JP3703567B2 - Angle measuring device and angle measuring method - Google Patents

Angle measuring device and angle measuring method Download PDF

Info

Publication number
JP3703567B2
JP3703567B2 JP14754296A JP14754296A JP3703567B2 JP 3703567 B2 JP3703567 B2 JP 3703567B2 JP 14754296 A JP14754296 A JP 14754296A JP 14754296 A JP14754296 A JP 14754296A JP 3703567 B2 JP3703567 B2 JP 3703567B2
Authority
JP
Japan
Prior art keywords
angle
light
driving
wheel
driving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14754296A
Other languages
Japanese (ja)
Other versions
JPH09329431A (en
Inventor
豊 成瀬
健二郎 山屋
芳明 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP14754296A priority Critical patent/JP3703567B2/en
Publication of JPH09329431A publication Critical patent/JPH09329431A/en
Application granted granted Critical
Publication of JP3703567B2 publication Critical patent/JP3703567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動面に対する車輪の滑り角を測定する角度測定装置及び角度測定方法に関し、車輪の転動状態の測定等に好適なものである。
【0002】
【従来の技術】
一般に、車輪には車両の走行安定性を確保するためにキャンバー角が付与され、このキャンバー角付与による片摩耗を防止するためにトー角が付与されている。この為、車両が走行する場合の走行安定性及びタイヤの耐片摩耗性を向上するには、各車輪に付与されている姿勢角であるトー角及びキャンバー角、さらには車輪と路面とが接した時にこれら姿勢角により発生する力を調整することが重要になる。
【0003】
そして、姿勢角の調整の前後に、姿勢角及び力等の車輪の特性を試験する試験装置上において、試験装置を構成するドラム、ベルト或いは無限軌道等の駆動面に車輪を接しつつ転動させて、姿勢角或いは力を測定するが、この際、測定精度の高める為、駆動面に対する車輪の滑り角を測定する必要が生じる。
【0004】
そして、この滑り角は、試験装置の匡体、ドラム軸あるいは、ベルトや無限軌道の案内機構を基準とした基準線を決め、車輪の支持機構からその基準線に対する車輪の軸の角度を求めて、決定されていた。
【0005】
【発明が解決しようとする課題】
しかし、この方法によると、試験装置を構成する機構の組み立てに際して機構的に生じる誤差、駆動面を機械的に駆動するためのクリアランスによるずれから基準線との間に生じる誤差及び、車輪に付与する角度を変更するための車輪の支持機構内のクリアランスから生じる誤差を、滑り角の測定に際してそれぞれ有することになり、最終的に転動中の車輪の滑り角を正確に測定できない欠点があった。
【0006】
一方、測定に際して、駆動面を支持するための試験装置の架台や軸受などの取付け位置や取付け角度を調整して基準線を補正する必要が生じるが、特に大型の試験装置では、この補正の際に多大な労力が必要となり、費用及び時間ともに非常に大きな負担となる。
【0007】
本発明は上記の欠点を解消するためになされたもので、車輪の滑り角を簡易且つ正確に測定し得る角度測定装置及び角度測定方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1による角度測定装置は、車輪が搭載されると共に駆動されて車輪を転動し得る駆動面を有する駆動装置と、
帯状の光束を発生する発光素子及びこの光束を受光する受光素子を有し且つ駆動面の駆動方向にほぼ沿ってこれら素子を並べて配置すると共に帯状の光束が部分的に遮光された状態における遮光幅を計測し得るセンサと、
帯状の光束を部分的に遮光するように駆動面に設置されると共に駆動面の駆動に伴って移動される第1の遮光体と、
駆動面に搭載された車輪に帯状の光束を部分的に遮光するように取り付けられると共に駆動面の駆動に伴って回転される第2の遮光体と、
駆動面の駆動に伴って第1の遮光体により部分的に遮光される光束の遮光幅の変化から、センサの光軸と駆動面の駆動方向との間の相対角とされる第1の角度を演算すると共に、駆動面の駆動に伴って第2の遮光体により部分的に遮光される光束の遮光幅の変化から、センサの光軸と車輪の転動方向との間の相対角とされる第2の角度を演算し、これら第1の角度及び第2の角度の値から、駆動面の駆動方向と車輪の転動方向との間の滑り角を算出する演算手段と、
を備えた。
【0009】
請求項2による角度測定装置は、請求項1の角度測定装置において、駆動面が平面状に形成され、駆動されるのに伴って駆動面が直線的に移動されることを特徴とする。
【0010】
請求項3による角度測定装置は、請求項1の角度測定装置において、センサの光軸が車輪の中心軸を通るようにセンサが配置され、車輪が180度転動する毎に第2の遮光体が帯状の光束を部分的に遮光することを特徴とする。
【0011】
請求項4による角度測定方法は、駆動装置の駆動面の駆動方向にほぼ沿って並べて配置されたセンサの発光素子及び受光素子の内の発光素子が帯状の光束を発光し、受光素子でこの光束を受光して、帯状の光束が部分的に遮光された状態における遮光幅を計測し角度を算出し得る角度測定装置を用いた角度測定方法であって、
まず、帯状の光束を部分的に遮光するように駆動面に第1の遮光体を設置した状態で、駆動面が駆動されるのに伴って第1の遮光体が移動されて、光束の遮光幅を変化させると共にセンサがこれを計測し、演算手段が遮光幅の変化からセンサの光軸と駆動面の駆動方向との間の相対角とされる第1の角度を演算し、
次に、第2の遮光体が取り付けられる車輪を帯状の光束を部分的に遮光するように駆動面に搭載した状態で、駆動面が駆動されるのに伴って第2の遮光体が回転されて、光束の遮光幅を変化させると共にセンサがこれを計測し、演算手段が遮光幅の変化からセンサの光軸と車輪の転動方向との間の相対角とされる第2の角度を演算し、
この後、これら第1の角度及び第2の角度の値から、演算手段が駆動面の駆動方向と車輪の転動方向との間の滑り角を算出する。
【0012】
請求項1に係る角度測定装置の作用を以下に説明する。
車輪が搭載されると共に駆動されて車輪を転動し得る駆動面を駆動装置が有し、帯状の光束を発生する発光素子及びこの光束を受光する受光素子を有したセンサが、駆動面の駆動方向にほぼ沿ってこれら素子を並べた状態で配置され、帯状の光束が部分的に遮光された状態における遮光幅をこのセンサが計測し得る。
【0013】
帯状の光束を部分的に遮光するように駆動面に設置される第1の遮光体が、駆動面の駆動に伴って移動され、また、駆動面に搭載された車輪に帯状の光束を部分的に遮光するように取り付けられる第2の遮光体が、駆動面の駆動に伴って回転される。
【0014】
さらに、第1の遮光体が部分的に遮光する光束の遮光幅の変化を、駆動面の駆動に伴ってセンサが計測し、遮光幅の変化からセンサの光軸と駆動面の駆動方向との間の相対角とされる第1の角度を演算手段が演算する。また、第2の遮光体が部分的に遮光する光束の遮光幅の変化を、駆動面の駆動に伴ってセンサが計測し、遮光幅の変化からセンサの光軸と車輪の転動方向との間の相対角とされる第2の角度を演算手段が演算する。
【0015】
これら第1の角度及び第2の角度の値から、演算手段が駆動面の駆動方向と車輪の転動方向との間の滑り角を算出する。
【0016】
以上より、駆動面の駆動方向と車輪の転動方向との間の滑り角が、駆動装置や車輪の支持機構内のクリアランス等を含まないで、直接算出されることになる。また、駆動面を支持するための架台や軸受などの取付け位置や取付け角度を調整して基準線を補正する必要が無くなる為、大型の試験装置であっても、基準線の補正のための労力が不要となり、角度測定作業における費用及び時間ともに節約される。
【0017】
この結果として、転動中の車輪の滑り角を簡易且つ正確に測定し得ることが可能となる。
【0018】
請求項2に係る角度測定装置の作用を以下に説明する。
本請求項も請求項1と同様の構成を有しているので、請求項1と同様の作用を奏する。但し、本請求項では、駆動面が平面状に形成され、駆動されるのに伴って駆動面が直線的に移動されるので、駆動面に設置される第1の遮光体の一定の部分で、センサの帯状の光束を遮光するようになる。この為、滑り角の測定精度が一層向上し得ることになる。
【0019】
請求項3に係る角度測定装置の作用を以下に説明する。
本請求項も請求項1と同様の構成を有しているので、請求項1と同様の作用を奏する。但し、本請求項では、センサの光軸が車輪の中心軸を通るようにセンサが配置され、車輪が180度転動する毎に第2の遮光体が帯状の光束を部分的に遮光する。この為、最も遮光幅の変化が大きくなると考えられる2点間で第2の遮光体が光束を遮光するようになって、第2の角度の計測精度が高まり、結果として、滑り角の測定精度が一層向上し得ることになる。
【0020】
請求項4に係る角度測定方法の作用を以下に説明する。
本請求項の角度測定方法も請求項1の角度測定装置と同様の作用を奏する。
【0021】
つまり、まず駆動面に第1の遮光体を設置してセンサの光軸と駆動面の駆動方向との間の相対角とされる第1の角度を求め、次に、第2の遮光体が取り付けられる車輪を駆動面に設置してセンサの光軸と車輪の転動方向との間の相対角とされる第2の角度を求め、最後に、これら第1の角度及び第2の角度の値から、演算手段が駆動面の駆動方向と車輪の転動方向との間の滑り角を算出するようにした。
【0022】
従って、請求項1と同様に駆動面の駆動方向と車輪の転動方向との間の滑り角が、駆動装置や車輪の支持機構内のクリアランス等を含まないで、直接算出されることになる。また、駆動面を支持するための架台や軸受などの取付け位置や取付け角度を調整して基準線を補正する必要が無くなる為、大型の試験装置であっても、基準線の補正のための労力が不要となり、角度測定作業における費用及び時間ともに節約される。
【0023】
この結果として、転動中の車輪の滑り角を簡易且つ正確に測定し得ることが可能となる。
【0024】
【発明の実施の形態】
以下図面を参照して本発明に係る角度測定装置及び角度測定方法の第1の実施の形態を詳細に説明する。図1及び図2は、本実施の形態が適用される車両の車輪の試験装置12の全体図を示すものである。
【0025】
この試験装置12は一対の載置台14を備えており、これら載置台14には、車両50の各車輪52を回転駆動させるための4つのタイヤ駆動装置18が取り付けられていて、これらタイヤ駆動装置18がそれぞれ駆動装置を構成することになる。この4つのタイヤ駆動装置18には、前輪を転動させるための一対のタイヤ駆動装置18と後輪を転動させるための一対のタイヤ駆動装置18とが含まれている。
【0026】
以下、図1及び図2に示した4つのタイヤ駆動装置18は、各々同一構成であるため、1つのタイヤ駆動装置18のみについて説明する。
【0027】
図4に示すように、タイヤ駆動装置18の外枠を形成するフレーム20内には、それぞれスプロケット(図示せず)が固着された一対の駆動軸21が相互に平行にかつ回転可能に配置されている。そして、長さが車輪52の幅を越える長さ以上でかつ車輪52のトレッドパターンの溝に入り込まない程度の幅の細長い金属製の平板である板片22が、複数それぞれ図示しないチェーンに取り付けられており、一対の駆動軸21のスプロケット間にこのチェーンが掛け渡されている。
【0028】
従って、チェーンによりこれら板片22がその幅方向に沿って多数連結されて、図3及び図4に示すように無限軌道である駆動面24が平面状に形成され、板片22の長手方向が車両50の左右方向を向くように、駆動面24が配置されている。
【0029】
フレーム20内には、歪みゲージやロードセル等の力検出素子を備えた図示しない力センサが固定されており、車両50の左右方向、車両50の前後方向及び、車両50の荷重が加わる方向である垂直方向の力の大きさと力の向きを検出可能となっている。
【0030】
図3から図5に示すようにタイヤ駆動装置18の一方の側面の中央部には、上方に延びるブラケット26が固定されており、このブラケット26の上端部には、タイヤ駆動装置18の駆動面24の駆動方向(矢印Dで示す)に沿って支持アーム28が延びるように、この支持アーム28の中央が取り付けられている。
【0031】
この支持アーム28の一端側には、帯状のレーザーまたは直進性の高い光線を送信する発光素子である送信機32Aが設置され、支持アーム28の他端側には、帯状のレーザーまたは直進性の高い光線を受信する受光素子である受信機32Bが設置されている。
【0032】
尚、この受信機32Bは、5/1000mm単位の精度で遮光された幅に見合った電圧の出力またはデジタルデータの出力を行うことのできるCCD等により、構成されている。
【0033】
つまり、駆動面24の駆動方向にほぼ沿ってこれら送信機32A及び受信機32Bが並べて配置され、これら送信機32A及び受信機32Bにより構成されるセンサ32が、帯状の光束が部分的に遮光された状態における遮光幅を計測し得るようになっている。
【0034】
一方、駆動面24上から上方向に延びてセンサ32の帯状の光束を部分的に遮光するように、タイヤ駆動装置18の駆動面24上には、板状の第1の遮光体である駆動面用遮光板34が着脱自在に設置され、駆動面24の駆動に伴ってこの駆動面用遮光板34が移動されることになる。
【0035】
図2に示すように、センサ32の受信機32Bは、受信したデータを処理し得るパーソナルコンピュータ等で構成された演算手段であるデータ処理装置42に接続され、また、タイヤ駆動装置18の各力センサは検出値を入力可能にデータ処理装置42に接続されている。
【0036】
さらに、データ処理装置42は、タイヤ駆動装置18の駆動面24を駆動するモータとも接続されており、駆動面用遮光板34の移動量をモータの回転量を通して計測できるようになっている。そして、このデータ処理装置42には、データを処理した結果及び、力センサでの検出値を表示するためのCRT等で構成された表示装置44が接続されている。
【0037】
他方、駆動面用遮光板34を駆動面24上から取り去った状態で、図7から図9に示すように、板状の第2の遮光体である車輪用遮光板36がホイール52Aに取り付けられた車輪52を、送信機32Aから送られる帯状の光束を車輪用遮光板36が部分的に遮光するように、タイヤ駆動装置18の駆動面24上に搭載する。
【0038】
尚この際、図9に示すように、センサ32の光軸Lが車輪52の中心軸Cを通るように当初からセンサ32を配置しておき、車輪52が180度転動する毎に、車輪用遮光板36がセンサ32の帯状の光束を部分的に遮光するようにした。
【0039】
従って、車輪52を搭載した状態で駆動面24が駆動されると、車輪52が転動され、これに伴って回転される車輪用遮光板36が、相互に180度異なる図7及び図8上、左側の二点鎖線で示すA点の位置と右側の二点鎖線で示すB点の位置とで、部分的にセンサ32の帯状の光束を遮光するようになり、これら二箇所で遮光した際の光束の遮光幅の相違である遮光幅の変化をセンサ32が計測することになる。
【0040】
本実施の形態に係る作用及び動作を以下に説明する。
測定に当たっては、まず、図3から図5に示すように、センサ32を構成する送信機32Aと受信機32Bの間の駆動面24上に駆動面用遮光板34をおき、センサ32の帯状の光束を部分的に遮光する。そして、タイヤ駆動装置18のモータを回転させて駆動面24を駆動するとともに、駆動面用遮光板34の移動距離及び遮光幅のデータのサンプリングを開始し、予め定めた一定の距離だけ駆動面用遮光板34を移動する毎に、タイヤ駆動装置18のモータ及びセンサ32からデータ処理装置42にデータを収集する。
【0041】
つまり、駆動面24の駆動に伴う駆動面24の駆動方向である進行方向に直角な方向への駆動面用遮光板34の変位を、受信機32Bによって計測する。
【0042】
そして、予め定めた回数または総移動距離に対応するサンプリングを終了した後に、このデータの演算処理をデータ処理装置42内で行い、図6に示すように、センサ32の光軸Lと駆動面24の駆動方向との間の相対角とされる第1の角度αをデータ処理装置42内で演算して求める。
【0043】
次に、駆動面用遮光板34を駆動面24上から取り去り、車両50の操舵輪を直進状態にして車体の略中心線と試験装置12の各駆動面24の駆動方向とが並行となるように車体の向きを調整しつつ図1に示すように車両50を試験装置12上に搭載する。
【0044】
この際、車輪用遮光板36を車両50の車輪52に取り付け、この車輪用遮光板36が取り付けられた車輪52をセンサ32の光束を部分的に遮光するように駆動面24に設置した状態で、車輪用遮光板36がセンサ32間で光束を遮光するA点とB点の距離を、例えば作業者が巻尺等で測定し、データ処理装置42に入力する。そして、車輪52が載っているタイヤ駆動装置18のモータを回転させて駆動面24を駆動することにより、車輪52とともに車輪用遮光板36を回転し、車輪用遮光板36によるA点ならびにB点における遮光幅のデータを、センサ32からデータ処理装置42がサンプリングする。さらに、図10に示すように、センサ32の光軸Lと車輪52の転動方向との間の相対角とされる第2の角度βをデータ処理装置42内で演算して求める。
【0045】
最後に、これら第1の角度α及び第2の角度βの値から、データ処理装置42が駆動面24の駆動方向と車輪52の転動方向との間の滑り角を算出する。
【0046】
つまり、センサ32の光軸Lと車輪52の転動方向との間の相対角とされる第2の角度βを、先に求めた駆動面24の駆動方向とセンサ32の光軸Lとの間の相対角である第1の角度αにより補正すべく演算を行ない、駆動面24の駆動方向と車輪52の転動方向との間の滑り角を求める。
【0047】
以上より、駆動面24の駆動方向と車輪52の転動方向との間の滑り角が、タイヤ駆動装置18や車輪52の支持機構内のクリアランス等を含まないで、直接算出されることになる。
【0048】
すなわち、タイヤ駆動装置18の機構による誤差を極小化し、駆動面24の駆動方向及び車輪52の転動方向を同一のセンサ32により検出することによって、精度の高い測定を可能とした。
【0049】
また、駆動面24を支持するための架台や軸受などの取付け位置や取付け角度を調整して基準線を補正する必要が無くなる為、大型の試験装置であっても、基準線の補正のための労力が不要となり、角度測定作業における費用及び時間ともに節約される。
【0050】
これに伴って、駆動面24の実際の動きの方向である駆動方向を実測して基準線とするため、試験装置12の機構の歪みや磨耗などの影響を受けないようになり、測定精度を維持するための作業を要しないことになる。
【0051】
以上の結果として、転動中の車輪52の滑り角を簡易且つ正確に測定し得ることが可能となる。
【0052】
一方、駆動面24が平面状に形成され、駆動されるのに伴って駆動面24が直線的に移動されるので、駆動面24に設置される駆動面用遮光板34の一定の部分で、センサ32の帯状の光束を遮光するようになる。この為、駆動面用遮光板34の駆動面24への設置の際の駆動面用遮光板34の傾き等による測定誤差が生じないようになり、滑り角の測定精度が一層向上し得ることになる。
【0053】
他方、センサ32の光軸Lが車輪52の中心軸Cを通るようにセンサ32が配置され、車輪52が180度転動する毎に車輪用遮光板36が帯状の光束を部分的に遮光するようにされている。この為、最も遮光幅の変化が大きくなると考えられる2点間で車輪用遮光板36が光束を遮光するようになって、第2の角度βの計測精度が高まり、結果として、滑り角の測定精度が一層向上し得ることになる。
【0054】
そして、タイヤ駆動装置18の駆動面24の各々に車輪52を載置し、タイヤ駆動装置18によって何れか1つの車輪52を転動させると、転動する車輪52によって、例えば車両50の左右方向、或いは車両50の前後方向の力が、板片22に作用する。
【0055】
この力の作用によって、フレーム20に力が伝達され、力センサが力の大きさと方向を検出することができる。ここで検出できる力は、車輪が転動するときに発生する力であり、この力としては、トーによる力、プライステア、キャンバースラスト、コニシティ等の力がある。
【0056】
次に、本発明に係る角度測定装置及び角度測定方法の第2の実施の形態を詳細に説明する。尚、第1の実施の形態で説明した部材と同一の部材には同一の符号を付し、重複した説明を省略する。
【0057】
図11から図13に示すように、本実施の形態に係る駆動面62は円筒状に形成されたドラム面とされており、ブラケット26にセンサ32の位置を調整する調整機構64が取り付けられている。そして、この駆動面62上に第1の実施の形態と同様の駆動面用遮光板34を設置して第1の角度αを求める。
【0058】
この後、図14及び図15に示すように、駆動面62上に車輪52を載せて、第1の実施の形態と同様に第2の角度βを求め、最終的に滑り角をデータ処理装置42で演算して算出する。
【0059】
つまり、本実施の形態では、駆動面62が駆動されて円状に移動すると言う相違を有するものの第1の実施の形態と同様に滑り角が求められることになる。
【0060】
尚、以上の実施の形態では、車両の車輪の力の測定を通して本発明を説明したが、例えば、他の測定装置にも応用することができる。
【0061】
また、第1の実施の形態では、多数の板片により構成された無限軌道を駆動面としたが、単なるベルトであっても良い。さらに、第1の実施の形態では、センサ32の光軸Lが車輪52の中心軸Cを通るようにセンサ32を配置したが、センサ32の光軸Lを車輪52の中心軸Cに対してずらしても遮光幅の測定は可能となるので、センサ32をずらして配置しても良い。
【0062】
また、上記実施の形態と異なり、駆動面に車輪を先に設置して第2の角度を求め、この後に、駆動面用遮光板を駆動面に設置して第1の角度を求めて、これら第1の角度及び第2の角度から滑り角を算出しても良い。
【0063】
さらに、本発明は、送信器と受信機の取付け位置を工夫すれば駆動面とその駆動面に駆動される回転体の相対角を測定する多様な計測装置に簡便に適用することができる。
【0064】
【発明の効果】
以上説明したように本発明の角度測定装置及び角度測定方法によれば、車輪の滑り角を簡易且つ正確に測定し得ることができる、という効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態が適用される試験装置を示す側面図である。
【図2】本発明の第1の実施の形態が適用される試験装置を示す概略平面図である。
【図3】本発明の第1の実施の形態に係る角度測定装置の平面図である。
【図4】本発明の第1の実施の形態に係る角度測定装置の正面図である。
【図5】本発明の第1の実施の形態に係る角度測定装置の側面図である。
【図6】本発明の第1の実施の形態に係る角度測定装置による角度の測定を説明する図であって、第1の角度の測定を示す。
【図7】本発明の第1の実施の形態に係る角度測定装置の平面図であって、車輪が搭載された状態の図である。
【図8】本発明の第1の実施の形態に係る角度測定装置の正面図であって、車輪が搭載された状態の図である。
【図9】本発明の第1の実施の形態に係る角度測定装置の側面図であって、車輪が搭載された状態の図である。
【図10】本発明の第1の実施の形態に係る角度測定装置による角度の測定を説明する図であって、第2の角度の測定を示す。
【図11】本発明の第2の実施の形態に係る角度測定装置の斜視図である。
【図12】本発明の第2の実施の形態に係る角度測定装置の正面図である。
【図13】本発明の第2の実施の形態に係る角度測定装置の平面図である。
【図14】本発明の第2の実施の形態に係る角度測定装置の斜視図であって、車輪が搭載された状態の図である。
【図15】本発明の第2の実施の形態に係る角度測定装置の正面図であって、車輪が搭載された状態の図である。
【符号の説明】
12 試験装置
18 タイヤ駆動装置
24 駆動面
32 センサ
32A 送信機(発光素子)
32B 受信機(受光素子)
34 駆動面用遮光板(第1の遮光体)
36 車輪用遮光板(第2の遮光体)
42 データ処理装置(演算手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an angle measuring device and an angle measuring method for measuring a slip angle of a wheel with respect to a driving surface, and is suitable for measuring a rolling state of a wheel.
[0002]
[Prior art]
Generally, a camber angle is given to the wheel to ensure the running stability of the vehicle, and a toe angle is given to prevent one-side wear due to the camber angle. For this reason, in order to improve running stability and tire wear resistance when the vehicle is running, the toe angle and camber angle, which are the attitude angles given to each wheel, and the wheels and the road surface are in contact with each other. It is important to adjust the force generated by these attitude angles.
[0003]
Then, before and after the adjustment of the attitude angle, on the test apparatus that tests the characteristics of the wheel such as the attitude angle and the force, the wheel is brought into contact with a driving surface such as a drum, a belt, or an endless track that constitutes the test apparatus. At this time, it is necessary to measure the slip angle of the wheel with respect to the driving surface in order to improve the measurement accuracy.
[0004]
The slip angle is determined by determining a reference line based on the test apparatus housing, drum shaft, belt or endless track guide mechanism, and determining the angle of the wheel shaft relative to the reference line from the wheel support mechanism. Was decided.
[0005]
[Problems to be solved by the invention]
However, according to this method, an error that occurs mechanically when assembling the mechanism that constitutes the test apparatus, an error that occurs between the reference line and a deviation due to a clearance for mechanically driving the drive surface, and the wheel are given. When measuring the slip angle, there is an error caused by the clearance in the wheel support mechanism for changing the angle, and there is a drawback that the slip angle of the rolling wheel cannot be measured accurately.
[0006]
On the other hand, during measurement, it is necessary to correct the reference line by adjusting the mounting position and mounting angle of the test equipment for supporting the drive surface, such as the base and bearing. A great deal of labor is required, and the cost and time are very heavy.
[0007]
The present invention has been made to solve the above-described drawbacks, and an object of the present invention is to provide an angle measuring device and an angle measuring method capable of easily and accurately measuring a slip angle of a wheel.
[0008]
[Means for Solving the Problems]
An angle measuring device according to claim 1 includes a driving device having a driving surface on which a wheel is mounted and can be driven to roll the wheel.
A light-shielding width in a state in which a light-emitting element that generates a strip-shaped light beam and a light-receiving element that receives this light beam are arranged side by side along the driving direction of the driving surface and the band-shaped light beam is partially shielded A sensor capable of measuring
A first light-shielding body that is installed on the driving surface so as to partially shield the belt-shaped light flux and is moved along with the driving of the driving surface;
A second light-shielding body that is attached to a wheel mounted on the driving surface so as to partially shield the belt-like light flux and is rotated in accordance with driving of the driving surface;
A first angle that is a relative angle between the optical axis of the sensor and the driving direction of the driving surface from a change in the light blocking width of the light beam partially blocked by the first light blocking body as the driving surface is driven. And the relative angle between the optical axis of the sensor and the rolling direction of the wheel is obtained from the change in the light shielding width of the light beam partially shielded by the second light shield as the driving surface is driven. Calculating means for calculating a second angle, and calculating a slip angle between the driving direction of the driving surface and the rolling direction of the wheel from the values of the first angle and the second angle;
Equipped with.
[0009]
An angle measuring device according to a second aspect is the angle measuring device according to the first aspect, wherein the driving surface is formed in a flat shape, and the driving surface is linearly moved as the driving surface is driven.
[0010]
The angle measuring device according to a third aspect is the angle measuring device according to the first aspect, wherein the sensor is arranged so that the optical axis of the sensor passes through the central axis of the wheel, and the second light shielding body is rotated every time the wheel rolls 180 degrees. Is characterized by partially shielding the belt-shaped light flux.
[0011]
According to a fourth aspect of the present invention, the light emitting element of the sensor and the light emitting element among the light receiving elements arranged side by side substantially along the driving direction of the driving surface of the driving device emit a band-shaped light beam. Is an angle measuring method using an angle measuring device capable of calculating the angle by measuring the light shielding width in a state where the band-shaped light beam is partially shielded,
First, in a state where the first light shielding body is installed on the driving surface so as to partially shield the belt-shaped light flux, the first light shielding body is moved as the driving surface is driven to block the light flux. The sensor changes this while changing the width, and the calculation means calculates a first angle that is a relative angle between the optical axis of the sensor and the driving direction of the driving surface from the change in the light shielding width,
Next, the second light shield is rotated as the drive surface is driven in a state where the wheel to which the second light shield is mounted is mounted on the drive surface so as to partially shield the belt-like light flux. Then, the light shielding width of the light flux is changed and the sensor measures this, and the calculation means calculates a second angle which is a relative angle between the optical axis of the sensor and the rolling direction of the wheel from the change of the light shielding width. And
Thereafter, from the values of the first angle and the second angle, the calculation means calculates a slip angle between the driving direction of the driving surface and the rolling direction of the wheel.
[0012]
The operation of the angle measuring apparatus according to claim 1 will be described below.
The driving device has a driving surface on which a wheel is mounted and can be driven to roll the wheel, and a sensor having a light emitting element that generates a strip-shaped light beam and a light receiving element that receives the light beam drives the driving surface. This sensor can be arranged in a state where these elements are arranged substantially along the direction, and this sensor can measure the light-shielding width in a state where the strip-shaped light beam is partially shielded.
[0013]
The first light-shielding body installed on the driving surface so as to partially shield the belt-shaped light flux is moved along with the driving of the driving surface, and the belt-shaped light flux is partially applied to the wheel mounted on the driving surface. The second light-shielding body attached so as to shield light is rotated as the driving surface is driven.
[0014]
Further, the sensor measures the change in the light shielding width of the light beam partially shielded by the first light shielding body as the drive surface is driven. From the change in the light shielding width, the optical axis of the sensor and the drive direction of the drive surface are measured. The calculating means calculates a first angle which is a relative angle between them. In addition, the sensor measures the change in the light shielding width of the light beam partially shielded by the second light shielding body as the drive surface is driven, and the change between the optical axis of the sensor and the rolling direction of the wheel from the change in the light shielding width. The calculating means calculates a second angle which is a relative angle between them.
[0015]
From the values of the first angle and the second angle, the calculation means calculates the slip angle between the driving direction of the driving surface and the rolling direction of the wheel.
[0016]
As described above, the slip angle between the driving direction of the driving surface and the rolling direction of the wheel is directly calculated without including the clearance in the driving device and the wheel support mechanism. Also, it is no longer necessary to correct the reference line by adjusting the mounting position and mounting angle of the platform and bearings to support the drive surface. Is eliminated, and both the cost and time of the angle measurement operation are saved.
[0017]
As a result, the slip angle of the rolling wheel can be measured easily and accurately.
[0018]
The operation of the angle measuring apparatus according to claim 2 will be described below.
Since this claim also has the same configuration as that of claim 1, the same effect as that of claim 1 is obtained. However, in this claim, the driving surface is formed in a flat shape, and the driving surface is moved linearly as it is driven. Therefore, the driving surface is a fixed portion of the first light shield installed on the driving surface. Then, the belt-shaped light flux of the sensor is shielded. For this reason, the measurement accuracy of the slip angle can be further improved.
[0019]
The operation of the angle measuring apparatus according to claim 3 will be described below.
Since this claim also has the same configuration as that of claim 1, the same effect as that of claim 1 is obtained. However, in this claim, the sensor is arranged so that the optical axis of the sensor passes through the central axis of the wheel, and the second light shield partially blocks the belt-shaped light beam every time the wheel rolls 180 degrees. For this reason, the second light-shielding body shields the light beam between two points where the change in the light-shielding width is considered to be the largest, so that the measurement accuracy of the second angle is increased, and as a result, the measurement accuracy of the slip angle is increased. Can be further improved.
[0020]
The operation of the angle measuring method according to claim 4 will be described below.
The angle measuring method according to the present invention also has the same effect as the angle measuring apparatus according to the first aspect.
[0021]
That is, first, a first light shield is installed on the drive surface to obtain a first angle that is a relative angle between the optical axis of the sensor and the drive direction of the drive surface, and then the second light shield is A wheel to be mounted is installed on the driving surface to obtain a second angle which is a relative angle between the optical axis of the sensor and the rolling direction of the wheel, and finally, the first angle and the second angle The calculation means calculates the slip angle between the driving direction of the driving surface and the rolling direction of the wheel from the value.
[0022]
Therefore, the slip angle between the driving direction of the driving surface and the rolling direction of the wheel is calculated directly without including the clearance in the driving device and the wheel support mechanism, as in the first aspect. . Also, it is no longer necessary to correct the reference line by adjusting the mounting position and mounting angle of the platform and bearings to support the drive surface. Is eliminated, and both the cost and time of the angle measurement operation are saved.
[0023]
As a result, the slip angle of the rolling wheel can be measured easily and accurately.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of an angle measuring device and an angle measuring method according to the present invention will be described in detail with reference to the drawings. 1 and 2 show an overall view of a vehicle wheel test apparatus 12 to which the present embodiment is applied.
[0025]
The test apparatus 12 includes a pair of mounting tables 14, and four tire driving devices 18 for rotating the wheels 52 of the vehicle 50 are attached to the mounting tables 14. 18 constitutes a driving device. The four tire drive devices 18 include a pair of tire drive devices 18 for rolling the front wheels and a pair of tire drive devices 18 for rolling the rear wheels.
[0026]
Hereinafter, since the four tire driving devices 18 shown in FIGS. 1 and 2 have the same configuration, only one tire driving device 18 will be described.
[0027]
As shown in FIG. 4, a pair of drive shafts 21 each having a sprocket (not shown) fixed thereto are arranged in parallel with each other and rotatable in a frame 20 forming an outer frame of the tire drive device 18. ing. A plurality of plate pieces 22 each of which is a long metal plate having a length that exceeds the width of the wheel 52 and does not enter the groove of the tread pattern of the wheel 52 are attached to a chain (not shown). The chain is suspended between the sprockets of the pair of drive shafts 21.
[0028]
Accordingly, a large number of these plate pieces 22 are connected along the width direction by the chain, and the drive surface 24 which is an endless track is formed in a flat shape as shown in FIGS. 3 and 4, and the longitudinal direction of the plate piece 22 is The drive surface 24 is disposed so as to face the left-right direction of the vehicle 50.
[0029]
A force sensor (not shown) having a force detection element such as a strain gauge or a load cell is fixed in the frame 20. The magnitude of the vertical force and the direction of the force can be detected.
[0030]
As shown in FIGS. 3 to 5, an upwardly extending bracket 26 is fixed to a central portion of one side surface of the tire driving device 18, and a driving surface of the tire driving device 18 is attached to an upper end portion of the bracket 26. The center of the support arm 28 is attached so that the support arm 28 extends along the 24 drive directions (indicated by the arrow D).
[0031]
On one end side of the support arm 28, a transmitter 32A, which is a light emitting element that transmits a belt-like laser or a light beam having a high degree of straightness, is installed. A receiver 32B, which is a light receiving element that receives high light rays, is installed.
[0032]
The receiver 32B is constituted by a CCD or the like that can output a voltage corresponding to the light-shielded width or an output of digital data with an accuracy of 5/1000 mm.
[0033]
That is, the transmitter 32A and the receiver 32B are arranged side by side substantially along the drive direction of the drive surface 24, and the sensor 32 constituted by the transmitter 32A and the receiver 32B partially shields the belt-shaped light flux. It is possible to measure the light shielding width in a state where the light has passed.
[0034]
On the other hand, on the drive surface 24 of the tire drive device 18, a drive that is a plate-like first light shield so as to extend upward from the drive surface 24 and partially shield the belt-like light flux of the sensor 32. The surface light shielding plate 34 is detachably installed, and the driving surface light shielding plate 34 is moved as the driving surface 24 is driven.
[0035]
As shown in FIG. 2, the receiver 32 </ b> B of the sensor 32 is connected to a data processing device 42, which is a computing means constituted by a personal computer or the like that can process received data, and each force of the tire driving device 18. The sensor is connected to the data processing device 42 so that the detected value can be input.
[0036]
Further, the data processing device 42 is also connected to a motor that drives the driving surface 24 of the tire driving device 18 so that the movement amount of the driving surface light shielding plate 34 can be measured through the rotation amount of the motor. The data processing device 42 is connected to a display device 44 composed of a CRT or the like for displaying the result of processing the data and the detection value of the force sensor.
[0037]
On the other hand, with the driving surface light shielding plate 34 removed from the driving surface 24, a wheel light shielding plate 36, which is a plate-shaped second light shielding body, is attached to the wheel 52A, as shown in FIGS. The wheel 52 is mounted on the driving surface 24 of the tire driving device 18 so that the band-shaped light beam sent from the transmitter 32A is partially shielded by the wheel shading plate 36.
[0038]
At this time, as shown in FIG. 9, the sensor 32 is arranged from the beginning so that the optical axis L of the sensor 32 passes through the central axis C of the wheel 52, and each time the wheel 52 rolls 180 degrees, The light shielding plate 36 partially shields the belt-shaped light flux of the sensor 32.
[0039]
Accordingly, when the driving surface 24 is driven with the wheels 52 mounted, the wheels 52 are rolled and the wheel shading plates 36 rotated in accordance with the rolling are different from each other by 180 degrees in FIGS. 7 and 8. When the position of the point A indicated by the two-dot chain line on the left side and the position of the point B indicated by the two-dot chain line on the right side, the band-like light flux of the sensor 32 is partially shielded, and when the light is shielded at these two places The sensor 32 measures a change in the light shielding width, which is a difference in the light shielding width of the luminous flux.
[0040]
The operation and operation according to the present embodiment will be described below.
In the measurement, first, as shown in FIGS. 3 to 5, a driving surface light shielding plate 34 is placed on the driving surface 24 between the transmitter 32 </ b> A and the receiver 32 </ b> B constituting the sensor 32, and Partially blocks the light beam. Then, the motor of the tire driving device 18 is rotated to drive the driving surface 24, and sampling of the data of the moving distance and the light shielding width of the light shielding plate 34 for the driving surface is started, and the driving surface 24 is driven by a predetermined fixed distance. Each time the light shielding plate 34 is moved, data is collected from the motor and sensor 32 of the tire driving device 18 to the data processing device 42.
[0041]
That is, the displacement of the light shielding plate for driving surface 34 in the direction perpendicular to the traveling direction that is the driving direction of the driving surface 24 accompanying the driving of the driving surface 24 is measured by the receiver 32B.
[0042]
Then, after the sampling corresponding to the predetermined number of times or the total movement distance is completed, the calculation processing of this data is performed in the data processing device 42, and as shown in FIG. The first angle α, which is a relative angle with respect to the driving direction, is calculated in the data processing device 42 and obtained.
[0043]
Next, the light shielding plate 34 for the driving surface is removed from the driving surface 24, the steering wheel of the vehicle 50 is moved straight, and the approximate center line of the vehicle body and the driving direction of each driving surface 24 of the test apparatus 12 are parallel. The vehicle 50 is mounted on the test apparatus 12 as shown in FIG.
[0044]
At this time, the wheel shading plate 36 is attached to the wheel 52 of the vehicle 50, and the wheel 52 to which the wheel shading plate 36 is attached is installed on the driving surface 24 so as to partially shield the light flux of the sensor 32. The distance between the points A and B where the wheel light-shielding plate 36 shields the light beam between the sensors 32 is measured by, for example, a tape measure or the like and input to the data processing device 42. Then, by rotating the motor of the tire driving device 18 on which the wheel 52 is mounted to drive the driving surface 24, the wheel shading plate 36 is rotated together with the wheel 52, and the points A and B by the wheel shading plate 36 are rotated. The data processor 42 samples the data of the light shielding width at the sensor 32. Further, as shown in FIG. 10, a second angle β, which is a relative angle between the optical axis L of the sensor 32 and the rolling direction of the wheel 52, is calculated in the data processing device 42.
[0045]
Finally, the data processor 42 calculates the slip angle between the driving direction of the driving surface 24 and the rolling direction of the wheel 52 from the values of the first angle α and the second angle β.
[0046]
That is, the second angle β, which is a relative angle between the optical axis L of the sensor 32 and the rolling direction of the wheel 52, is calculated between the driving direction of the driving surface 24 obtained previously and the optical axis L of the sensor 32. A calculation is performed to correct by the first angle α which is a relative angle between them, and a slip angle between the driving direction of the driving surface 24 and the rolling direction of the wheel 52 is obtained.
[0047]
As described above, the slip angle between the drive direction of the drive surface 24 and the rolling direction of the wheel 52 is directly calculated without including the clearance in the tire drive device 18 and the support mechanism of the wheel 52. .
[0048]
That is, the error due to the mechanism of the tire driving device 18 is minimized, and the driving direction of the driving surface 24 and the rolling direction of the wheel 52 are detected by the same sensor 32, thereby enabling highly accurate measurement.
[0049]
In addition, since it is not necessary to correct the reference line by adjusting the mounting position and the mounting angle of a gantry or a bearing for supporting the drive surface 24, even a large test apparatus can correct the reference line. Labor is not required and both the cost and time of the angle measurement operation are saved.
[0050]
Along with this, since the driving direction, which is the actual movement direction of the driving surface 24, is measured and used as a reference line, it is not affected by the distortion or wear of the mechanism of the test apparatus 12, and the measurement accuracy is improved. No maintenance work is required.
[0051]
As a result of the above, it is possible to easily and accurately measure the slip angle of the rolling wheel 52.
[0052]
On the other hand, the drive surface 24 is formed in a flat shape, and the drive surface 24 is linearly moved as the drive surface 24 is driven. Therefore, in a certain portion of the drive surface light shielding plate 34 installed on the drive surface 24, The belt-shaped light flux of the sensor 32 is shielded. For this reason, the measurement error due to the inclination of the driving surface light shielding plate 34 when the driving surface light shielding plate 34 is installed on the driving surface 24 does not occur, and the measurement accuracy of the slip angle can be further improved. Become.
[0053]
On the other hand, the sensor 32 is arranged so that the optical axis L of the sensor 32 passes through the central axis C of the wheel 52, and the wheel shading plate 36 partially shields the belt-shaped light flux every time the wheel 52 rolls 180 degrees. Has been. For this reason, the light shielding plate 36 for the wheel shields the light flux between two points where the change in the light shielding width is considered to be the largest, so that the measurement accuracy of the second angle β is improved, and as a result, the slip angle is measured. The accuracy can be further improved.
[0054]
And when the wheel 52 is mounted on each of the drive surfaces 24 of the tire drive device 18 and any one wheel 52 is rolled by the tire drive device 18, the rolling wheel 52 causes the vehicle 50 to move in the horizontal direction, for example. Alternatively, the longitudinal force of the vehicle 50 acts on the plate piece 22.
[0055]
The force is transmitted to the frame 20 by the action of the force, and the force sensor can detect the magnitude and direction of the force. The force that can be detected here is a force generated when the wheel rolls, and this force includes a toe force, a price tear, a camber thrust, a conicity, and the like.
[0056]
Next, a second embodiment of the angle measuring apparatus and the angle measuring method according to the present invention will be described in detail. In addition, the same code | symbol is attached | subjected to the member same as the member demonstrated in 1st Embodiment, and the overlapping description is abbreviate | omitted.
[0057]
As shown in FIGS. 11 to 13, the drive surface 62 according to the present embodiment is a drum surface formed in a cylindrical shape, and an adjustment mechanism 64 for adjusting the position of the sensor 32 is attached to the bracket 26. Yes. Then, a driving surface light shielding plate 34 similar to that of the first embodiment is installed on the driving surface 62 to obtain the first angle α.
[0058]
Thereafter, as shown in FIGS. 14 and 15, a wheel 52 is placed on the drive surface 62, the second angle β is obtained as in the first embodiment, and the slip angle is finally determined as a data processing device. Calculated by calculating at 42.
[0059]
That is, in this embodiment, although there is a difference that the drive surface 62 is driven to move in a circular shape, the slip angle is obtained as in the first embodiment.
[0060]
In the above embodiment, the present invention has been described through the measurement of the wheel force of the vehicle. However, the present invention can be applied to other measurement devices, for example.
[0061]
In the first embodiment, the endless track formed of a large number of plate pieces is used as the driving surface. However, a simple belt may be used. Further, in the first embodiment, the sensor 32 is arranged so that the optical axis L of the sensor 32 passes through the central axis C of the wheel 52, but the optical axis L of the sensor 32 is set to the central axis C of the wheel 52. Since the shading width can be measured even if the sensor is shifted, the sensor 32 may be shifted.
[0062]
Further, unlike the above embodiment, the wheel is first installed on the driving surface to obtain the second angle, and then the driving surface light-shielding plate is installed on the driving surface to obtain the first angle. The slip angle may be calculated from the first angle and the second angle.
[0063]
Furthermore, the present invention can be easily applied to various measuring devices that measure the relative angle between a driving surface and a rotating body driven by the driving surface if the mounting positions of the transmitter and the receiver are devised.
[0064]
【The invention's effect】
As described above, according to the angle measuring device and the angle measuring method of the present invention, the effect that the slip angle of the wheel can be measured easily and accurately is obtained.
[Brief description of the drawings]
FIG. 1 is a side view showing a test apparatus to which a first embodiment of the present invention is applied.
FIG. 2 is a schematic plan view showing a test apparatus to which the first embodiment of the present invention is applied.
FIG. 3 is a plan view of the angle measuring apparatus according to the first embodiment of the present invention.
FIG. 4 is a front view of the angle measuring device according to the first embodiment of the present invention.
FIG. 5 is a side view of the angle measuring apparatus according to the first embodiment of the present invention.
FIG. 6 is a diagram for explaining angle measurement by the angle measurement apparatus according to the first embodiment of the present invention, and shows measurement of the first angle;
FIG. 7 is a plan view of the angle measuring apparatus according to the first embodiment of the present invention in a state where wheels are mounted.
FIG. 8 is a front view of the angle measuring device according to the first embodiment of the present invention, in a state where wheels are mounted.
FIG. 9 is a side view of the angle measuring device according to the first embodiment of the present invention, in a state where wheels are mounted.
FIG. 10 is a diagram for explaining angle measurement by the angle measurement apparatus according to the first embodiment of the present invention, and shows measurement of a second angle.
FIG. 11 is a perspective view of an angle measuring apparatus according to a second embodiment of the present invention.
FIG. 12 is a front view of an angle measuring apparatus according to a second embodiment of the present invention.
FIG. 13 is a plan view of an angle measuring device according to a second embodiment of the present invention.
FIG. 14 is a perspective view of an angle measuring device according to a second embodiment of the present invention, in a state where wheels are mounted.
FIG. 15 is a front view of an angle measuring device according to a second embodiment of the present invention, in a state where wheels are mounted.
[Explanation of symbols]
12 Test Device 18 Tire Drive Device 24 Drive Surface 32 Sensor 32A Transmitter (Light Emitting Element)
32B receiver (light receiving element)
34 Shading plate for driving surface (first shading body)
36 Wheel Shading Plate (Second Shading Body)
42 Data processing device (calculation means)

Claims (4)

車輪が搭載されると共に駆動されて車輪を転動し得る駆動面を有する駆動装置と、
帯状の光束を発生する発光素子及びこの光束を受光する受光素子を有し且つ駆動面の駆動方向にほぼ沿ってこれら素子を並べて配置すると共に帯状の光束が部分的に遮光された状態における遮光幅を計測し得るセンサと、
帯状の光束を部分的に遮光するように駆動面に設置されると共に駆動面の駆動に伴って移動される第1の遮光体と、
駆動面に搭載された車輪に帯状の光束を部分的に遮光するように取り付けられると共に駆動面の駆動に伴って回転される第2の遮光体と、
駆動面の駆動に伴って第1の遮光体により部分的に遮光される光束の遮光幅の変化から、センサの光軸と駆動面の駆動方向との間の相対角とされる第1の角度を演算すると共に、駆動面の駆動に伴って第2の遮光体により部分的に遮光される光束の遮光幅の変化から、センサの光軸と車輪の転動方向との間の相対角とされる第2の角度を演算し、これら第1の角度及び第2の角度の値から、駆動面の駆動方向と車輪の転動方向との間の滑り角を算出する演算手段と、
を備えた角度測定装置。
A drive device having a drive surface on which wheels are mounted and driven to roll the wheels;
A light-shielding width in a state in which a light-emitting element that generates a belt-shaped light beam and a light-receiving element that receives the light beam are arranged side by side along the driving direction of the driving surface and the band-shaped light beam is partially shielded A sensor capable of measuring
A first light-shielding body that is installed on the driving surface so as to partially shield the belt-shaped light flux and is moved along with the driving of the driving surface;
A second light-shielding body that is attached to a wheel mounted on the driving surface so as to partially shield the belt-shaped light flux and is rotated in accordance with driving of the driving surface;
A first angle that is a relative angle between the optical axis of the sensor and the driving direction of the driving surface from a change in the light blocking width of the light beam partially blocked by the first light blocking body as the driving surface is driven. And the relative angle between the optical axis of the sensor and the rolling direction of the wheel is obtained from the change in the light shielding width of the light beam partially shielded by the second light shielding member as the driving surface is driven. Calculating means for calculating a second angle, and calculating a slip angle between the driving direction of the driving surface and the rolling direction of the wheel from the values of the first angle and the second angle;
Angle measuring device with
駆動面が平面状に形成され、駆動されるのに伴って駆動面が直線的に移動されることを特徴とする請求項1に記載の角度測定装置。2. The angle measuring device according to claim 1, wherein the driving surface is formed in a flat shape, and the driving surface is linearly moved as the driving surface is driven. センサの光軸が車輪の中心軸を通るようにセンサが配置され、車輪が180度転動する毎に第2の遮光体が帯状の光束を部分的に遮光することを特徴とする請求項1に記載の角度測定装置。The sensor is arranged so that the optical axis of the sensor passes through the central axis of the wheel, and each time the wheel rolls 180 degrees, the second light blocking body partially blocks the belt-shaped light beam. The angle measuring device described in 1. 駆動装置の駆動面の駆動方向にほぼ沿って並べて配置されたセンサの発光素子及び受光素子の内の発光素子が帯状の光束を発光し、受光素子でこの光束を受光して、帯状の光束が部分的に遮光された状態における遮光幅を計測し角度を算出し得る角度測定装置を用いた角度測定方法であって、
まず、帯状の光束を部分的に遮光するように駆動面に第1の遮光体を設置した状態で、駆動面が駆動されるのに伴って第1の遮光体が移動されて、光束の遮光幅を変化させると共にセンサがこれを計測し、演算手段が遮光幅の変化からセンサの光軸と駆動面の駆動方向との間の相対角とされる第1の角度を演算し、
次に、第2の遮光体が取り付けられる車輪を帯状の光束を部分的に遮光するように駆動面に搭載した状態で、駆動面が駆動されるのに伴って第2の遮光体が回転されて、光束の遮光幅を変化させると共にセンサがこれを計測し、演算手段が遮光幅の変化からセンサの光軸と車輪の転動方向との間の相対角とされる第2の角度を演算し、
この後、これら第1の角度及び第2の角度の値から、演算手段が駆動面の駆動方向と車輪の転動方向との間の滑り角を算出する角度測定方法。
The light emitting element of the sensor and the light receiving element arranged side by side substantially along the driving direction of the driving surface of the driving device emits a band-shaped light beam, and the light receiving element receives this light beam. An angle measuring method using an angle measuring device capable of calculating an angle by measuring a light shielding width in a partially shielded state,
First, in a state where the first light shielding body is installed on the driving surface so as to partially shield the belt-shaped light flux, the first light shielding body is moved as the driving surface is driven to block the light flux. The sensor measures this while changing the width, and the calculation means calculates a first angle that is a relative angle between the optical axis of the sensor and the drive direction of the drive surface from the change in the light shielding width,
Next, the second light shield is rotated as the drive surface is driven in a state where the wheel to which the second light shield is mounted is mounted on the drive surface so as to partially shield the belt-like light flux. Then, the sensor measures the light shielding width of the light flux, and the calculation means calculates a second angle that is a relative angle between the optical axis of the sensor and the rolling direction of the wheel from the change of the light shielding width. And
Thereafter, an angle measuring method in which the calculation means calculates a slip angle between the driving direction of the driving surface and the rolling direction of the wheel from the values of the first angle and the second angle.
JP14754296A 1996-06-10 1996-06-10 Angle measuring device and angle measuring method Expired - Fee Related JP3703567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14754296A JP3703567B2 (en) 1996-06-10 1996-06-10 Angle measuring device and angle measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14754296A JP3703567B2 (en) 1996-06-10 1996-06-10 Angle measuring device and angle measuring method

Publications (2)

Publication Number Publication Date
JPH09329431A JPH09329431A (en) 1997-12-22
JP3703567B2 true JP3703567B2 (en) 2005-10-05

Family

ID=15432683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14754296A Expired - Fee Related JP3703567B2 (en) 1996-06-10 1996-06-10 Angle measuring device and angle measuring method

Country Status (1)

Country Link
JP (1) JP3703567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848807B (en) * 2015-05-29 2018-01-16 北京汽车研究总院有限公司 A kind of frock for measuring Ramp Angles and departure angle
CN109373932B (en) * 2018-11-08 2024-04-12 中汽研汽车检验中心(宁波)有限公司 Measuring device for approach angle, departure angle and longitudinal passing angle of automobile

Also Published As

Publication number Publication date
JPH09329431A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
KR100570456B1 (en) Device for determining the wheel and/or axle geometry of motor vehicles
CA1231232A (en) Method and apparatus for measuring the inclination of the wheels of an automobile
JP3631394B2 (en) Tire wear prediction method
EP0460471B1 (en) Method and apparatus for measuring cross-toe
JP3857358B2 (en) Vehicle wheel alignment adjustment method
US10514323B2 (en) Apparatus and method for assessing vehicle wheel alignment
JPH10307015A (en) Method and device for inspecting running rail
JP3703567B2 (en) Angle measuring device and angle measuring method
JP4402245B2 (en) Equipment for measuring main dimensions of railway axles
JPH075076A (en) Device for measuring stability of vehicle and method for adjusting stability
JP6458818B2 (en) Elongation measuring device and elongation measuring method
US5105547A (en) Method of and apparatus for measuring the wheel alignment of automotive vehicles
JP4536910B2 (en) Method for measuring road profile and method for measuring road profile
JP3264210B2 (en) Roller table pass line measuring device and pass line measuring method
JP4643537B2 (en) Adjusting the steering wheel spoke angle
JP2002048534A (en) Method of measuring longitudinal profile of road face
JPH11258118A (en) Wheel alignment measuring device for front/rear wheel measurement
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JPH09210863A (en) Method and apparatus for adjusting straight-ahead driving of vehicle
JP4643536B2 (en) Steering wheel spoke angle measurement method
JP2743251B2 (en) Method and apparatus for measuring dimensions of circular object
JPS6311614B2 (en)
JPS63277916A (en) Measuring instrument for curvature quantity of beltlike body
JPH03285140A (en) Adjusting apparatus for straight line stability of vehicle
JPH0428686A (en) Installation error measuring device for elevator guide rail

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees