JP3703118B2 - Centering method and processing method - Google Patents

Centering method and processing method Download PDF

Info

Publication number
JP3703118B2
JP3703118B2 JP26278396A JP26278396A JP3703118B2 JP 3703118 B2 JP3703118 B2 JP 3703118B2 JP 26278396 A JP26278396 A JP 26278396A JP 26278396 A JP26278396 A JP 26278396A JP 3703118 B2 JP3703118 B2 JP 3703118B2
Authority
JP
Japan
Prior art keywords
centering
cone
control unit
processing
pyramid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26278396A
Other languages
Japanese (ja)
Other versions
JPH10109252A (en
Inventor
山 博 和 高
尾 正 隆 長
塚 勝 弘 飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26278396A priority Critical patent/JP3703118B2/en
Publication of JPH10109252A publication Critical patent/JPH10109252A/en
Application granted granted Critical
Publication of JP3703118B2 publication Critical patent/JP3703118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円錐又は角錐部分を有するワーク、例えば鋳造性羽根車、の芯出し方法に関する。また本発明は、その様な芯出し方法を用いて、例えば鋳造性羽根車の様に円錐又は角錐部分を有するワークを加工する方法に関する。
【0002】
【従来の技術】
上記の羽根車は図5に示すように、図示しない回転軸に取付けて固定し、更に、所定の外径寸法にするために、粗型材Aの三角印で示す面の加工を行っている。
【0003】
この加工を行うに際して、従来の一般的な加工方法では、加工機械上でトースカンを使用して芯出しを行っている。
【0004】
しかし、トースカンを用いた芯出し作業は、熟練した人手を要し、また、長時間を要する作業であり、非常に労力が嵩み且つコスト高となる作業であった。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来技術の問題点に鑑みて提案されたもので、その様な芯出し作業を簡単かつ短時間に行うことを可能とした新たな芯出し方法と、それを用いた加工方法の提供を目的としている。
【0006】
【課題を解決するための手段】
本発明によれば、円錐又は角錐部分を有するワークの芯出し方法において、その円錐又は角錐部分を加工機械に固定し位置決めし、センサからその円錐又は角錐部分の表面の一部に光を投射して三次元測定を行い、その光の投影光および反射光に基づいて三次元データ決定ユニットで三次元データを採取して制御ユニットに送り、その制御ユニットはその得られた三次元データから円錐又は角錐の形状を認識し、そしてその中心軸を求め、求められた中心軸を基準としてワークの芯出しを行うようになっている。
【0007】
さらに本発明によれば、前記制御ユニットは前記中心軸と前記加工機械のX方向の芯ずれと傾きおよび加工起点とを求め、制御ユニットは加工機械位置決め機構に制御信号を出力して加工機械の位置決めを行うようになっている。
【0008】
上記の様に構成された本発明によれば、例えば羽根車のボス部すなわち円錐部分の一部を、非接触三次元計測器により計測し、得られた三次元データから円錐の形状を認識して中心軸を求め、求めた中心軸を基準として芯出しを行っている。ここで、得られた三次元データから形状を認識すること、認識された形状(この場合は円錐形状)から中心軸を求めることは、非接触三次元計測器における通常の処理態様により行われる。
【0009】
この様な処理により中心軸を求め、それを基準として芯出しを行なえば、従来のトースカンによる芯出しの様に熟練工による長時間の作業を必要とすること無く、複雑な形状のワークの芯出しを行なうことが可能となる。その結果、本発明の芯出し方法を用いた本発明の加工方法によれば、(例えば羽根車の様な)複雑な形状のワークの加工も、容易且つ確実に行われるのである。
【0010】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。
【0011】
図1には、本発明を実施する装置の一例が示されている。図1において、非接触三次元計測器1は公知のものであって、例えばグレーパターン投影法、又はモアレ干渉法等によるものが用いられている。この計測器1には、センサ2と、そのセンサ2が接続された三次元データ決定ユニット3とが設けられている。このユニット3は、制御ユニット4に接続され、その制御ユニット4には、加工機械6の加工機械位置決め機構5が接続されている。
【0012】
次に主として図2を参照して羽根車Aの芯出しの態様を説明する。
ワークである羽根車粗型材Aは、円錐状のボス部Bと、羽根部Cとからなり、ボス部Bを図示の状態で加工機械6に固定し位置決めする(ステップS1)。次いで、センサ2からボス部Bの表面の一部にスポット光やスリット等の光を投射し、三次元測定を開始する(ステップS2)。
【0013】
そこで、投影光および反射光に基づき三次元データ決定ユニット3で図3に示すような三次元データD1を採取し、制御ユニット4に送る(ステップS3)。すると、制御ユニット4は三次元データD1に基づき、データD1に同芯円状に内接あるいは外接する図4に示すような円錐D2を認識し(ステップS4)、円錐D2の中心軸D3を決定する(ステップS5)。従って羽根車のボス部は完全に円錐状である必要はなく富士山形の高さ方向への同芯円の連続体であれば良い。
【0014】
次いで、制御ユニット4は加工機械位置決め機構5に制御信号を出力し、上記した円錐D2の中心軸D3を基準として、それに対する加工機械6の位置決めを行う(ステップS6)。
具体的には、中心軸D3と加工機械6とのX、Y方向の芯ずれ(x、y)、傾き及び加工起点a(図4、図5に示す座標x0、y0、z0)を求め、加工機械6 のテーブル6aのX、Y方向の移動及び傾き修正(所謂「ティルト」)を自動的に行い、芯出しを完了する(ステップS7)。
【0015】
芯出し作業の完了後には、加工機械6により正確、迅速に所定の加工が行われるのである。
【0016】
なお、図示の実施形態では、羽根車を対象にした計測或いは芯出しについてのみ述べているが、三角錐、四角錐等の角錐形を対象とすることも可能である事は、言うまでも無い。ここで、三次元データによる形状の認識のためには1箇所(或いは1面)のみを計測し、その高さ方向での数カ所の任意の断面が真円、正多角形になるように中心軸を傾けた、内接あるいは外接する三角錐、四角錐等の角錐形を求めることができる。
【0017】
換言すれば、本発明の芯出し方法及び加工方法は羽根車の芯出しや加工にのみ適用されるのでは無く、円錐形の部分或いは角錐形の部分を有するワークに対する芯出し及び加工一般に広く適用可能なのである。
【0018】
【発明の効果】
以上説明したように本発明によれば、非接触三次元計測器を用いて芯出し作業の自動的に成功したため、複雑な形状のワークであっても、熟練を要しないで短時間に芯出し作業を行うことができる。従って、それを用いた加工(加工方法)も、極めて効率的に行われる。
【図面の簡単な説明】
【図1】本発明を実施する装置の一例を示す制御ブロック図。
【図2】測定態様を示すフローチャート図。
【図3】三次元データを説明する図面。
【図4】円錐の認識を説明する図面。
【図5】羽根車粗型材の加工を説明する図面。
【符号の説明】
A・・・粗型材
B・・・ボス部
C・・・羽根部
D1・・・三次元データ
D2・・・円錐
D3・・・中心軸
1・・・非接触三次元計測器
2・・・センサ
3・・・三次元データ決定ユニット
4・・・制御ユニット
5・・・加工機械位置決め機構
6・・・加工機械
6a・・・テーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for centering a workpiece having a conical or pyramidal portion, for example, a castable impeller. The present invention also relates to a method of machining a workpiece having a cone or a pyramid portion, such as a castable impeller, using such a centering method.
[0002]
[Prior art]
As shown in FIG. 5, the impeller is attached and fixed to a rotating shaft (not shown), and further, the surface indicated by the triangle mark of the rough mold material A is processed in order to obtain a predetermined outer diameter.
[0003]
When performing this processing, in the conventional general processing method, centering is performed using a torus on a processing machine.
[0004]
However, the centering operation using the toscan can requires a skilled manpower and requires a long time, which is very labor intensive and costly.
[0005]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above-described problems of the prior art, and a new centering method capable of performing such a centering operation easily and in a short time, and a processing method using the same The purpose is to provide.
[0006]
[Means for Solving the Problems]
According to the present invention, in a method for centering a work having a cone or a pyramid portion, the cone or the pyramid portion is fixed and positioned on a processing machine, and light is projected from a sensor onto a part of the surface of the cone or the pyramid portion. The three-dimensional measurement is performed, and the three-dimensional data determination unit collects the three-dimensional data based on the projection light and the reflected light of the light, and sends the three-dimensional data to the control unit. The shape of the pyramid is recognized, the center axis thereof is obtained, and the work is centered on the basis of the obtained center axis.
[0007]
Further, according to the present invention, the control unit obtains the center axis, the X-direction misalignment and inclination of the processing machine, and the processing start point, and the control unit outputs a control signal to the processing machine positioning mechanism to Positioning is performed.
[0008]
According to the present invention configured as described above, for example, a boss portion of an impeller, that is, a part of a cone portion is measured by a non-contact three-dimensional measuring device, and the shape of the cone is recognized from the obtained three-dimensional data. The center axis is obtained, and centering is performed based on the obtained center axis. Here, recognizing the shape from the obtained three-dimensional data and obtaining the central axis from the recognized shape (in this case, the conical shape) are performed by a normal processing mode in the non-contact three-dimensional measuring instrument.
[0009]
If the center axis is obtained by such processing and centering is performed based on the center axis, centering of a workpiece with a complex shape can be achieved without requiring a long time work by a skilled worker as in the case of centering with a conventional toscan. Can be performed. As a result, according to the machining method of the present invention using the centering method of the present invention, a workpiece having a complicated shape (such as an impeller) can be easily and reliably performed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0011]
FIG. 1 shows an example of an apparatus for carrying out the present invention. In FIG. 1, the non-contact three-dimensional measuring instrument 1 is a well-known one, and for example, one using a gray pattern projection method or a moire interferometry method is used. The measuring instrument 1 is provided with a sensor 2 and a three-dimensional data determination unit 3 to which the sensor 2 is connected. The unit 3 is connected to a control unit 4, and a processing machine positioning mechanism 5 of the processing machine 6 is connected to the control unit 4.
[0012]
Next, the centering mode of the impeller A will be described mainly with reference to FIG.
The impeller rough mold material A, which is a workpiece, includes a conical boss portion B and a blade portion C, and the boss portion B is fixed and positioned on the processing machine 6 in the illustrated state (step S1). Next, light such as spot light or slits is projected from the sensor 2 onto a part of the surface of the boss portion B, and three-dimensional measurement is started (step S2).
[0013]
Therefore, the three-dimensional data determination unit 3 collects the three-dimensional data D1 as shown in FIG. 3 based on the projection light and the reflected light and sends it to the control unit 4 (step S3). Then, based on the three-dimensional data D1, the control unit 4 recognizes a cone D2 as shown in FIG. 4 that is inscribed or circumscribed concentrically with the data D1 (step S4), and determines the center axis D3 of the cone D2. (Step S5). Therefore, the boss portion of the impeller need not be completely conical, and may be a continuous body of concentric circles in the height direction of Mt. Fuji.
[0014]
Next, the control unit 4 outputs a control signal to the processing machine positioning mechanism 5 and positions the processing machine 6 relative to the center axis D3 of the cone D2 (step S6).
Specifically, the center axis D3 and the processing machine 6 are misaligned in the X and Y directions (x, y), tilted, and the processing start point a (coordinates x 0 , y 0 , z 0 shown in FIGS. 4 and 5). The table 6a of the processing machine 6 is automatically moved and corrected in the X and Y directions (so-called “tilt”) to complete the centering (step S7).
[0015]
After the centering operation is completed, predetermined processing is performed accurately and quickly by the processing machine 6.
[0016]
In the illustrated embodiment, only the measurement or centering for the impeller has been described, but it is needless to say that a pyramid shape such as a triangular pyramid or a quadrangular pyramid can also be targeted. . Here, for shape recognition using 3D data, only one location (or one surface) is measured, and the central axis is such that several arbitrary cross-sections in the height direction become perfect circles and regular polygons. It is possible to obtain a pyramid shape such as a triangular pyramid or a quadrangular pyramid that is inscribed or circumscribed.
[0017]
In other words, the centering method and processing method of the present invention are not only applied to the centering and processing of the impeller, but are widely applied to centering and processing in general for workpieces having a conical part or a pyramid part. It is possible.
[0018]
【The invention's effect】
As described above, according to the present invention, since the centering operation is automatically succeeded using the non-contact three-dimensional measuring instrument, even a workpiece having a complicated shape can be centered in a short time without requiring skill. Work can be done. Therefore, processing (processing method) using the same is also performed extremely efficiently.
[Brief description of the drawings]
FIG. 1 is a control block diagram showing an example of an apparatus for carrying out the present invention.
FIG. 2 is a flowchart showing a measurement mode.
FIG. 3 is a diagram illustrating three-dimensional data.
FIG. 4 is a view for explaining recognition of a cone.
FIG. 5 is a view for explaining processing of an impeller rough shape material.
[Explanation of symbols]
A ... Coarse mold material B ... Boss part C ... Blade part D1 ... Three-dimensional data D2 ... Conical D3 ... Central axis 1 ... Non-contact three-dimensional measuring instrument 2 ... Sensor 3 ... 3D data determination unit 4 ... Control unit 5 ... Processing machine positioning mechanism 6 ... Processing machine 6a ... Table

Claims (2)

円錐又は角錐部分を有するワークの芯出し方法において、その円錐又は角錐部分を加工機械に固定し位置決めし、センサからその円錐又は角錐部分の表面の一部に光を投射して三次元測定を行い、その光の投影光および反射光に基づいて三次元データ決定ユニットで三次元データを採取して制御ユニットに送り、その制御ユニットはその得られた三次元データから円錐又は角錐の形状を認識し、そしてその中心軸を求め、求められた中心軸を基準としてワークの芯出しを行うことを特徴とする芯出し方法。In the method of centering a workpiece having a cone or pyramid part, the cone or pyramid part is fixed and positioned on a processing machine, and light is projected from the sensor onto a part of the surface of the cone or pyramid part to perform three-dimensional measurement. Based on the projected light and reflected light of the light, the 3D data determination unit collects 3D data and sends it to the control unit. The control unit recognizes the shape of the cone or pyramid from the obtained 3D data. A centering method characterized in that the center axis is obtained, and the workpiece is centered on the basis of the obtained center axis. 前記制御ユニットは前記中心軸と前記加工機械のX方向の芯ずれと傾きおよび加工起点とを求め、制御ユニットは加工機械位置決め機構に制御信号を出力して加工機械の位置決めを行うことを特徴とする請求項1記載の芯出し方法を用いた加工方法。The control unit obtains a misalignment and inclination in the X direction of the central axis and the machining machine, and a machining starting point, and the control unit outputs a control signal to the machining machine positioning mechanism to position the machining machine. A processing method using the centering method according to claim 1.
JP26278396A 1996-10-03 1996-10-03 Centering method and processing method Expired - Fee Related JP3703118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26278396A JP3703118B2 (en) 1996-10-03 1996-10-03 Centering method and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26278396A JP3703118B2 (en) 1996-10-03 1996-10-03 Centering method and processing method

Publications (2)

Publication Number Publication Date
JPH10109252A JPH10109252A (en) 1998-04-28
JP3703118B2 true JP3703118B2 (en) 2005-10-05

Family

ID=17380547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26278396A Expired - Fee Related JP3703118B2 (en) 1996-10-03 1996-10-03 Centering method and processing method

Country Status (1)

Country Link
JP (1) JP3703118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783811B (en) * 2016-04-26 2018-10-30 中国海洋石油集团有限公司 The detection method of pipe end center of circle three-dimensional coordinate

Also Published As

Publication number Publication date
JPH10109252A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP3678915B2 (en) Non-contact 3D measuring device
EP2138803B1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP2000186913A (en) Method and device for optical detection of contrast line
JPH06201351A (en) Shape measurement for rotary tool
JP3703118B2 (en) Centering method and processing method
JP3293830B2 (en) Apparatus and method for measuring and calculating geometric parameters of an object
JP2004114203A (en) Apparatus for measuring profile of workpiece and profile measuring system using the same
JP2001264048A (en) Method and device for measuring shape of v-groove
JPH04365586A (en) Optical axis aligning method and orthogonal axis aligning method for hand eye
JP3476163B2 (en) Tool shape recognition method
JPH05208350A (en) Automatic taper grinding method and device thereof
JP4028082B2 (en) Concave surface center position measuring method, eccentricity measuring method and measuring apparatus
JPH08118103A (en) Centering device for tool
JPS6255502A (en) Method of measuring shape of matter by three-dimensional measuring machine
JPH09280834A (en) Shape measuring device
JP2580338B2 (en) Method and apparatus for processing optical element
JP7345765B2 (en) Dimension measuring device for ring-shaped products and method for measuring dimensions of ring-shaped products
JPH10122849A (en) Method and mechanism for automatically centering lens of lens centering and edging machine
JPH08122021A (en) Size measuring instrument
JP2006021277A (en) Tool centering method and tool measuring method
JPH11153414A (en) Measuring method of burr height and mold deviation of molding
JP2544443B2 (en) Internal nozzle automatic build-up welding apparatus and welding method for taper nozzle
JP3677245B2 (en) Tire fitting measuring device
JP2676616B2 (en) Measuring method for rotary tools
JPH07286845A (en) Method and instrument for measuring three-dimensional shape

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees