JP3702424B2 - Waste treatment method and treatment system - Google Patents

Waste treatment method and treatment system Download PDF

Info

Publication number
JP3702424B2
JP3702424B2 JP2003029358A JP2003029358A JP3702424B2 JP 3702424 B2 JP3702424 B2 JP 3702424B2 JP 2003029358 A JP2003029358 A JP 2003029358A JP 2003029358 A JP2003029358 A JP 2003029358A JP 3702424 B2 JP3702424 B2 JP 3702424B2
Authority
JP
Japan
Prior art keywords
carbonization
unburned
activated
furnace
dioxins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003029358A
Other languages
Japanese (ja)
Other versions
JP2004237216A (en
Inventor
正和 澤井
修一郎 畠山
正樹 神澤
健一 藤井
玉貴 櫻井
浩雅 楠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2003029358A priority Critical patent/JP3702424B2/en
Publication of JP2004237216A publication Critical patent/JP2004237216A/en
Application granted granted Critical
Publication of JP3702424B2 publication Critical patent/JP3702424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Description

【0001】
【発明の属する技術分野】
この発明は、主に炭素を含有する有機性廃棄物、たとえば木質系廃棄物、食品屑、ごみガス化チャー、下水汚泥などの廃棄物(ごみ)の処理方法と同廃棄物の処理システムに関するもので、詳しくは廃棄物を焼却処理する際に発生する排ガス中のダイオキシン類を除去する方法およびシステムを含む発明に関するものである。
【0002】
【従来の技術】
上記のような有機性廃棄物の中間処理(減量化)方式として様々な手法があるが、焼却や溶融など、ほとんどの手法において法的規制値を満足するための排ガス処理工程が必要になる。近年は、排ガス中の硫黄酸化物、窒素酸化物、塩化水素などの規制に加えてダイオキシン類の排出規制により、排ガス処理に関わるランニングコストが増大している。また、最終処分場での規制などにより、灰処理工程でのランニングコストも増大している。
【0003】
ダイオキシン類の規制値を満足させるための先行技術の一例としては、排ガス中の気体状態のダイオキシン類を活性炭などに吸着させ、固体状態のダイオキシン類とともに集塵設備で捕集し、捕集したダイオキシン類を溶融もしくは加熱脱塩素化することで処理を行うようなものがあるが、吸着剤として使われる薬品は一般に高価であり、また溶融や脱塩素化には膨大なエネルギー(熱量)が必要になる。
【0004】
その他の先行技術として、
1.下水汚泥等の廃棄物から製造した活性炭化物を、ごみ焼却プラントから発生する排ガス中に含まれるダイオキシン類の除去のために吸着剤として系外からバグフィルタ式ダイオキシン類除去装置に投入し、排ガス中のダイオキシン類を吸着させて除去することが提案されている(たとえば、特許文献1参照)。
【0005】
2.プラスチック廃棄物のガス化装置から同廃棄物のガス化に伴って排出される残渣(チャー)および飛灰(フライアッシュ)などの固形物に含まれるダイオキシン類を分解する専用の分解装置を、上記ガス化装置に連続して設けることが提案されている(たとえば、特許文献2参照)。
【0006】
3.一般廃棄物や産業廃棄物を焼却炉で燃焼させる際に、下水汚泥を分散させて投入し、混合焼却して処理する装置が提案されている(たとえば、特許文献3・4参照)。
【0007】
【特許文献1】
特開平11−193387号公報(段落番号0007、0009、図2)
【特許文献2】
特開2000−126716号公報(段落番号0011、0012、図1)
【特許文献3】
特開2000−220815号公報(段落番号0015、0019、0028、図1)
【特許文献4】
特開平11−257639号公報(段落番号0006〜0008、図1)
【0008】
【発明が解決しようとする課題】
しかしながら、上記した各公報に記載の従来の技術では、つぎのような問題点がある。すなわち、
1.特許文献1の技術では、ダイオキシン類を除去するための吸着剤を系外から調達して使用しているので、ランニングコストが高くつく。
【0009】
2.特許文献2の技術は、ダイオキシン類が含まれた飛灰などの固形物を捕集し分解して処理するので、二次公害の問題はないが、その固形物を有効に利用することができない。
【0010】
3.特許文献3・4の各技術によれば、下水汚泥を一般廃棄物等と混合焼却できるという利点があるが、下水汚泥を混入するために燃焼装置の温度が低下し不安定になるおそれがあり、また下水汚泥を有効に利用できない。
【0011】
本発明は上述の点に鑑みなされたもので、廃棄物焼却処理系に有機性廃棄物を炭化および賦活処理可能な手段を設けて活性炭化物を系内で製造できるようにして有効利用を図るとともに、同手段を用いてダイオキシン類を除去することができる廃棄物の処理方法と同処理システムを提供することを目的としている。
【0012】
【課題を解決するための手段】
上記の目的を達成するために本発明にかかる廃棄物処理方法は、廃棄物を部分燃焼させ、このときに発生する未燃ガスと未燃固形物とをサイクロンにて分離し、未燃ガスは再燃焼してボイラ等の熱交換手段にて熱回収したのち、排ガス処理手段にて処理して大気中へ放出する一方、前記未燃固形物は下水汚泥を混合してこれに含有されているダイオキシン類とともに炭化・賦活手段(炭化処理の後段に賦活処理手段を組み込んだ炭化手段)にて還元雰囲気中で熱分解し炭化するとともに、賦活処理して表面に多数の細孔(50Å前後、いいかえればダイオキシン類粒子を吸着可能な口径 )を有する活性炭化物を生成して回収し、前記活性炭化物をダイオキシン吸着剤として前記排ガス処理手段のうちの集塵機の上流側へ投入してダイオキシン類を吸着させ、前記集塵機でダイオキシン類を吸着したダイオキシン吸着剤および飛灰を捕集した後、前記炭化・賦活手段にダイオキシン吸着剤および飛灰を循環させ、炭化・賦活処理して活性炭化物を再生することを特徴としている。
【0013】
上記の構成を有する廃棄物処理方法によれば、廃棄物の減量化処理ができるとともに、減量化時に発生する未燃ガスを再燃焼しその熱エネルギーを利用して潜熱を熱交換手段を介して回収できる上に、同時に発生する未燃固形物(未燃チャー)を還元雰囲気中でこれに含有されるダイオキシン類とともに熱分解して除去でき、さらに未燃固形物を炭化しかつ賦活(主に炭化物表面の炭素(C)分を、導入した水蒸気の水(H2O)分と反応させて二酸化炭素を発生させる作用をいう)して炭化物表面に多数の細孔を有する活性炭化物を生成することができる。この活性炭化物は後述するとおり、ダイオキシン類の吸着剤および助燃材として利用できるので、無駄にならない。
【0014】
また、未燃固形物に下水汚泥を混合して炭化させるので、未燃固形物がタール分を含む場合にも、炭化・賦活手段への投入口部にタール分が付着し閉塞されるのが防止される。これは、下水汚泥やその脱水ケーキが未燃固形物に混合されることでタール分も下水汚泥に混合されるからである。また、下水汚泥は均一な微粒子から構成されるのが一般的であり、炭素分が多く含まれており、しかも含水率も高いことから、未燃固形物と均一に混合して炭化・賦活手段にて加熱した際に水蒸気が発生するので、外部から賦活処理用の水蒸気を導入する必要がなく、炭化した後に炭化物の表面を賦活させることによってダイオキシン類の吸着に適する大きさの細孔を多数表面に有する活性炭化物を生成できる。
【0015】
さらに、系内で製造した活性炭化物を排ガス処理手段に投入することによって未燃ガスを再燃焼したのちの排ガス中に含有されるダイオキシン類を吸着させて除去でき、さらに下流の集塵機でダイオキシン類を吸着した活性炭化物および飛灰を捕集した後、前記炭化・賦活手段に戻して投入することにより、還元雰囲気中で活性炭化物と飛灰に吸着あるいは含有されているダイオキシン類を熱分解して除去でき、さらに活性炭化物を賦活させることにより表面に多数の細孔を有する活性炭化物に再生して再利用できるようにする
【0018】
請求項2に記載のように、前記未燃固形物の一部は炭化・賦活手段にてダイオキシン類とともに還元雰囲気中で熱分解するとともに、賦活処理して表面に多数の細孔を有する活性炭化物を製造して回収し、前記未燃固形物の残りは助燃材としての前記活性炭化物とともに溶融手段に投入し高温で加熱溶融して溶融スラグとして回収することができる。
【0019】
請求項2記載の廃棄物処理方法によれば、未燃固形物の一部は上記したようにダイオキシン類を熱分解して除去すると同時に炭化し、さらに賦活させて活性炭化物を製造し、残りの未燃固形物は溶融手段に投入して溶融し固化した溶融スラグは取り出して道路の骨材などに使用する。
【0022】
請求項3記載の廃棄物処理システムは、廃棄物を部分燃焼する部分燃焼炉と、部分燃焼時に発生する未燃ガスと未燃固形物とを分離するサイクロンと、未燃ガスを再燃焼する再燃焼炉と、再燃焼時に発生する熱を回収するボイラ等の熱交換手段と、再燃焼後に発生する排ガスを処理して大気中へ放出する排ガス処理手段とを備え、前記サイクロン下端部の未燃固形物取り出し口の下方に、未燃固形物のダイオキシン類を還元雰囲気中で熱分解するとともに、同未燃固形物を炭化して賦活させることにより表面に多数の細孔を有する活性炭化物を生成する炭化・賦活炉(炭化・賦活炉とは炭化処理の後段に賦活工程を組み込んだ炭化炉)を設け、前記未燃固形物を前記炭化・賦活炉に投入する際に、下水汚泥を混合して投入するように構成し、前記炭化・賦活炉とともに溶融炉を設け、前記炭化・賦活炉により生成した活性炭化物をダイオキシン吸着剤として前記排ガス処理手段のうちの集塵機の上流側へ投入してダイオキシン類を吸着させ、ダイオキシン類を吸着したダイオキシン吸着剤および飛灰を前記集塵機で捕集したのちに前記炭化・賦活炉に循環させ、炭化賦活処理して活性炭化物を再生することを特徴としている。
【0023】
請求項3記載の廃棄物処理システムによれば、請求項1記載の処理方法を実施でき、結果的に廃棄物を部分燃焼した際に生じた未燃ガスを再燃焼し、そのときに発生する熱量を熱交換手段にて回収できる。また同時に発生しサイクロンで回収した未燃固形物は炭化・賦活炉でダイオキシン類が熱分解されて除去され、同時に炭化されて炭化物になる。それから、炭化物の表面が水蒸気等で賦活処理され、表面に多数の細孔を有する活性炭化物が生成される。この活性炭化物は、排ガス中のダイオキシン類を吸着させる吸着剤として、また助燃材として系内で利用することができる。
【0025】
た、サイクロンで分離した未燃固形物を炭化・賦活炉に投入するときにタール分が炭化・賦活炉への投入路に付着するおそれがあるが、集塵機で捕集したダイオキシン吸着剤としての活性炭化物や飛灰を投入するので、これらにタール分が付着し、投入路に付着したり投入路を閉塞したりするのが防止される。
【0028】
請求項4に記載のように、前記炭化・賦活炉とともに溶融炉を設け、前記サイクロンで分離した未燃固形物の一部を前記ダイオキシン類とともに炭化・賦活炉にて還元雰囲気中で熱分解し炭化させるとともに、賦活処理して表面に多数の細孔を有する活性炭化物を生成し、前記未燃固形物の残りは助燃材としての前記活性炭化物とともに前記溶融炉に投入して溶融スラグとして回収するようにしたことを特徴としている。
【0029】
請求項4記載の廃棄物処理システムによれば、請求項2記載の処理方法を実施でき、請求項2の処理方法について記載の上記作用と同様の作用を奏する。
【0030】
【発明の実施の形態】
以下、本発明にかかる廃棄物処理方法および廃棄物処理システムについての実施の形態を図面に基づいて説明する。
【0031】
図1(a)は実施の第1形態にかかる廃棄物処理システムを示す概略構成図、図1(b)は図1(a)の廃棄物処理システムを系統的に示すフロー図である。
【0032】
図1に示すように、本実施形態の処理システム1は流動床式部分燃焼炉2を備えており、ごみピット(図示せず)等に収集された廃棄物をごみクレーン(図示せず)で投入ホッパ3に投入することにより、導入口2bより部分燃焼炉2へ廃棄物xが供給される。部分燃焼炉2内の下部に流動床を備え、流動床の下面付近より導入される空気により、低空気比による部分燃焼によって廃棄物xが低温還元雰囲気中で熱分解され、未燃ガス(熱分解ガス)Gおよび未燃固形物yが上端の排気口2bより排出される。なお、部分燃焼炉2は廃棄物xを低空気比燃焼でガス化させるので排ガス量が少なくなり、炉が小さくて済むほか、炉内が低温還元雰囲気に保たれるので、廃棄物x中に含まれていた鉄やアルミなどの金属類を未酸化の状態で部分燃焼炉2の下端の取出口2cより取り出し、再資源物として利用することができる。
【0033】
部分燃焼炉2の下流側にはサイクロン4が設置され、部分燃焼炉2の排気口2bとサイクロン4の上部導入口4aがダクト15にて接続されている。サイクロン4の下流側にはボイラ6を併設した再燃焼炉5が設置され、サイクロン4の上端の排気口4bと再燃焼炉5の下部導入口5aとがダクト16で接続されている。ボイラ6の下流側には減温塔7が設置され、ボイラ6の排気口6bと減温塔7の導入口7aとがダクト17で接続されている。
【0034】
減温塔7の下流側には2基のバグフィルタ8およびバグフィルタ9がダクト19で直列に接続されて設置され、減温塔7の排気口7bとバグフィルタ8の上部導入口8aがダクト18で接続されている。バグフィルタ9の下流側にはIDF(誘引送風機)10および煙突11が順に設置され、それぞれダクト20・21で接続されている。
【0035】
サイクロン4では上部導入口4aから導入された未燃ガスGと未燃固形物yが分離され、未燃ガスGは上端の排気口4bから排出され、下部導入口5aより再燃焼炉5内へ送られる。一方、未燃固形物yはサイクロン4の下端の排出口4cから投入路13を介して炭化・賦活炉12の導入口12fに送られる。投入路13内にはロータリバルブ13a(図2参照)が介設され、未燃固形物yによるマテリアルシールと相俟ってサイクロン4と炭化・賦活炉12とは遮断されている。未燃固形物yに含まれているタールがサイクロン4で冷却され、周囲に付着しやすい状態になっている。このため、炭化・賦活炉12へ投入路13から投入される際に投入路13の内壁やロータリバルブ13aなどに付着し、投入路13を閉塞するおそれがあるが、後述のようにタールの分散剤としての働きをもつ活性炭化物(老廃炭)z’および飛灰pを投入路13内に戻しているため、未燃固形物yにタールが含まれていても活性炭化物(老廃炭)z’および飛灰pに混合分散され、かつ冷却固化されるので、全く支障がない。
【0036】
炭化・賦活炉12には、図2に示すように炉本体12a内にスクリューコンベヤ12cが内装された複数段の炭化管12bが一連に連結されて配設され、炉本体12aには下部のバーナ12dによる燃焼ガスFが炭化管12bの長手方向に沿って下方から上方の排気口12eに流れる公知の構造が使用されている。同構造の炭化・賦活炉12は、たとえば特許第2975011号掲載公報や特許第3055686号掲載公報に記載されている。未燃固形物yは、上段の炭化管12bの入り口12fから供給されて燃焼ガスFにて間接的に加熱され、還元雰囲気中をスクリューコンベヤ12cにて下段の炭化管12bへ順に搬送される間に炭化される。炭化管12bの入り口12f付近には水蒸気の供給管12wが接続され、炭化管12b内の水蒸気濃度が制御され、下段の炭化管12b内の炭化物表面に多数の、ダイオキシン類を吸着するのに適した口径(主に50Å前後)の細孔を形成する賦活反応に用いられる。
【0037】
こうして、ダイオキシン類の吸着に最適な口径の細孔を多数備えた活性炭化物zが生成される。活性炭化物zは搬送用スクリューコンベヤ12hで搬送され、炭化賦活炉12の底部に設けられた取り出し口12gから取り出され、その一部がダイオキシン吸着剤としてバグフィルタ8の上流側のダクト18内に投入される。排気口12eはダクト22でボイラ6の過熱器S/Hの下流側部分6cに接続され、炭化・賦活炉12からの排ガスHがボイラ低温部6a内に送られる。なお、図2中の符号12j・12kは空気の供給管で、供給管12jは炭化管12bの入り口12f付近に接続され、また供給管12kは炉本体12aの複数箇所に接続されている。
【0038】
再燃焼炉5へ送られた未燃ガスGは、再燃焼炉5内へ吹き込まれる酸素と反応して完全燃焼し、発熱による熱量がボイラ6によって熱交換され、回収される。具体的には、ボイラ6内の水を加熱し、水蒸気に変換する。一方、燃焼後の排ガスG’は炉12からの排ガスHとともに減温塔7へ送られ、再燃焼炉5内で生じた飛灰pの一部がガス分G’・Hと分離され、減温塔7の下端の排出口7cから取り出され、循環路23によりサイクロン4の投入路13へ戻され、炭化・賦活炉12へ送られる。減温塔7で減温された排ガスG’・排ガスH中のダイオキシン類は、ダクト18内に投入されたダイオキシン吸着剤(活性炭化物)zに吸着され、除去される。
【0039】
排ガスG’・排ガスH・飛灰pおよびダイオキシン類を吸着した活性炭化物(老廃炭)z’のうち飛灰pおよび活性炭化物(老廃炭)z’は、バグフィルタ8により捕集され、下端の排出口8cから取り出され、循環路23によりサイクロン4の投入路13へ戻され、炭化・賦活炉12へ送られる。
【0040】
一方、バグフィルタ8から排気された排ガスG’・排ガスHは、ダクト19内に投入される消石灰sと接触して中和され、中和反応により生じた反応生成物qがバグフィルタ9により捕集される。この反応生成物qはバグフィルタ9の下端の排出口9cから取り出され、廃棄処理される。バグフィルタ9の排気口9bから浄化された排ガスG’・排ガスHがIDF10により誘引され、煙突11から大気中へ放出される。
【0041】
なお、炭化・賦活炉12へ戻された飛灰pおよびダイオキシン類を吸着した活性炭化物(老廃炭)z’は、炭化・賦活炉12の炭化管12b内において還元雰囲気中でダイオキシン類が熱分解され(加熱脱塩素化処理が施され)る。そして、老廃炭z’を含む炭化物は賦活処理され、活性炭化物zが再生される。
【0042】
図3(a)は実施の第2形態にかかる廃棄物処理システムを示す概略構成図、図3(b)は図3(a)の廃棄物処理システムを系統的に示すフロー図である。
【0043】
本実施形態の廃棄物処理システム1’が上記実施形態と相違するところは、図3に示すように、下水汚泥またはその脱水ケーキもしくはその乾燥汚泥(以下、下水汚泥vという)を炭化・賦活炉12の手前の投入路13内へ投入するか、あるいは下水汚泥vを炭化・賦活炉12の導入口12fに直接投入するようにしたことである。また下水汚泥vには多量の水分が含まれているので、炭化管12cの入り口付近に水蒸気を供給する必要がない。
【0044】
なお、下水汚泥vはタールの分散剤としての機能を有するので、とくに飛灰pや老廃炭z’を投入路13へ戻して投入しない場合には、下水汚泥vを投入路13へ投入し、タールの付着防止を図らなければならない。
【0045】
本実施形態の廃棄物処理システム1’によれば、下水汚泥vを部分燃焼炉2には投入せず、炭化・賦活炉12で炭化し賦活化するので、下水汚泥vが多量の水分を含み、かつ投入量が増える場合でも、部分燃焼炉2における廃棄物xの燃焼を不安定にするなどの影響を与えない。しかも、下水汚泥vから活性炭化物zが製造でき、ダイオキシン吸着剤のほかに助燃材としても有効に利用できる。さらに、下水汚泥vを一般廃棄物x等とともに減量化処理できるという利点もある。その他の構成および処理態様については、上記した廃棄物処理システム1のそれと共通するので、説明を省略し、共通の部材は同一の符号を用いて示す。
【0046】
図4は実施の第3形態にかかる廃棄物処理システムを系統的に示すフロー図である。
【0047】
本実施形態の廃棄物処理システム1”は炭化・賦活炉12とともに溶融炉25を併設したことが、上記実施の第1形態にかかる廃棄物処理システム1と相違する。つまり、サイクロン4で分離した未燃固形物yや飛灰pや老廃炭z’を高温で燃焼させて溶融し溶融スラグとして回収され、たとえば道路資材として利用可能にするための溶融炉25を設けている。炭化・賦活炉12と溶融炉25とで未燃固形物y等を処理する割合は、活性炭化物zと溶融スラグなどのニーズに応じて適宜決定できる。また、上記実施の第2形態の廃棄物処理システム1’のように、下水汚泥vを炭化・賦活炉12に投入して未燃固形物yなどとともに混焼して処理することができるのは言うまでもない。なお、溶融炉25の具体的な構造は図示していないが、1500℃近くの高温で溶融させるため、炉にはバーナおよび酸素吹き込みノズルを配備している。
【0048】
上記に廃棄物処理システムについて3つの実施形態を示したが、本発明はこれらに限定されるものではなく、たとえば下記のように実施することができる。
【0049】
流動床式の部分燃焼炉2に代えて、直溶炉などの他方式の炉を用いて廃棄物を減量化する場合、すなわち未燃固形物yを回収せずに再燃焼炉などで、未燃ガスとともに処理するようなシステムでも、捕集した飛灰などに含まれるダイオキシン類の熱分解処理に上記した炭化・賦活炉12を、ハーゲンマイヤー炉のような分解炉として用いることができる。ただし、この場合には、飛灰には炭化すべき炭素分がほとんど含まれていないので、活性炭化物はほとんど生成できない。したがって、上記実施の「第2形態のように炭化・賦活炉12に上記した下水汚泥vを投入し、ダイオキシン吸着剤および直溶炉の助燃材として有効に利用できるだけの十分な量の活性炭化物を得られるようにするのが好ましい。
【0050】
【発明の効果】
以上説明したことから明らかなように、本発明の廃棄物処理方法および同処理システムには、次のような優れた効果がある。
【0051】
(1)本処理方法および処理システムで廃棄物を処理すると同時に、ダイオキシン類の除去のための吸着剤を製造することができ、かつ飛灰中のダイオキシン類を熱分解して除去できるため、廃棄物処理を効率よく行え、経済面および省エネルギー面で優れている。
【0052】
(2)炭化賦活炉は下水汚泥の処理も可能なため、有機性廃棄物全般を付加価値の高い有価物として蘇らせることができる。
【0053】
(3)主燃焼炉(部分燃焼炉・完全燃焼炉)の運転に影響を与えずに、しかも活性炭化物の製造に必要な水分補給を兼ねて下水汚泥の減量化処理が可能となる。
【0054】
(4)ダイオキシン類除去用の吸着剤を系内(炭化賦活炉)で生成するので、ランニングコストを抑えられる。
【0055】
(5)サイクロン下端から未燃固形物を炭化賦活炉へ投入する際に、排ガス処理手段に導入した活性炭化物を戻して未燃固形物とともに投入するか、あるいは下水汚泥を未燃固形物に混合して投入するようにしているので、未燃固形物の投入経路内に未燃固形物に含有されたタールが付着したりタールで投入経路を閉塞したりするのが確実に防止される。
【図面の簡単な説明】
【図1】図1(a)は本発明の実施の第1形態にかかる廃棄物処理システムを示す概略構成図、図1(b)は図1(a)の廃棄物処理システムを系統的に示すフロー図である。
【図2】本発明の廃棄物処理システムの一部を構成する炭化・賦活炉の構造の一例を概略的に示す断面図である。
【図3】図3(a)は本発明の実施の第2形態にかかる廃棄物処理システムを示す概略構成図、図3(b)は図3(a)の廃棄物処理システムを系統的に示すフロー図である。
【図4】本発明の実施の第3形態にかかる廃棄物処理システムを系統的に示すフロー図である。
【符号の説明】
1 廃棄物処理システム
2 流動床式部分燃焼炉
3 投入ホッパ
4 サイクロン
5 再燃焼炉
6 ボイラ
7 減温塔
8・9 バグフィルタ
10 IDF(誘引送風機)
11 煙突
12 炭化・賦活炉
13 投入路
15〜21 ダクト
x 廃棄物(ごみ)
y 未燃固形物(未燃チャー)
z 活性炭化物
v 下水汚泥
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating waste (garbage) such as organic waste mainly containing carbon, such as wooden waste, food waste, waste gasification char, sewage sludge, and the waste treatment system. Specifically, the present invention relates to an invention including a method and a system for removing dioxins in exhaust gas generated when incinerating waste.
[0002]
[Prior art]
There are various methods as an intermediate treatment (reduction amount) method for organic waste as described above, but in most methods such as incineration and melting, an exhaust gas treatment process is required to satisfy legal regulation values. In recent years, running costs related to exhaust gas treatment have increased due to regulations on emission of dioxins in addition to regulations on sulfur oxides, nitrogen oxides, hydrogen chloride, and the like in exhaust gases. In addition, due to regulations at the final disposal site, running costs in the ash treatment process are also increasing.
[0003]
As an example of the prior art for satisfying the regulation value of dioxins, the dioxins in the exhaust gas are adsorbed on activated carbon and collected in a dust collection facility together with the solid dioxins. Chemicals used as adsorbents are generally expensive, and enormous energy (calorie) is required for melting and dechlorination. Become.
[0004]
As other prior art,
1. Activated carbide produced from waste such as sewage sludge is introduced into the bag filter type dioxin removal device from outside the system as an adsorbent to remove dioxins contained in the exhaust gas generated from the waste incineration plant. It has been proposed to adsorb and remove dioxins (see, for example, Patent Document 1).
[0005]
2. A dedicated decomposing unit that decomposes dioxins contained in solids such as residue (char) and fly ash (fly ash) discharged from the plastic waste gasifier with the gasification of the waste. Providing continuously in a gasifier is proposed (for example, refer to patent documents 2).
[0006]
3. When combusting general waste and industrial waste in an incinerator, an apparatus has been proposed in which sewage sludge is dispersed and charged and mixed and incinerated (see, for example, Patent Documents 3 and 4).
[0007]
[Patent Document 1]
JP-A-11-193387 (paragraph numbers 0007 and 0009, FIG. 2)
[Patent Document 2]
JP 2000-126716 A (paragraph numbers 0011 and 0012, FIG. 1)
[Patent Document 3]
JP 2000-220815 (paragraph numbers 0015, 0019, 0028, FIG. 1)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 11-257639 (paragraph numbers 0006 to 0008, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, the conventional techniques described in the above publications have the following problems. That is,
1. In the technique of Patent Document 1, since the adsorbent for removing dioxins is procured from outside the system and used, the running cost is high.
[0009]
2. Since the technology of Patent Document 2 collects and decomposes solid matter such as fly ash containing dioxins and processes it, there is no problem of secondary pollution, but the solid matter cannot be used effectively. .
[0010]
3. According to each technique of Patent Documents 3 and 4, there is an advantage that sewage sludge can be mixed and incinerated with general waste, etc., but since sewage sludge is mixed, the temperature of the combustion apparatus may be lowered and unstable. Also, sewage sludge cannot be used effectively.
[0011]
The present invention has been made in view of the above points, and is provided with a means capable of carbonizing and activating organic waste in a waste incineration processing system so that activated carbide can be produced in the system for effective use. An object of the present invention is to provide a waste treatment method and a treatment system capable of removing dioxins using the same means.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the waste treatment method according to the present invention partially burns waste, separates unburned gas and unburned solids generated at this time with a cyclone , After recombusting and recovering heat with a heat exchange means such as a boiler, it is treated with an exhaust gas treatment means and released into the atmosphere, while the unburned solid is mixed with sewage sludge and contained therein Along with dioxins, carbonization is activated and carbonized in a reducing atmosphere by carbonization and activation means (carbonization means incorporating an activation treatment means after the carbonization treatment). dioxins particles were collected to produce an active carbide having a diameter) that can be adsorbed if dioxin was charged to the upstream side of the dust collector of said exhaust gas treatment means the activity carbide dioxin adsorbent After collecting the dioxin adsorbent that adsorbs dioxins and fly ash with the dust collector, the dioxin adsorbent and fly ash are circulated through the carbonization and activation means, and carbonized and activated to regenerate the activated carbide. It is characterized by doing.
[0013]
According to the waste treatment method having the above-described configuration, the waste can be reduced, and the unburned gas generated at the time of reduction is recombusted and the latent heat is transferred through the heat exchange means using the thermal energy. In addition to being able to recover, unburned solids (unburned char) generated at the same time can be removed by pyrolysis together with dioxins contained in the reducing atmosphere, and the unburned solids are carbonized and activated (mainly The carbon (C) content on the carbide surface is reacted with the water (H 2 O) content of the introduced water vapor to generate carbon dioxide) to produce an activated carbide having a large number of pores on the carbide surface. be able to. As will be described later, this activated carbide can be used as a dioxin adsorbent and auxiliary material, so that it is not wasted.
[0014]
In addition, since sewage sludge is mixed with an unburned solid and carbonized, even if the unburned solid contains a tar content, the tar content adheres to and clogs the inlet to the carbonization / activation means. Is prevented. This is because the tar content is also mixed with the sewage sludge by mixing the sewage sludge and its dehydrated cake with the unburned solid. In addition, sewage sludge is generally composed of uniform fine particles, is rich in carbon, and has a high moisture content, so it is uniformly mixed with unburned solids and carbonized and activated. Since water vapor is generated when heated at, there is no need to introduce water vapor for activation treatment from the outside, and many carbon pores of a size suitable for adsorption of dioxins are obtained by activating the surface of the carbide after carbonization Activated carbides on the surface can be generated.
[0015]
Furthermore, by introducing activated carbide produced in the system into the exhaust gas treatment means, dioxins contained in the exhaust gas after reburning the unburned gas can be adsorbed and removed, and further dioxins can be removed by a dust collector downstream. After collecting the activated charcoal and fly ash that have been adsorbed, they are put back into the carbonization / activation means, and dioxins adsorbed or contained in the active carbide and fly ash are removed by thermal decomposition in a reducing atmosphere. Further, by activating the activated carbide, the activated carbide having a large number of pores on the surface can be regenerated and reused .
[0018]
As described in claim 2 , a part of the unburned solid is thermally decomposed in a reducing atmosphere together with dioxins by carbonization / activation means, and activated to have a large number of pores on the surface by activation treatment. The remainder of the unburned solid can be collected into the melting means together with the activated carbide as the auxiliary combusting material, heated and melted at a high temperature and recovered as molten slag.
[0019]
According to the waste treatment method of claim 2, as described above, a part of the unburned solid is carbonized at the same time as pyrolyzing and removing dioxins, and further activated to produce activated carbide, and the rest Unburned solids are put into a melting means and melted and solidified molten slag is taken out and used for road aggregates.
[0022]
The waste treatment system according to claim 3 is a partial combustion furnace that partially burns waste, a cyclone that separates unburned gas and unburned solids generated during partial combustion, and a reburn that reburns unburned gas. A combustion furnace, a heat exchange means such as a boiler for recovering heat generated at the time of re-combustion, and an exhaust gas treatment means for processing exhaust gas generated after re-combustion and releasing it into the atmosphere, and unburned at the lower end of the cyclone. Under the solids outlet, the unburned solid dioxins are thermally decomposed in a reducing atmosphere, and the unburned solid is carbonized and activated to generate activated carbides with numerous pores on the surface. Carbonization / activation furnace (carbonization / activation furnace is a carbonization furnace that incorporates an activation process after the carbonization process), and when the unburned solid is put into the carbonization / activation furnace, sewage sludge is mixed. Configured to A melting furnace is provided together with the carbonization / activation furnace, and the activated carbide generated by the carbonization / activation furnace is introduced as a dioxin adsorbent to the upstream side of the dust collector of the exhaust gas treatment means to adsorb dioxins. The adsorbed dioxin adsorbent and fly ash are collected by the dust collector and then circulated to the carbonization / activation furnace, and the activated carbide is regenerated by carbonization activation treatment .
[0023]
According to the waste treatment system according to claim 3, the treatment method according to claim 1 can be carried out, and as a result, the unburned gas generated when the waste is partially burned is reburned and generated at that time. The amount of heat can be recovered by heat exchange means. In addition, unburned solids generated at the same time and collected by the cyclone are removed by pyrolyzing dioxins in a carbonization / activation furnace and simultaneously carbonized to become carbides. Then, the surface of the carbide is activated with water vapor or the like, and an activated carbide having a large number of pores on the surface is generated. This activity carbide, as an adsorbent adsorbing dioxins in exhaust gas, and may be utilized in the system as a combustion improver.
[0025]
Also, there is a risk that tar adheres to the insertion path of the carbonization and activation furnace when turning on the non燃固form was separated in a cyclone to carbonization and activation furnace, as dioxin adsorbent collected in dust collector Since activated charcoal and fly ash are introduced, tar content adheres to them and is prevented from adhering to or blocking the charging path.
[0028]
As described in claim 4 , a melting furnace is provided together with the carbonization / activation furnace, and a part of the unburned solid separated by the cyclone is pyrolyzed in a reducing atmosphere in the carbonization / activation furnace together with the dioxins. Carbonized and activated to produce activated carbide having a large number of pores on the surface, and the remainder of the unburned solid is put into the melting furnace together with the activated carbide as a combustion aid and recovered as molten slag It is characterized by doing so.
[0029]
According to the waste treatment system of the fourth aspect, the treatment method according to the second aspect can be implemented, and the same action as the above-described action of the treatment method of the second aspect can be achieved.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a waste treatment method and a waste treatment system according to the present invention will be described with reference to the drawings.
[0031]
FIG. 1A is a schematic configuration diagram showing the waste treatment system according to the first embodiment, and FIG. 1B is a flowchart showing the waste treatment system of FIG. 1A systematically.
[0032]
As shown in FIG. 1, the treatment system 1 of this embodiment includes a fluidized bed partial combustion furnace 2, and waste collected in a garbage pit (not shown) or the like is collected by a garbage crane (not shown). The waste x is supplied to the partial combustion furnace 2 from the introduction port 2b by being charged into the charging hopper 3. A fluidized bed is provided in the lower part of the partial combustion furnace 2, and the waste x is thermally decomposed in a low-temperature reducing atmosphere by partial combustion at a low air ratio by air introduced from near the lower surface of the fluidized bed, and unburned gas (heat Decomposed gas) G and unburned solids y are discharged from the upper exhaust port 2b. In addition, since the partial combustion furnace 2 gasifies the waste x by low air ratio combustion, the amount of exhaust gas is reduced, the furnace can be small, and the inside of the furnace is maintained in a low-temperature reducing atmosphere. The contained metals such as iron and aluminum can be taken out from the outlet 2c at the lower end of the partial combustion furnace 2 in an unoxidized state and used as a recycled material.
[0033]
A cyclone 4 is installed downstream of the partial combustion furnace 2, and an exhaust port 2 b of the partial combustion furnace 2 and an upper introduction port 4 a of the cyclone 4 are connected by a duct 15. A recombustion furnace 5 provided with a boiler 6 is installed downstream of the cyclone 4, and an exhaust port 4 b at the upper end of the cyclone 4 and a lower introduction port 5 a of the recombustion furnace 5 are connected by a duct 16. A temperature reduction tower 7 is installed on the downstream side of the boiler 6, and an exhaust port 6 b of the boiler 6 and an introduction port 7 a of the temperature reduction tower 7 are connected by a duct 17.
[0034]
Two bag filters 8 and a bag filter 9 are connected in series by a duct 19 on the downstream side of the temperature reducing tower 7, and the exhaust port 7 b of the temperature reducing tower 7 and the upper inlet 8 a of the bag filter 8 are ducted. 18 is connected. An IDF (attracting blower) 10 and a chimney 11 are installed in this order on the downstream side of the bag filter 9 and connected by ducts 20 and 21, respectively.
[0035]
In the cyclone 4, the unburned gas G introduced from the upper introduction port 4a and the unburned solid material y are separated, and the unburned gas G is discharged from the upper exhaust port 4b, and enters the reburning furnace 5 from the lower introduction port 5a. Sent. On the other hand, the unburned solid material y is sent from the discharge port 4 c at the lower end of the cyclone 4 to the introduction port 12 f of the carbonization / activation furnace 12 through the charging path 13. A rotary valve 13a (see FIG. 2) is interposed in the charging path 13, and the cyclone 4 and the carbonization / activation furnace 12 are shut off together with the material seal made of the unburned solid material y. The tar contained in the unburned solid y is cooled by the cyclone 4 and is easily attached to the surroundings. For this reason, when the carbonization / activation furnace 12 is charged from the charging path 13, it may adhere to the inner wall of the charging path 13, the rotary valve 13 a, etc., and the charging path 13 may be blocked. Since the activated carbide (spent coal) z ′ and the fly ash p, which function as an agent, are returned to the charging path 13, the activated carbide (spent coal) z ′ even if tar is contained in the unburned solid y. Since it is mixed and dispersed in the fly ash p and cooled and solidified, there is no problem.
[0036]
As shown in FIG. 2, the carbonization / activation furnace 12 is provided with a plurality of stages of carbonized tubes 12b in which a screw conveyor 12c is housed in a furnace body 12a, which are connected in series, and the furnace body 12a has a lower burner. A known structure is used in which the combustion gas F generated by 12d flows from the lower side to the upper exhaust port 12e along the longitudinal direction of the carbonized tube 12b. The carbonization / activation furnace 12 having the same structure is described in, for example, Japanese Patent No. 2975011 and Japanese Patent No. 3055686. While the unburned solid material y is supplied from the inlet 12f of the upper carbonization pipe 12b, is indirectly heated by the combustion gas F, and is sequentially conveyed in the reducing atmosphere to the lower carbonization pipe 12b by the screw conveyor 12c. Is carbonized. A steam supply pipe 12w is connected in the vicinity of the inlet 12f of the carbonization pipe 12b, the water vapor concentration in the carbonization pipe 12b is controlled, and it is suitable for adsorbing a large number of dioxins on the carbide surface in the lower carbonization pipe 12b. It is used for the activation reaction that forms pores with a large diameter (mainly around 50 mm).
[0037]
In this way, an activated carbide z having a large number of pores having an optimum diameter for adsorption of dioxins is generated. The activated carbide z is conveyed by a conveying screw conveyor 12h, taken out from a takeout port 12g provided at the bottom of the carbonization activation furnace 12, and a part thereof is put into a duct 18 on the upstream side of the bag filter 8 as a dioxin adsorbent. Is done. The exhaust port 12e is connected to the downstream portion 6c of the superheater S / H of the boiler 6 through a duct 22, and the exhaust gas H from the carbonization / activation furnace 12 is sent into the boiler low-temperature part 6a. 2 are air supply pipes, the supply pipes 12j are connected to the vicinity of the inlet 12f of the carbonization pipe 12b, and the supply pipes 12k are connected to a plurality of locations on the furnace body 12a.
[0038]
The unburned gas G sent to the reburning furnace 5 reacts with oxygen blown into the reburning furnace 5 and burns completely, and the heat generated by the heat is exchanged by the boiler 6 and recovered. Specifically, the water in the boiler 6 is heated and converted into water vapor. On the other hand, the exhaust gas G ′ after combustion is sent to the temperature reducing tower 7 together with the exhaust gas H from the furnace 12, and a part of the fly ash p generated in the recombustion furnace 5 is separated from the gas component G ′ · H and reduced. It is taken out from the discharge port 7 c at the lower end of the warm tower 7, returned to the charging path 13 of the cyclone 4 by the circulation path 23, and sent to the carbonization / activation furnace 12. The dioxins in the exhaust gas G ′ and the exhaust gas H that have been reduced in temperature by the temperature reducing tower 7 are adsorbed and removed by the dioxin adsorbent (active carbide) z introduced into the duct 18.
[0039]
Of activated carbon (spent coal) z ′ adsorbing exhaust gas G ′, exhaust gas H, fly ash p, and dioxins, fly ash p and activated carbide (spent coal) z ′ are collected by the bag filter 8 and It is taken out from the discharge port 8 c, returned to the charging path 13 for the cyclone 4 through the circulation path 23, and sent to the carbonization / activation furnace 12.
[0040]
On the other hand, the exhaust gas G ′ and the exhaust gas H exhausted from the bag filter 8 are neutralized by contacting with the slaked lime s introduced into the duct 19, and the reaction product q generated by the neutralization reaction is captured by the bag filter 9. Be collected. The reaction product q is taken out from the discharge port 9c at the lower end of the bag filter 9 and discarded. The exhaust gas G ′ / exhaust gas H purified from the exhaust port 9b of the bag filter 9 is attracted by the IDF 10 and released from the chimney 11 into the atmosphere.
[0041]
The activated carbide (spent coal) z ′ adsorbing fly ash p and dioxins returned to the carbonization / activation furnace 12 is thermally decomposed in a reducing atmosphere in the carbonization tube 12b of the carbonization / activation furnace 12. (Heat dechlorination treatment is performed). And the carbide | carbonized_material containing waste carbon z 'is activated, and the activated carbide z is reproduced | regenerated.
[0042]
FIG. 3A is a schematic configuration diagram showing a waste treatment system according to the second embodiment, and FIG. 3B is a flowchart showing the waste treatment system of FIG. 3A systematically.
[0043]
As shown in FIG. 3, the waste treatment system 1 ′ of this embodiment differs from the above embodiment in that a sewage sludge or a dehydrated cake thereof or a dried sludge thereof (hereinafter referred to as a sewage sludge v) is carbonized and activated. That is, the sewage sludge v is introduced directly into the introduction port 12 f of the carbonization / activation furnace 12. Further, since a large amount of water is contained in the sewage sludge v, it is not necessary to supply water vapor near the entrance of the carbonized tube 12c.
[0044]
In addition, since the sewage sludge v has a function as a tar dispersant, particularly when the fly ash p and the spent coal z ′ are not returned to the input path 13 and are not input, the sewage sludge v is input to the input path 13, Tar adhesion must be prevented.
[0045]
According to the waste treatment system 1 ′ of the present embodiment, the sewage sludge v contains a large amount of water because the sewage sludge v is carbonized and activated in the carbonization / activation furnace 12 without being charged into the partial combustion furnace 2. In addition, even when the input amount increases, there is no influence such as destabilizing the combustion of the waste x in the partial combustion furnace 2. Moreover, the activated carbide z can be produced from the sewage sludge v and can be effectively used as a combustion aid in addition to the dioxin adsorbent. Further, there is an advantage that the sewage sludge v can be reduced along with the general waste x. Other configurations and treatment modes are the same as those of the waste treatment system 1 described above, and thus the description thereof is omitted, and common members are denoted by the same reference numerals.
[0046]
FIG. 4 is a flowchart systematically showing the waste treatment system according to the third embodiment.
[0047]
The waste treatment system 1 ″ of the present embodiment is different from the waste treatment system 1 according to the first embodiment described above in that a melting furnace 25 is provided together with the carbonization / activation furnace 12. That is, the waste treatment system 1 ″ is separated by the cyclone 4. An unburned solid material y, fly ash p, and spent charcoal z ′ are burned and melted at a high temperature and recovered as molten slag, for example, a melting furnace 25 is provided to make it usable as road material. 12 and the melting furnace 25 can be appropriately determined according to the needs of the activated carbide z, the molten slag, etc. Also, the waste treatment system 1 ′ of the second embodiment described above. It goes without saying that the sewage sludge v can be put into the carbonization / activation furnace 12 and co-fired with the unburned solids y etc. The specific structure of the melting furnace 25 is shown in the figure. 1 For 00 ° C. is melted in the vicinity of the high temperature, the furnace has deployed the burner and oxygen blowing nozzle.
[0048]
Although three embodiments of the waste treatment system have been described above, the present invention is not limited to these, and can be implemented as follows, for example.
[0049]
In place of the fluidized bed partial combustion furnace 2, when reducing the amount of waste using another type of furnace such as a direct melting furnace, that is, in the recombustion furnace without collecting the unburned solid material y, Even in a system that treats together with the fuel gas, the carbonization / activation furnace 12 described above can be used as a cracking furnace such as a Hagenmeier furnace for the thermal decomposition treatment of dioxins contained in the collected fly ash. In this case, however, the fly ash contains almost no carbon to be carbonized, so that almost no activated carbide can be generated. Therefore, the above-mentioned “sewage sludge v described above in the carbonization / activation furnace 12 as in the second embodiment is charged, and a sufficient amount of activated carbide that can be effectively used as a dioxin adsorbent and an auxiliary combustion material for a direct melting furnace is provided. It is preferable to obtain it.
[0050]
【The invention's effect】
As is apparent from the above description, the waste treatment method and the treatment system of the present invention have the following excellent effects.
[0051]
(1) Since the waste can be treated with this treatment method and treatment system, and at the same time, the adsorbent for removing dioxins can be produced, and the dioxins in the fly ash can be removed by thermal decomposition. It can efficiently handle materials and is excellent in terms of economy and energy saving.
[0052]
(2) Since the carbonization activation furnace can also treat sewage sludge, the entire organic waste can be revived as a valuable material with high added value.
[0053]
(3) It is possible to reduce the amount of sewage sludge without affecting the operation of the main combustion furnace (partial combustion furnace / complete combustion furnace) and also for supplying water necessary for the production of activated carbide.
[0054]
(4) Since the adsorbent for removing dioxins is generated in the system (carbonization activation furnace), the running cost can be suppressed.
[0055]
(5) When putting unburned solids into the carbonization activation furnace from the bottom of the cyclone, return the activated carbide introduced into the exhaust gas treatment means and put it together with unburned solids, or mix sewage sludge with unburned solids Therefore, the tar contained in the unburned solid material is prevented from adhering to the unburned solid material charging path or the charging path is blocked with the tar.
[Brief description of the drawings]
FIG. 1 (a) is a schematic configuration diagram showing a waste treatment system according to a first embodiment of the present invention, and FIG. 1 (b) is a systematic representation of the waste treatment system of FIG. 1 (a). FIG.
FIG. 2 is a cross-sectional view schematically showing an example of the structure of a carbonization / activation furnace constituting a part of the waste treatment system of the present invention.
3A is a schematic configuration diagram showing a waste treatment system according to a second embodiment of the present invention, and FIG. 3B is a systematic representation of the waste treatment system of FIG. 3A. FIG.
FIG. 4 is a flow diagram schematically showing a waste treatment system according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waste treatment system 2 Fluidized bed type partial combustion furnace 3 Input hopper 4 Cyclone 5 Recombustion furnace 6 Boiler 7 Temperature reduction tower 8.9 Bag filter 10 IDF (attraction fan)
11 Chimney 12 Carbonization / activation furnace 13 Input path 15-21 Duct x Waste (garbage)
y Unburned solid (unburned char)
z Activated carbide v Sewage sludge

Claims (4)

廃棄物を部分燃焼させ、このときに発生する未燃ガスと未燃固形物とをサイクロンにて分離し、未燃ガスは再燃焼してボイラ等の熱交換手段にて熱回収したのち、排ガス処理手段にて処理して大気中へ放出する一方、
前記未燃固形物は下水汚泥を混合してこれに含有されているダイオキシン類とともに炭化・賦活手段にて還元雰囲気中で熱分解し炭化するとともに、賦活処理して表面に多数の細孔を有する活性炭化物を生成して回収し、
前記活性炭化物をダイオキシン吸着剤として前記排ガス処理手段のうちの集塵機の上流側へ投入してダイオキシン類を吸着させ、前記集塵機でダイオキシン類を吸着したダイオキシン吸着剤および飛灰を捕集した後、前記炭化・賦活手段にダイオキシン吸着剤および飛灰を循環させ、炭化・賦活処理して活性炭化物を再生すること
を特徴とする廃棄物処理方法。
Partially combusting waste, separating unburned gas and unburned solids generated at this time with a cyclone , reburning the unburned gas, recovering heat with a heat exchange means such as a boiler, While being processed by the processing means and released into the atmosphere,
The unburned solid material is mixed with sewage sludge and pyrolyzed and carbonized in a reducing atmosphere with carbonization and activation means together with dioxins contained therein, and activated to have a large number of pores on the surface. Produce and recover activated carbides ,
The activated carbide is used as a dioxin adsorbent to the upstream side of the dust collector of the exhaust gas treatment means to adsorb dioxins, and after collecting the dioxin adsorbent adsorbed dioxins and fly ash by the dust collector, A waste treatment method, wherein a dioxin adsorbent and fly ash are circulated in a carbonization / activation means, and the activated carbide is regenerated by carbonization / activation treatment .
前記未燃固形物の一部を下水汚泥を混合してこれに含有されているダイオキシン類とともに炭化・賦活手段にて還元雰囲気中で熱分解し炭化するとともに、賦活処理して表面に多数の細孔を有する活性炭化物を生成して回収し、
前記未燃固形物の残りは助燃材としての前記活性炭化物とともに溶融手段に投入し高温で加熱溶融して溶融スラグとして回収すること
を特徴とする請求項1記載の廃棄物処理方法。
A part of the unburned solid is mixed with sewage sludge, and together with dioxins contained therein, it is pyrolyzed and carbonized in a reducing atmosphere by a carbonizing / activating means, and activated to activate a large number of fine particles on the surface. Producing and recovering activated carbides with pores;
The remainder of the unburned solid is collected into the melting means together with the activated carbide as a combustion aid, heated and melted at a high temperature, and recovered as molten slag.
The waste treatment method according to claim 1, wherein:
廃棄物を部分燃焼する部分燃焼炉と、部分燃焼時に発生する未燃ガスと未燃固形物とを分離するサイクロンと、未燃ガスを再燃焼する再燃焼炉と、再燃焼時に発生する熱を回収するボイラ等の熱交換手段と、再燃焼後に発生する排ガスを処理して大気中へ放出する排ガス処理手段とを備え、
前記サイクロン下端部の未燃固形物取り出し口に、未燃固形物中のダイオキシン類を還元雰囲気中で熱分解するとともに同未燃固形物を炭化して賦活させることにより表面に多数の細孔を有する活性炭化物を生成する炭化・賦活炉を連続して設け
前記未燃固形物を前記炭化・賦活炉に投入する際に、下水汚泥を混合して投入するように構成し、
前記炭化・賦活炉とともに溶融炉を設け、前記サイクロンで分離した未燃固形物の一部を前記ダイオキシン類とともに炭化・賦活炉にて還元雰囲気中で熱分解し炭化させるとともに、賦活処理して表面に多数の細孔を有する活性炭化物を生成し、
前記未燃固形物の残りは助燃材としての前記活性炭化物とともに前記溶融炉に投入して溶融スラグとして回収するようにし、
前記炭化・賦活炉により生成した活性炭化物をダイオキシン吸着剤として前記排ガス処理手段のうちの集塵機の上流側へ投入してダイオキシン類を吸着させ、ダイオキシン類を吸着したダイオキシン吸着剤および飛灰を前記集塵機で捕集したのちに前記炭化・賦活炉に循環させ、炭化賦活処理して活性炭化物を再生すること
を特徴とする廃棄物処理システム
A partial combustion furnace that partially burns waste, a cyclone that separates unburned gas and unburned solids generated during partial combustion, a reburning furnace that reburns unburned gas, and heat generated during reburning Heat recovery means such as a boiler to be recovered, and exhaust gas treatment means for treating exhaust gas generated after recombustion and releasing it into the atmosphere,
At the bottom of the cyclone unburned solids, the dioxins in the unburned solids are thermally decomposed in a reducing atmosphere, and the unburned solids are carbonized and activated to activate a large number of pores on the surface. the carbonization and activation furnace to produce an active carbide having provided continuously,
When charging the unburned solid into the carbonization / activation furnace, it is configured to mix and input sewage sludge,
A melting furnace is provided together with the carbonization / activation furnace, and a part of the unburned solid separated by the cyclone is thermally decomposed and carbonized in a reducing atmosphere in the carbonization / activation furnace together with the dioxins, and the surface is subjected to activation treatment. To produce an activated carbide having a large number of pores,
The remainder of the unburned solid is charged into the melting furnace together with the activated carbide as a combustion aid and recovered as molten slag,
Activated carbide generated by the carbonization / activation furnace is used as a dioxin adsorbent to the upstream side of the dust collector of the exhaust gas treatment means to adsorb dioxins and dioxins adsorbed with dioxins and fly ash are collected into the dust collector. After being collected in the above, it is circulated to the carbonization / activation furnace and activated carbonization to regenerate the activated carbide.
A waste treatment system characterized by
前記炭化・賦活炉とともに溶融炉を設け、前記サイクロンで分離した未燃固形物の一部を前記ダイオキシン類とともに炭化・賦活炉にて還元雰囲気中で熱分解し炭化させるとともに、賦活処理して表面に多数の細孔を有する活性炭化物を生成し、前記未燃固形物の残りは助燃材としての前記活性炭化物とともに前記溶融炉に投入して溶融スラグとして回収するようにしたこと
を特徴とする請求項3記載の廃棄物処理システム
A melting furnace is provided together with the carbonization / activation furnace, and a part of the unburned solid separated by the cyclone is thermally decomposed and carbonized in a reducing atmosphere in the carbonization / activation furnace together with the dioxins, and the surface is subjected to activation treatment. Activated carbides having a large number of pores are generated, and the remainder of the unburned solids is put into the melting furnace together with the activated carbides as auxiliary combustion materials and recovered as molten slag.
The waste treatment system according to claim 3 .
JP2003029358A 2003-02-06 2003-02-06 Waste treatment method and treatment system Expired - Lifetime JP3702424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029358A JP3702424B2 (en) 2003-02-06 2003-02-06 Waste treatment method and treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029358A JP3702424B2 (en) 2003-02-06 2003-02-06 Waste treatment method and treatment system

Publications (2)

Publication Number Publication Date
JP2004237216A JP2004237216A (en) 2004-08-26
JP3702424B2 true JP3702424B2 (en) 2005-10-05

Family

ID=32956556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029358A Expired - Lifetime JP3702424B2 (en) 2003-02-06 2003-02-06 Waste treatment method and treatment system

Country Status (1)

Country Link
JP (1) JP3702424B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605576B2 (en) * 2011-02-07 2014-10-15 Jfeエンジニアリング株式会社 Waste gasification and melting equipment
CN108775585B (en) * 2018-07-04 2020-05-12 加拿大艾浦莱斯有限公司 Waste high-temperature air/steam gasification combustion melting system
CN111336525A (en) * 2020-03-31 2020-06-26 浙江大凡智能科技有限公司 Plasma melting hazardous waste treatment system and treatment method

Also Published As

Publication number Publication date
JP2004237216A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US6439138B1 (en) Char for contaminant removal in resource recovery unit
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
CN110448992A (en) Dioxins in flue gas emission-reducing system and method in a kind of Refuse Incineration Process
JP2000157832A (en) Treatment of waste activated carbon and treatment of activated coke
JP3702424B2 (en) Waste treatment method and treatment system
JP2012107110A (en) Method for treating gas-treatment drainage, gasification apparatus of carbonaceous material, and method for treating carbonaceous material
CN214198674U (en) Industrial waste classified incineration system
JP3545266B2 (en) Dry exhaust gas treatment method and apparatus
JP2003166705A (en) Method and device for waste disposal by stoker furnace
JP4211118B2 (en) Method and apparatus for producing activated carbon from waste
JP4358095B2 (en) Method for treating combustible waste and water-containing organic sludge
JPS6152883B2 (en)
JP2898625B1 (en) Method and apparatus for removing and decomposing dioxins with unburned ash
KR20010076160A (en) Method for spraying and treating chemicals in a precoated-type bag filter
JP2007009045A (en) Treatment system for gasifying waste and treatment method therefor
JPH10311515A (en) Refuse incinerating and melting equipment
JPH11148631A (en) Incinerator and incinerating method for contaminated soil or the like
JPH11182835A (en) Method and device for treating exhaust gas at gasifying incinerating equipment
JPH11325425A (en) Method and apparatus for treating waste material
JP3020912B2 (en) Method and apparatus for immobilizing and decomposing dioxins with unburned ash
JPH1119618A (en) Melt treating device of wet ash and melt treatment
JP2001132922A (en) Incineration treatment method of slurried wastes
JP3950448B2 (en) Method and apparatus for producing carbide from waste
CN112128774A (en) Industrial waste classified incineration system
JP2000146135A (en) Incinerator and thermal decomposition type incineration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Ref document number: 3702424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

EXPY Cancellation because of completion of term