制御装置、 5…レーザヘッド、
G1、G2、G3、G4…端面の撮像画面、
11、12、13、21、22…セル開口穴、
11z、12z、21z…各セル開口穴の図心、
11g、12g、21g…各セル開口穴の行方向、
E1…行方向サーチエリア、E2…列方向サーチエリア、
L1、L2、L3、L4…端面のレーザ加工エリア、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a honeycomb filter having a large number of cells, and relates to a plugging method for selectively sealing open ends of cells and a plugged honeycomb filter.
[0002]
[Prior art]
A honeycomb filter is mainly used to capture solid fine particles in exhaust gas discharged from an internal combustion engine, and is composed of a honeycomb structure made of a porous material. The honeycomb filter is divided by partition walls and has openings at both end faces. It has a large number of cells. When viewed in the same cell, one end of the cell is manufactured to be open and the other end is sealed. For example, one end face of the honeycomb filter is formed of every other cell so as to form a checkerboard pattern or a checkerboard pattern. In many cases, one end is filled with a sealing material, and the other end face is sealed so that one end of the remaining cell forms a checkerboard pattern opposite to the checkerboard pattern on the one end face. Hereinafter, the end face opening of the cell is distinguished from the cell body and is called a cell opening hole, and sealing the cell opening hole with a filler is called plugging.
[0003]
As a technique related to plugging in the manufacture of a honeycomb filter, there is one disclosed in, for example, Japanese Patent Publication No. 2-45481 (Known Example 1). That is, in the method of filling the end portion of the selected cell of the honeycomb structure with a flowable material, the end surface of the honeycomb structure is covered with a cover formed of a meltable material, and a large number of cell opening holes are closed, and the cover is formed. Scan up to determine the position of the selected cell, generate a first signal indicative of the position of the cell, and a second signal to position the drilling means in response to the first signal It is described that the method comprises a step of generating and positioning a punching means according to the second signal, and making a hole in the cover by the punching means.
[0004]
Further, in Japanese Patent Laid-Open No. 2001-300922 (known example 2), a mask corresponding to each honeycomb formed body is created by making a hole at a position corresponding to a predetermined cell of the sheet attached to the end face of the ceramic honeycomb formed body. Then, a method for producing a ceramic body, characterized in that the surface on which the mask is attached is immersed in a sealing slurry, and the sealing slurry is filled into the cell from the hole opened in the mask, is disclosed. It is described that the cell pitch can be automated even for a honeycomb molded body having a diameter of 300 mm or more in which an error of one cell or more is generated with respect to a drilling position.
[0005]
[Problems to be solved by the invention]
When the honeycomb structure becomes large and the number of cell opening holes becomes as large as several thousand to several tens of thousands, the position information of the cell opening holes to be plugged is obtained efficiently and accurately, and the holes are covered. It is important to remove the cover. If the honeycomb structure has almost no distortion and the cell opening holes are shaped almost according to the design drawing, the rotation direction is aligned with the arrangement direction of the cell holes, and the equipment uses numerical control based on the design data. Can respond. However, if the array of cell opening holes is distorted and differs from product to product, or the shape of the cell opening holes themselves is deformed, numerical control technology alone cannot be used, and measurement technology using image processing and position control It is conceivable to use a high-speed machining technique with a high degree of freedom, such as a laser machining technique.
In the known example 1, an optical device such as a television camera is used as a scanning means for determining the position of the selected cell, and the optical device outputs a signal indicating the position of the cell or the partition wall. Although it is described that a pin-shaped heat drilling element or a laser is used as a means, how to determine a cell to be selected and a position thereof, and a specific drilling method when using a laser Is not described, and cannot be applied to actual plugging processing.
[0006]
In the known example 2, the recognition of the cell position and the punching of the sheet are performed by image processing and laser processing, and the punching of the sheet is divided into a plurality of small blocks for each small block. It is described. However, the cell position is recognized before the sheet is attached, and the cell position cannot be recognized if the position of the honeycomb formed body is shifted at the time of subsequent sheet attachment or handling. For this reason, in terms of process and equipment, there is a restriction that the sheet must be pasted in a state where the positional information can be retained after the honeycomb formed body is imaged. In addition, the drilling is basically performed by numerical control performed at a cell pitch as designed, and an error of one cell or more occurs when the honeycomb formed body having a greatly deformed cell pitch is applied to the end face at once. For this reason, it is described that the cell of the end face is divided into a plurality of small block groups and is executed for each small block so that the error is within one cell. In addition, it is also described that a slight pitch variation of a cell is dealt with by making a small round hole in a square cell.
[0007]
However, there is no description of how to set a small block such that the cell pitch is within one cell, and if the predetermined range is determined in advance from the outer diameter or cell pitch of the honeycomb molded body, Depending on the degree of deformation, one or more errors may occur. Also, even if the cell pitch error is within 1 cell, if the cell arrangement is shifted by nearly 1 cell, there is a risk that it will not be perforated so as to have a correct checkerboard pattern, and it is reliable in that it opens to alternate cells. There is a problem with sex. Further, in order to reliably fill the plugging sealing material, it is preferable that the opening hole area is large, but there is a problem in reliability of sealing quality in this respect. Note that the cell position information recognized in the image processing is not specifically described as to what kind of processing is used, but it is assumed that the cell position information is used only for calculating the drilling reference position of the small block. .
Accordingly, the present invention provides a plugging method for a honeycomb filter, and a method for selecting an appropriate cell opening hole to be plugged corresponding to a continuous state from the cell opening holes formed in the honeycomb structure. Moreover, it aims at providing the method of removing the coated sheet | seat appropriately from a cell opening hole. Another object of the present invention is to provide a honeycomb filter manufactured using the above method.
[0008]
[Means for Solving the Problems]
  The present invention relates to a plugging method of a honeycomb filter for plugging into a cell opening hole of a honeycomb structure in which a large number of cells extending in the axial direction are formed., PlaceAdjacent cell opening holes with reference to a certain cell opening holeCell partition wall directionInCell opening hole defined based onAssign the cell hole identification information to identify whether the hole should be plugged or not plugged, and select the cell opening hole to be pluggedHave stepsIt is characterized by that. The arrangement of the clogging holes and the clogging holes is defined in accordance with the specifications of the filter, but it is only necessary to assign data that can be used to determine whether the clogging holes are used or not. For filters in which the plugging holes are arranged in a checkered pattern, it is preferable to assign the data for plugging holes and the data for non-plugging holes alternately.The cell opening hole may be covered with a sheet.
[0009]
  In the present invention, the cell hole identification information is used as a matrix number, and consecutive matrix numbers are sequentially assigned to adjacent cell opening holes with a predetermined cell opening hole as a reference, and assigned to cell opening holes set in advance to be plugged. It is preferable to select a cell opening hole to be plugged by determining whether it is a plugging hole or a non-plugging hole based on the matrix number. As an embodiment, the matrix number assigned to the cell opening hole set in advance to be plugged is added or subtracted to determine whether the value is an even or odd number as the determination data, and assigned to each cell opening hole. By adding or subtracting the row number and column number of the matrix number to determine whether the value is even or odd, the cell opening hole having the same attribute as the judgment data is selected as the cell opening hole to be plugged. Is preferred.
  In the present invention, the end face of the honeycomb structure is imaged, and the cell opening hole coordinate information calculated by image processing is used.,next toIt is desirable to sequentially obtain the cell opening holes that come into contact. Preferably, the end face of the honeycomb structure after the sheet is coated is imaged.
  In addition, the end face of the honeycomb structure is divided into a plurality of areas.,next toContactDoEliASameofCell openingContains holeslikeFor each areaThe cell hole identification information of the cell opening hole that was captured and uniquely assigned to each captured image, DuplicateIt is desirable to select the cell opening hole to be plugged by reassigning to the cell hole identification information unified over the entire end face based on the cell opening hole imaged. As a result, not only can the cell opening hole selection process be performed on a large-diameter honeycomb structure, but also the coordinate information of the cell opening hole can be obtained with high resolution, and not only the selection process but also subsequent sheet removal. Processing can be performed with high accuracy.
[0010]
The present invention also relates to a plugging method of a honeycomb filter for plugging into a cell opening hole of a honeycomb structure in which a large number of cells extending in the axial direction are formed, and the step of removing the sheet covering the selected cell opening hole includes: The structure is characterized in that the end face of the structure is divided into a plurality of processing areas, and a sheet covering process is performed by deflecting and irradiating a laser beam onto a sheet covering a cell opening hole to be plugged. In the present invention, it is preferable to remove the sheet covering the cell opening holes by 40% to 90% of the cell opening hole area. In the present invention, based on the coordinate value of the cell opening hole calculated by the image processing, it is determined whether or not the cell opening hole shape selected to be plugged is within the allowable range. The sheet removal process is performed by deflecting and irradiating the laser beam onto the sheet covering the cell opening hole to be plugged in accordance with the actual shape of the pattern outside the allowable range. It is good to. In addition, it is desirable to implement this invention with the invention which selects the cell opening hole which should be plugged mentioned above. The plugging method described in the present invention includes the step of selecting a cell opening hole to be plugged by filling a sealing material from the cell opening holes that are the end face openings of the cells, and the selected cell. The method includes a step of removing the sheet covering the opening hole and a step of filling the cell opening hole from which the sheet has been removed with a sealing material.
[0011]
  The honeycomb filter of the present invention is a honeycomb filter in which cell opening holes of a honeycomb structure in which a large number of cells extending in the axial direction are formed are partially plugged,With any of the above plugging methodsSelectedTapThe cell opening hole to be filled is characterized by being plugged with ceramic.
  The honeycomb filter of the present invention is a honeycomb filter in which cell opening holes of a honeycomb structure in which a large number of cells extending in the axial direction are formed are partially plugged.The sheet is removed by any one of the above plugging methods.The cell opening hole to be plugged is filled from the sheet hole portion. The removal rate is preferably 40% to 80%, more preferably 40% to 65%. In the present invention, it is desirable that the shape of the sheet hole is a shape following the cell opening hole.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing an example of a system for explaining an embodiment of the present invention.
The honeycomb structure 1 has a columnar shape whose outer peripheral surface forms an outer shell, has a large number of cells divided in a number of partitions extending in the axial direction and having a cross section orthogonal to the axial direction in a lattice shape. A sheet for preventing intrusion of the plugging sealing material is affixed to the end face or both end faces. The honeycomb structure 1 is set on the XY stage 2 with one end face up. Above the XY stage 2, a CCD camera 3 as a means for imaging the end face of the honeycomb structure 1 and a laser head 5 as a sheet removing means for irradiating laser light are disposed. The XY stage 2 has a stroke that can move between a position where the honeycomb structure 1 is set and taken out, a position where the image is captured by the CCD camera 3, and a position where the laser beam is irradiated. The control device 4 controls the position of the XY stage 2 and takes in the image information from the CCD camera 3 and the movement information of the XY stage at the time of imaging to obtain the position and shape of the cell opening hole to be plugged. Laser light irradiation control at the time of sheet removal and position control of the XY stage 2 are performed. In addition, since the cell opening hole is imaged through the sheet, the sheet has a light transmitting property, and a material having a thickness and a thickness suitable for the laser light and the sealing material to be used is used.
[0013]
The CCD camera 3 requires sufficient image resolution to define the shape of the cell opening hole, and the field of view is determined by the shape and size of the cell opening hole. If the entire end face is imaged in one field of view for a large honeycomb structure, the image resolution is reduced, and the coordinate information for calculating the position and shape of the cell opening hole cannot be obtained accurately. It is desirable to do. Further, in order to perform processing with a laser beam at high speed, it is common to perform a deflection of a light beam mechanically or electrically using a galvanometer and swing it in the traveling direction. Hereinafter, the processing range is determined by the laser processing machine to be used. If the deflection width of the light beam is large, the processing range is widened, but the laser beam is irradiated obliquely with respect to the processing surface as the distance from the irradiation center increases. For this reason, even if the entire end face is within the processing range, a difference occurs in the irradiation position and the sheet melting state in the central portion and the peripheral portion. Therefore, it is important to set an area (hereinafter, referred to as a processing area) where the sheet can be removed with an accuracy that does not cause a plugging failure, and to perform processing according to this area.
[0014]
The following is an example of a substantially cylindrical honeycomb structure 1 used for DPF, in which about 15000 square-shaped cell opening holes each having a side of about 1 mm are formed on one end surface by a partition wall formed in a lattice shape. The present invention will be described below.
It is assumed that the cell opening hole to be plugged is selected so that one end face and the other end face have a reverse checkerboard pattern. For this purpose, basically, the adjacent cell opening holes are rationally defined according to the continuous state of the cell opening holes, and the adjacent cell opening holes are defined based on the cell opening holes set in advance for plugging. Cell hole identification information for identifying whether a hole is not used for plugging or a hole for plugging may be allocated so that data for plugging holes and data for non-plugging holes are alternated. For this reason, it is preferable to mark the reference hole set to be plugged so as to be recognized by a sensor or the like. In addition, on the one end surface side, any hole may be used as the reference hole to be plugged, so there is no need to make a marking. In this case, the reference hole on the other end surface constitutes a checkered pattern on the one end surface side. It is necessary to automatically or artificially select at least one opening hole from cells different from the cell to be performed. In the following description, it is assumed that the reference hole on one end side is also provided with a marking that can be identified by image processing, for example, a black circle or a through hole.
[0015]
A specific example of a method for selecting a cell opening hole position to be plugged will be described with reference to FIG. First, as shown in S <b> 1 of FIG. 2, one end surface of the honeycomb structure 1 is imaged by the CCD camera 3. The image resolution for measuring the cell opening hole of the above size with good accuracy is about 0.1 mm / pixel, and for this purpose, it is assumed that the end face is divided into four and imaged. Imaging is performed by moving the XY stage 2 so that the end face is divided into four areas. Schematic diagrams of the respective imaging screens G1 to G4 are shown in FIGS. 3 (a) to 3 (d). The same cell opening hole is included in the overlapping portion (shown by hatching) so as to partially overlap the adjacent area. Take an image as shown. Subsequently, as shown in S2, the captured image is subjected to image processing, and the centroid coordinates, area, side length, diagonal length, etc. of each cell opening hole are determined based on the edge coordinate information of each cell opening hole for each screen. Ask.
[0016]
Next, as shown in S3, a cell opening hole adjacent to an arbitrary cell opening hole is defined, and consecutive matrix numbers are assigned as cell hole identification information. The cell opening holes having the same row number are connected in a rational arrangement in the row direction in the column number order, and the cell opening holes having the same column number are arranged in the column direction in the row number order. Represents being connected. However, when trying to define the adjacent cell opening hole based on the centroid position of each cell opening hole, the honeycomb structure in which the cell arrangement is shifted or the cell opening hole is deformed due to cell distortion or the like, There may be cases where a reasonable row or column direction cannot be obtained due to variations in distance between centroids. Therefore, the adjacent cell opening hole is defined by the adjacent cell search rule that also considers the direction of the cell partition wall. The resulting row and column directions referred to in the present invention are not directions that extend in a straight line in the fixed horizontal and vertical directions, but are defined for each honeycomb structure and are inclined or curved. In addition, various forms such as row and column directions obliquely intersect.
[0017]
Next, an adjacent cell search rule for defining an adjacent cell opening hole will be described.
The cell opening hole for the search start may be arbitrarily determined. However, in this description, among the centroid coordinates of the cell opening hole in the screen, for example, the centroid coordinates closest to the intersection coordinates of the edge outline and the screen boundary line The cell opening hole having this centroid is set as a cell opening hole for starting search, and for example, 1 row and 1 column are assigned as identification information. When prescribing the cell opening holes adjacent in the row direction, the centroid of the cell opening hole in the first row and the first column is used as the first starting point, and is temporarily scanned in the X-axis direction of the screen coordinates. Of the adjacent partition walls extending from both ends thereof, the direction along the predetermined partition wall is calculated, and this direction is set as the row direction of the cell opening hole of one row and one column, and a predetermined search area is determined based on the starting point and the row direction. The centroid coordinates closest to the starting point are obtained from the other centroid coordinates within this range, and the cell opening hole having this centroid coordinate is set as the adjacent cell opening hole and assigned as 1 row and 2 columns. Next, starting from the centroid of the cell opening hole of 1 row and 2 columns, the same processing as described above is performed to define the adjacent cell opening holes and assign 1 row and 3 columns. Thereafter, the same processing is sequentially performed to perform the same row alignment. Similarly, cell opening holes adjacent in the column direction can be defined.
[0018]
Hereinafter, with reference to FIGS. 3 and 4, the screen G1 will be described as an example, and the method for defining the adjacent cell opening holes, that is, the allocation of the matrix numbers will be described in detail.
The cell opening hole for starting search in the screen G1 is the cell opening hole 11 having the centroid closest to the intersection GK of the contour line G1L of the end face and the screen boundary line G1X among the centroids of the cell opening hole. Assign with columns. The cell opening hole to be assigned as 1 row and 2 column on the right is the search area E1 (with hatching A within the dotted line) set to extend in the row direction 11g with the centroid 11z of the cell opening hole 11 as the first starting point. Among the centroid coordinates in (shown), the cell opening hole 12 having the nearest centroid coordinates. The row direction 11g of the cell opening hole 11 is temporarily scanned in the X-axis direction of the screen coordinates from the centroid 11z, and, for example, along the upper partition wall among the adjacent partition walls extending from both ends of the partition wall surface that intersects first. However, since the cell opening hole in this example is a square, the direction is perpendicular to the partition wall surface that first intersects.
[0019]
Next, starting from the centroid 12z of the cell opening hole 12, the direction perpendicular to the partition wall surface that intersects first is obtained by provisional scanning in the row direction 11g of the cell opening hole 11, and this direction is the row of the cell processing hole 12 When the direction 12g is set and processing similar to the above is performed, the cell opening 13 is searched and becomes one row and three columns. By sequentially performing this process, a cell opening hole connected to the first row in the screen is searched, and consecutive column numbers are assigned.
In the search area E1 shown in FIG. 4, the longitudinal direction is 1.5 times the designed cell opening hole interval, and the short direction is 1 time the cell opening hole interval, and the search area E1 is short around the centroid. Even if the cell opening hole shape is distorted or misplaced, the range can be set so that the adjacent cell opening hole can be searched if it is within the allowable range. Good.
[0020]
Subsequently, in order to assign the cell opening hole numbers to all the columns in the second row, the first starting point in the second row is obtained. Since the second row in this screen is located above the first row, the first starting point of the second row is to search for a cell opening hole adjacent in the column direction upward from the cell opening hole 11 in the first row and the first column. Ask. That is, starting from the centroid 11z of the cell opening hole 11 of 1 row and 1 column, the upward direction orthogonal to the row direction 11g is the column direction 11r, and the search area E2 in the same range as the above-described row direction is set. This is done by setting the longitudinal direction to extend in the column direction 11r (indicated by hatching B within the dotted line) and extracting the centroid coordinates in this. In FIG. 4, the centroid 21z of the cell opening hole 21 corresponds to this, the first starting point of the second row is determined, and the cell opening hole 21 is defined as a cell opening hole adjacent to the cell opening hole 11 in the column direction. And 2 rows and 1 column are assigned as identification information.
[0021]
Subsequently, starting from the centroid 21z of the cell opening hole 21, the search area E1 is set in the row direction 21g of the cell opening hole 21 obtained in the same manner as described above, the centroid coordinates in the cell opening hole 21 are obtained, and the cell The opening hole 22 is defined, and 2 rows and 2 columns are allocated. In this way, column numbers are sequentially assigned to the cell opening holes in the second row.
If there is no centroid coordinate of the cell opening hole in the set search area E2, the starting point of the second row is the cell opening hole of the first row and the second column that is right next to the starting point of the first row. It is obtained by setting the search area E2 from 12 centroids in the same manner as described above. The cell opening hole having the start point of the second row obtained in this case is assigned as 2 rows and 2 columns.
[0022]
As described above, the matrix numbers are assigned to all the cell opening holes above the cell opening holes in the first row. However, depending on the rotational direction setting posture of the honeycomb structure 1, the row direction is inclined with respect to the screen coordinate axis. The cell opening hole below the cell opening hole in the first row may be unassigned. In this case, a matrix number assigning process is subsequently performed below the cell opening hole in the first row, and the matrix number may be appropriately corrected so that the matrix number is represented by a series of numbers. In this way, row and column numbers are assigned to all the cell opening holes in the screen G1. Similarly, row and column numbers are assigned to all cell opening holes in the screens G2, G3, and G4. Note that the matrix numbers are set so that the ascending order of the numbers is the same in the screen coordinates even in the same screen and different screens.
[0023]
Next, as shown in S <b> 4, the matrix number assigned to each screen is reassigned to the unified matrix number of one honeycomb structure 1. As described above, each image is picked up so that adjacent areas partially overlap, and the overlapping portion always includes the same cell opening hole. Select an arbitrary cell opening hole from, and calculate correction data so that the matrix number assigned on one screen matches the matrix number assigned on the other screen. Used for correction. For example, in FIG. 5, if the cell opening holes 11 are 1 column 1 row on the screen G1 and 11 rows 1 column on the screen G3, the matrix numbers assigned on the screen G1 are reassigned with the screen G3 as a reference. In this case, the correction value 10 may be added to the row number of the matrix number on the screen G1. If there is a shift in the column number, the shift amount may be added or subtracted in the same manner. Next, the same processing is expanded to screen G2 and screen G4. Thereby, it is possible to assign consecutive row and column numbers to all the cell opening holes formed on the entire end face of the honeycomb structure 1 without overlapping. Note that the reference screen at this time may be selected as appropriate.
[0024]
Next, the selection method of the cell opening hole which should be plugged shown to S5 is demonstrated.
As described above, since one of the set cell opening holes to be plugged is marked, this marking is recognized by the image processing at the time of imaging, and the matrix number assigned to this cell opening hole is obtained. . Based on this matrix number, other cell opening holes to be plugged can be obtained by simple numerical calculation and can be defined in a very short time. That is, to plug in a checkered pattern, when the value of the row and column number of the cell opening hole in the marking part is an even number, the value of the other cell opening hole to be plugged is the value of the row and column number added. Is an even cell opening hole. When the value obtained by adding the row and column number of the cell opening hole of the marking portion is an odd number, the cell opening hole is a value obtained by adding the row and column number to an odd number. The same applies when the column number is subtracted from the row number. Also, the centroid coordinates of the cell opening holes in each screen are obtained, and the coordinate position relationship of each screen can be obtained from the movement amount of the XY stage. The control device 4 can be uniquely determined by an arbitrarily set CCD camera coordinate system, and the coordinate information indicating the centroid and shape of the cell opening hole to be plugged obtained above is linked with the matrix number. Can be remembered.
[0025]
As described above, the matrix number in the present invention is continuous numerical data, and not only functions as identification information that can define the cell opening hole to be plugged by arithmetic calculation, but also in the end face of the honeycomb structure. Can be used as address information, and the approximate position of the cell opening hole can be known, which is suitable when the sheet is removed by dividing the end face into a plurality of places as will be described later. Further, various data such as the position and shape of each cell opening hole can be used as a management label when computer processing is performed.
[0026]
As described above, the example using the matrix number as the cell hole identification information for identifying whether the hole is to be plugged or not to be plugged is described. The cell hole identification information having data may be used to alternately give data for plugging holes and data for non-plugging holes to adjacent cell opening holes. As the data, for example, “1” and “0” may be used so as to facilitate computer processing. In this case, from the beginning, the hole to be plugged is set to 1 and the hole not to be plugged is set to 0. After tentatively allocating all the cell opening holes, the data assigned to the reference hole is referred to. For example, the information given to each cell opening hole may be held as it is, and if it is 0, the data may be inverted and held, or initially, the data assigned to the reference hole is simply assigned 1 or 0. The cell opening hole assigned with the same numerical value as that data may be defined as a hole to be plugged.
Note that this description has been made in the case where the end face is imaged with four visual fields, but it goes without saying that the present invention can be applied to a screen imaged with one visual field. In addition, when the cell opening hole is formed exactly as shown in the design drawing and the rotation direction is positioned so that the cell opening hole is in a certain direction, the adjacent cell opening hole has the coordinate information calculated by image processing. Even if it is not obtained from the original, it can also be obtained from the coordinate information obtained from the design drawing.
[0027]
Next, the sheet removal method will be described.
When the cell opening hole to be plugged is selected, the movement of the XY stage 2 is controlled so that the honeycomb structure 1 comes below the laser head 5. As described above, in order to remove a predetermined portion of a sheet with good accuracy using an optical deflection laser processing machine, it is important to set a range in which the fluctuation width of the light beam is small as a processing area. For example, in an experiment using a laser processing machine having a processing range of 100 mm square on one side, the cell opening hole located at a position exceeding 70 mm square has a remarkable shift of the melting center with respect to the centroid, resulting in poor sheet removal accuracy. It has been confirmed that the processing area is preferably 70 mm square or less, and more preferably 50 mm square or less. Therefore, when the size of the end face is larger than the set processing area, the honeycomb structure 1 is moved so as to divide the end face into a plurality of processing areas and processed each time. Note that the coordinate information in the laser head coordinate system is obtained by converting the coordinate information of the cell opening hole in the CCD camera coordinate system obtained above because the mechanical contact dimensions of the CCD camera 3 and the laser head 5 are determined. The laser head 5 performs processing based on the coordinate information.
[0028]
In the following description, it is assumed that the end face is divided into four as shown in FIG. In this case, in the CCD camera coordinate system set for the entire end face, the outline lines 66, 67, 68, 69 constituting the rectangular area circumscribing the end face, and the intermediate line 70 that bisects the rectangular area vertically and horizontally, 71 is calculated, and the end surface is divided into four rectangular areas L1, L2, L3, and L4 divided by these line segments to make each rectangular area a machining area, and the machining center in the machining area is the diagonal line of each machining area The intersection points 61, 62, 63, and 64 may be used. This is because the intersection positions are equidistant from the four corner edges of the processing area. In addition, what is necessary is just to determine beforehand in which process area about the cell process hole in the boundary vicinity of each process area. At this time, if the cell opening holes included in each processing area are managed by the matrix number, the cell opening holes near the boundary can be easily extracted by the matrix number.
[0029]
Sheet removal processing is performed by moving the XY stage 2 so that the intersections 61, 62, 63, 64 come to the center of the processing range of the laser head 5. For example, when the center of the processing range of the laser head 5 is at the intersection 61, sheet removal processing is performed on the cell opening hole in the processing area L3 at the lower left of the end face shown in FIG. The XY stage 2 is moved so that the center of the processing range of the head 5 comes to the intersection point 62, and sheet removal processing is performed on the cell opening hole in the lower right processing area L4. The sheet processing order in the processing area may be performed in the order of the matrix number defined as the opening hole to be plugged according to the matrix number assigned to the cell opening hole, or the coordinate value of the centroid according to the XY axis direction of the coordinate system You may make it carry out in order.
[0030]
In addition, when removing the sheet, it is necessary to have a sufficient size so that it penetrates the entire surface of the cell opening hole from the hole portion removed by the sealing ceramic, and it depends on the viscosity of the sealing ceramic. The removal rate, which is the ratio of the removed area to the area, is preferably 40% or more. Even if the removal rate is the same, in order to reduce the possibility that the laser beam at the time of irradiation will hit the partition wall, the laser beam is moved along the cell partition wall so as to follow the cell opening hole rather than removing it in a circular shape. It is better to remove it. Therefore, in the case of a square cell opening hole with a side of 1 mm in this example, it can be removed into a substantially square with a side of about 0.6 to 0.95 mm with the centroid position obtained by the image processing of the cell opening hole as the center. Irradiation is good, and it is efficient to use the pattern irradiation method. In order to achieve a removal rate of 80% or more, which cannot be achieved with a circular hole, one side of a substantially square hole may be set to 0.9 mm, but this appropriately sets the laser light intensity and the laser beam diameter. The removal rate can be as high as about 0.95 mm, and the removal rate at this time is about 90%. In order to reduce the risk of irradiating the partition wall, it is desirable to make a hole with a side of about 0.8 mm square, and the removal rate at this time is about 65%.
[0031]
As described above, since the large honeycomb structure is easily distorted and the cell opening hole is also easily deformed, there is a possibility that a seal remains locally or that the partition wall is irradiated with laser light and damaged. For this reason, as shown in S6, the degree of deformation of the cell opening hole to be removed is determined, and the laser beam irradiation method is switched based on this result. The degree of deformation may be determined by comparing the area of the cell opening hole, the side length, the diagonal length, and the like with respect to the design value and the value obtained by image processing.
For example, as shown in FIG. 6, the formed cell opening hole 51 (shown by a solid line) is greatly deformed into a parallelogram shape with respect to the cell opening hole 52 having a square design shape (shown by a dotted line). In such a case, in the pattern irradiation method described above, the opening hole corners 53 and 54 may remain blocked because the sheet cannot be removed, which may cause plugging failure. Therefore, if it is determined that the deformation is small, the pattern irradiation method centered on the centroid position obtained by the above-described image processing of the cell opening hole may be used, but if it is determined that the deformation is large, the process proceeds to S7. As shown in FIG. 6B, based on the coordinate data of the cell opening hole edges 55, 56, 57, and 58 obtained by image processing, position control data that connects the coordinate points slightly inside the edge is obtained. The system is switched to a method in which laser light is scanned along the wall surface of the cell opening hole that has been created and deformed, and the sheet is removed by irradiating the laser light to the locus matched to the deformed shape.
[0032]
As described above, when the sheet removal processing is completed for the cell opening holes formed on one end face and numbered by the matrix, the honeycomb structure 1 is removed from the XY stage 2 and the sheet is already pasted on the other end face. In such a case, the cell opening hole is set in an inverted manner, and the cell opening hole to be plugged is selected in the same manner as described above, and the sheet covering the cell opening hole is removed. If the sheet is not affixed to the other end surface, the sheet is affixed in the sheet coating process, marked on one of the cell opening holes to be plugged, and then set on the XY stage with the other end side facing up The same processing as described above is performed. Thereafter, the honeycomb structure is sent to a plugging process and plugged with ceramic.
[0033]
As described above, the present invention has been described with the system configuration in which the honeycomb structure is set on the XY stage, the XY stage is moved and controlled, the cell opening hole to be plugged is selected, and then the sheet is removed. The configuration is not limited. When the honeycomb structure is set on the XYθ stage and the image is captured by the CCD camera, the position of the rotation direction of the honeycomb structure is controlled so that the approximate arrangement of the cell opening holes matches the X or Y direction of the screen. Matrix number assignment can be performed simply. In addition, a jig configured according to the production volume, production efficiency, etc., for example, a means for selecting a cell opening hole to be plugged and a sheet removing means can be operated independently, and a honeycomb structure is set between them. However, the present invention can also be applied to a system configuration in which necessary data is transferred while being exchanged.
[0034]
In addition, the shape of the cell opening hole is not limited to a square, and may be any shape such as a rectangle, a parallelogram, a rhombus, etc. formed by dividing a substantially lattice-shaped partition wall. Even a triangular shape formed by dividing into two or a circular shape divided by a lattice-like partition wall can be dealt with appropriately.
In addition, the laser processing method may be a method in which spot light is sequentially irradiated instead of the continuous light method depending on the size of the cell opening hole, the intensity of the laser light, and the like. Further, when the area of the cell opening hole is extremely small or the shape is close to a circle, it can be dealt with by simply irradiating the centroid with laser light. Note that the type of laser light depends on the sheet material used, and CO2Or YAG may be selected as appropriate.
[0035]
As described above, the present invention has the following effects.
1) Since the adjacent cell opening holes are reasonably defined according to the continuous state of the cell opening holes and the identification information for plugging holes and non-plugging holes is assigned to the adjacent cell opening holes, it should be plugged securely. A cell opening hole can be selected.
2) Based on cell coordinate information calculated by image processing, adjacent cell opening holes are sequentially defined based on a predetermined cell opening hole by an adjacent cell search rule, so that even if the cell is distorted, the cell opening The connection state of the holes can be determined appropriately.
3) By assigning continuous matrix numbers to the connected cell opening holes, knowing one matrix number of the cell opening holes to be plugged, the other cell opening holes to be plugged can be found very easily and in a short time. Can be selected.
4) Since the end face of the honeycomb structure is divided into a plurality of processing areas and the sheet removal processing is performed with a laser beam having a narrow deflection width of the light deflection, the remaining degree of the sheet can be reduced regardless of the position of the cell opening hole.
5) Since the sheet is removed in accordance with the deformation of the cell opening hole, the remaining amount of the sheet can be reduced even if the cell opening hole has a large deformation.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a system configuration for implementing the present invention.
FIG. 2 is a flowchart showing an outline of the present invention.
Fig. 3 is a diagram showing an imaging screen when the honeycomb structure end face is divided into four parts.
FIG. 4 is a diagram for explaining a method for defining a row direction and a column direction;
FIG. 5 is a diagram for explaining a method of integrating four screens and assigning matrix numbers in a unified manner.
FIG. 6 is a diagram for explaining a difference in sheet removal method for a deformed cell opening hole;
Fig. 7 is a diagram for explaining that laser processing is performed by dividing the end face of the honeycomb structure into four parts.
[Explanation of symbols]
1 ... honeycomb structure, 2 ... XY stage, 3 ... CCD camera,
4 ... Control device, 5 ... Laser head,
G1, G2, G3, G4... End face imaging screen,
11, 12, 13, 21, 22 ... cell opening hole,
11z, 12z, 21z ... centroid of each cell opening hole,
11g, 12g, 21g ... row direction of each cell opening hole,
E1 ... row direction search area, E2 ... column direction search area,
L1, L2, L3, L4 ... laser processing area of the end face,

Claims (12)

軸方向に延びるセルが多数形成されたハニカム構造体のセル開口穴に栓詰めするハニカムフィルタの栓詰め方法において、
定のセル開口穴を基準として、隣接するセル開口穴のセル仕切壁の方向基づいて規定したセル開口穴に、栓詰め用穴とするか栓詰め不用穴とするかを識別するためのセル穴識別情報を割り付け、栓詰めすべきセル開口穴を選定する工程を有することを特徴とするハニカムフィルタの栓詰め方法。
In a plugging method of a honeycomb filter for plugging into a cell opening hole of a honeycomb structure in which a large number of cells extending in the axial direction are formed,
Based cell opening hole of Jo Tokoro, the cell opening holes defined on the basis of the direction of the cell partition walls of the cell opening holes adjacent to identify whether the or plugged unnecessary hole and plugged holes A honeycomb filter plugging method comprising the steps of assigning cell hole identification information and selecting a cell opening hole to be plugged.
栓詰め穴用と非栓詰め穴用データが交互になるように割り付け、栓詰めすべきセル開口穴を選定する請求項1記載のハニカムフィルタの栓詰め方法。  2. The plugging method for a honeycomb filter according to claim 1, wherein data for plugging holes and data for non-plugging holes are assigned alternately, and cell opening holes to be plugged are selected. セル開口穴はシートで被われていることを特徴とする請求項1又は2のいずれかに記載のハニカムフィルタの栓詰め方法。 3. The plugging method for a honeycomb filter according to claim 1 , wherein the cell opening hole is covered with a sheet . セル穴識別情報は行列番号であり、所定のセル開口穴を基準として順次隣接するセル開口穴に連続した行列番号を割り付け、予め栓詰めすべく設定したセル開口穴に割り付けられた行列番号をもとに、栓詰め穴か非栓詰め穴かを判定して、栓詰めすべきセル開口穴を選定する請求項1乃至3のいずれか記載のハニカムフィルタの栓詰め方法。  The cell hole identification information is a matrix number, and a continuous matrix number is sequentially assigned to adjacent cell opening holes with a predetermined cell opening hole as a reference, and the matrix number assigned to the cell opening hole set in advance for plugging is also included. The plugging method for a honeycomb filter according to any one of claims 1 to 3, wherein a cell opening hole to be plugged is selected by determining whether the hole is plugged or non-plugged. 予め栓詰めすべく設定したセル開口穴に割り付けられた行列番号を加算又は減算してその値が偶数か奇数かの属性を求めて判定データとし、各セル開口穴に割り付けられた行列番号の行番号と列番号を加算又は減算してその値が偶数か奇数かの属性を求め、前記判定データと同じ属性となるセル開口穴を栓詰めすべきセル開口穴として選定する請求項4記載のハニカムフィルタの栓詰め方法。  Add or subtract the matrix number assigned to the cell opening hole set in advance for plugging to obtain the attribute of whether the value is even or odd and use it as judgment data, and the row of the matrix number assigned to each cell opening hole The honeycomb according to claim 4, wherein an attribute of whether the value is an even number or an odd number is obtained by adding or subtracting a number and a column number, and a cell opening hole having the same attribute as the determination data is selected as a cell opening hole to be plugged. How to plug a filter. ハニカム構造体の端面を撮像し、画像処理で算出したセル開口穴の座標情報をもとに、隣接するセル開口穴を順次求める請求項1乃至5のいずれか記載のハニカムフィルタの栓詰め方法。Imaging the end face of the honeycomb structure, on the basis of the coordinate information of the cell opening hole calculated by the image processing, plugged method of the honeycomb filter according to any one of claims 1 to 5 sequentially obtains the next contact cell opening hole. ハニカム構造体の端面を複数のエリアに分割し、隣するエリアの画像には同一セル開口穴が含まれるようにエリア毎に撮像し、各撮像画像で独自に付与されたセル開口穴のセル穴識別情報を、重複して撮像されたセル開口穴をもとに端面全域で統一したセル穴識別情報に割り付け直し、栓詰めすべきセル開口穴を選定する請求項1乃至のいずれかに記載のハニカムフィルタの栓詰め方法。The end face of the honeycomb structure is divided into a plurality of areas, imaged in every area as the area A of the image to be neighbor include the same cell opening hole, the cell opening hole which uniquely given in each captured image cell hole identifying information, duplicated again assigned to the cell hole identifying information unified in the end face throughout based on cell opening hole captured any of claims 1 to 6 for selecting a cell opening hole to be plugged A plugging method for a honeycomb filter according to claim 1. ニカム構造体の端面を複数の加工エリアに分け、該加工エリアの栓詰めすべきセル開口穴を被うシートにレーザ光を偏向させて照射してシート除去処理を行う工程を有することを特徴とする請求項3に記載のハニカムフィルタの栓詰め方法。Divided end face of the honeycomb structure into a plurality of processing areas, comprising the step of performing the sheet removal treatment by irradiation by deflecting the laser beam on the sheet covering the cell opening hole to be plugged of the machining area The plugging method of the honeycomb filter according to claim 3 . 選定したセル開口穴を被うシートを除去する工程は、セル開口穴を被うシートを、セル開口穴面積の40%〜90%除去する請求項8記載のハニカムフィルタの栓詰め方法。  The plugging method of the honeycomb filter according to claim 8, wherein the step of removing the sheet covering the selected cell opening hole removes 40% to 90% of the cell opening hole area of the sheet covering the cell opening hole. 選定したセル開口穴を被うシートを除去する工程は、画像処理により算出されたセル開口穴の座標値をもとに、栓詰めすべく選定されたセル開口穴形状が許容範囲にあるか否かを判定し、許容範囲内のものは予め設定したパターンで、また許容範囲外のものについては実形状にあわせて、栓詰めすべきセル開口穴を被うシートにレーザ光を偏向させて照射してシート除去処理を行う請求項8又は9記載のハニカムフィルタの栓詰め方法。  In the step of removing the sheet covering the selected cell opening hole, whether or not the shape of the cell opening hole selected for plugging is within an allowable range based on the coordinate value of the cell opening hole calculated by image processing. If it is within the allowable range, the pattern is set in advance, and if it is outside the allowable range, the laser beam is irradiated to the sheet covering the cell opening hole to be plugged in accordance with the actual shape. The plugging method of the honeycomb filter according to claim 8 or 9, wherein the sheet removing process is performed. 軸方向に延びるセルが多数形成されたハニカム構造体のセル開口穴が部分的に栓詰めされているハニカムフィルタであって、
請求項1乃至7のいずれかの栓詰め方法で選択された栓詰めすべきセル開口穴がセラミックで栓詰めされたものであることを特徴とするハニカムフィルタ。
A honeycomb filter in which cell opening holes of a honeycomb structure in which a large number of cells extending in the axial direction are formed are partially plugged,
A honeycomb filter, wherein the cell opening hole to be plugged selected by the plugging method according to any one of claims 1 to 7 is plugged with ceramic.
軸方向に延びるセルが多数形成されたハニカム構造体のセル開口穴が部分的に栓詰めされているハニカムフィルタであって、
栓詰め用セラミックが、請求項8乃至10のいずれかの栓詰め方法でシートが除去されてなるシート穴部から栓詰めすべきセル開口穴に充填されたことを特徴とするハニカムフィルタ。
A honeycomb filter in which cell opening holes of a honeycomb structure in which a large number of cells extending in the axial direction are formed are partially plugged,
A honeycomb filter, wherein the plugging ceramic is filled into a cell opening hole to be plugged from a sheet hole portion formed by removing the sheet by the plugging method according to any one of claims 8 to 10 .
JP2002001386A 2002-01-08 2002-01-08 Honeycomb filter plugging method and honeycomb filter Expired - Fee Related JP3705489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002001386A JP3705489B2 (en) 2002-01-08 2002-01-08 Honeycomb filter plugging method and honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001386A JP3705489B2 (en) 2002-01-08 2002-01-08 Honeycomb filter plugging method and honeycomb filter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005131466A Division JP4022893B2 (en) 2005-04-28 2005-04-28 Honeycomb filter plugging method

Publications (2)

Publication Number Publication Date
JP2003200010A JP2003200010A (en) 2003-07-15
JP3705489B2 true JP3705489B2 (en) 2005-10-12

Family

ID=27641519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001386A Expired - Fee Related JP3705489B2 (en) 2002-01-08 2002-01-08 Honeycomb filter plugging method and honeycomb filter

Country Status (1)

Country Link
JP (1) JP3705489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028299A (en) * 2003-07-07 2005-02-03 Hitachi Metals Ltd Plug stuffing method for honeycomb filter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735922B2 (en) * 2003-07-18 2011-07-27 日立金属株式会社 Method for sealing honeycomb body and hole machining apparatus used therefor
JP4532192B2 (en) * 2004-07-21 2010-08-25 日本碍子株式会社 MEMBER FOR PACKING FORMATION AND METHOD FOR PRODUCING DUST COLLECTION FILTER USING THE
JP4022893B2 (en) * 2005-04-28 2007-12-19 日立金属株式会社 Honeycomb filter plugging method
WO2007004594A1 (en) * 2005-06-30 2007-01-11 Hitachi Metals, Ltd. Method of manufacturing ceramic honeycomb filter
JP2007038222A (en) * 2006-08-21 2007-02-15 Hitachi Metals Ltd Plug stuffing method of honeycomb filter
EP2098347B1 (en) * 2006-12-28 2013-01-02 NGK Insulators, Ltd. Process for producing plugged honeycomb structure
JP2013173243A (en) * 2012-02-23 2013-09-05 Sumitomo Chemical Co Ltd Inspection method for honeycomb structure, method for manufacturing honeycomb structure, honeycomb structure, design method of sealing mask, and inspection program for honeycomb structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021204A (en) * 1981-07-15 1991-06-04 Corning Incorporated Method for selectively charging honeycomb structures
JPS59177114A (en) * 1983-03-25 1984-10-06 Ngk Insulators Ltd Preparation of mask for ceramic filter
JP3687273B2 (en) * 1997-06-04 2005-08-24 松下電器産業株式会社 Manufacturing method and manufacturing apparatus for ceramic honeycomb filter
JP3715174B2 (en) * 2000-04-18 2005-11-09 日本碍子株式会社 Manufacturing method of ceramic body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028299A (en) * 2003-07-07 2005-02-03 Hitachi Metals Ltd Plug stuffing method for honeycomb filter
JP4560762B2 (en) * 2003-07-07 2010-10-13 日立金属株式会社 Honeycomb filter plugging method

Also Published As

Publication number Publication date
JP2003200010A (en) 2003-07-15

Similar Documents

Publication Publication Date Title
JP3705489B2 (en) Honeycomb filter plugging method and honeycomb filter
CN106098571B (en) A kind of pre- opening method of plastic-packaged electronic component
CN107876766A (en) Laser sintered scan method
CN108362712A (en) A kind of substrate motherboard and its detection method
US6690819B1 (en) Method and apparatus for recognizing components
JP4022893B2 (en) Honeycomb filter plugging method
CN104483811A (en) Mask inspecting apparatus and method and apparatus and method of generating virtual images
US10853959B2 (en) Optical inspection tool and method
US20080188016A1 (en) Die detection and reference die wafermap alignment
JP4560762B2 (en) Honeycomb filter plugging method
CN103688602B (en) Manufacture of substrates and apparatus for manufacturing substrate
JP2007038222A (en) Plug stuffing method of honeycomb filter
JP2006212627A (en) Pasting applicator and control process thereof
WO2013111834A1 (en) Method for specifying sealed cell of honeycomb filter, manufacturing method, sealed cell-specifying device, manufacturing device, program and recording medium therefor
CN111487036B (en) Python-based optical filter offset detection method
KR101236999B1 (en) Laser processing method for manufacturing semiconductor packages
US20070053579A1 (en) Outer surface-inspecting method, master patterns used therefor, and outer surface-inspecting apparatus equipped with such a master pattern
JP4053951B2 (en) Method and apparatus for measuring height of protrusion
KR20110007033A (en) Drawing device, recording medium and drawing method
JP7125174B2 (en) Mesh locating device, printing plate making system, printing plate pattern making device, storage medium, mesh locating method, printing plate making method, and printing plate pattern making method
JPH0518372B2 (en)
JPH06148089A (en) Craze measuring processor
TWI685241B (en) Lens image calibration method
JP2005181092A (en) Height measuring method and device of projection
JPH076378B2 (en) Diesel particulate filter end seal inspection and correction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

R150 Certificate of patent or registration of utility model

Ref document number: 3705489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees