JP3701808B2 - Roller crowning shape management method and apparatus - Google Patents

Roller crowning shape management method and apparatus Download PDF

Info

Publication number
JP3701808B2
JP3701808B2 JP04320699A JP4320699A JP3701808B2 JP 3701808 B2 JP3701808 B2 JP 3701808B2 JP 04320699 A JP04320699 A JP 04320699A JP 4320699 A JP4320699 A JP 4320699A JP 3701808 B2 JP3701808 B2 JP 3701808B2
Authority
JP
Japan
Prior art keywords
roller
shape
bus
center point
crowning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04320699A
Other languages
Japanese (ja)
Other versions
JP2000241153A (en
Inventor
典夫 藤岡
靖明 高橋
弘光 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP04320699A priority Critical patent/JP3701808B2/en
Publication of JP2000241153A publication Critical patent/JP2000241153A/en
Application granted granted Critical
Publication of JP3701808B2 publication Critical patent/JP3701808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、針状ころ軸受やワンウェイクラッチ等の機械部品におけるローラのクラウニング形状を管理するローラのクラウニング形状管理方法および装置に関する。
【0002】
【従来の技術】
ニードル軸受やワンウェイクラッチ等の機械部品に用いられるローラとして、機械部品の性能面から、クラウニングを施したものが用いられることがある。このクラウニングを施したローラとしては、図11(B)に示すように、軸方向の中間部分がストレート部1aとなり、その両側がクラウニング部1bとなったものが一般的である。
軸受等に用いられるローラは、素材からローラ形状に形成した後、その形状を測定して公差内にあるか否かを管理する必要がある。クラウニング部1bを持つローラでは、そのクラウニング形状も管理する必要がある。
従来のクラウニング測定方法は、ローラ1の外径母線上にストレート部1aがあるため、その部位で平行を出し、図11(B)のように、ローラ端面の位置決め用の基準片(図示せず)の端面位置が所定距離X′だけ中央部側に移動した位置S′が、ローラ1のストレート部1aの位置からY方向(ローラ径方向)にどれだけドロップしているかのドロップ量d′を測定していた。したがって、ローラ1の片側測定である。
【0003】
【発明が解決しようとする課題】
機械部品の性能向上のために、図10に示すように、全長にわたり、クラウニングが施されたローラ1を用いることが試みられている。このような全長にわたりクラウニングを有するローラ1は、平行出しの基準となるストレート部がないため、上記の従来の測定方向では、クラウニング形状を測定することができない。
【0004】
この発明の目的は、全長にわたりクラウニングが施されたローラであっても、クラウニング形状の管理が精度良く行えるローラのクラウニング形状管理方法および装置を提供することである。
この発明の他の目的は、クラウニング形状が許容範囲にあるか否かの判定が容易に行えるようにすることである。
【0005】
【課題を解決するための手段】
この発明のローラのクラウニング形状管理方法を、実施形態に対応する図1,図3を参照して説明する。このクラウニング形状管理方法は、被測定ローラ(1)を、端面の垂直面精度の確保された一対の基準片(6),(7)により軸方向に挟み付け、かつ径方向に位置決めされた状態に治具本体(8)上に設置する位置決め過程と、被測定ローラ(1)に触針(10)を軸方向に沿って走らせ、基準片(6),(7)の被測定ローラ近傍部を含めてローラ外形の母線形状を測定する母線測定過程と、得られたローラ外形母線形状から両側の基準片(6),(7)の端面位置を求め、これら端面位置からローラ外形母線形状の軸方向中心点(O)を求める中心点演算過程と、得られた軸方向中心点(O)を基準として、前記ローラ外形母線形状の所定軸方向位置(S)における前記軸方向中心点(O)からの半径方向距離であるドロップ量(d)を求めるドロップ量演算過程とを含む。
このように、基準片(6),(7)を含めて被測定ローラの外形母線形状を測定するため、この母線形状から基準片の端面位置を求めることで、ローラ外形母線形状の軸方向中心点(O)を容易にかつ精度良く求めることができる。このように定められたローラ外形母線形状の軸方向中心点(O)を基準とし、所定軸方向位置のドロップ量(d)を演算するため、全長にわたりクラウニングを有するローラ(1)であっても、クラウニングによるドロップ量を精度良く、簡単に求めることができる。
【0006】
この発明の形状管理方法において、前記母線測定過程で得られたローラ外形母線形状につき、前記中心点演算過程で得られた軸方向中心点(O)を基準として、軸方向に所定距離(t)離れた位置からさらに所定距離(X)離れた位置までの範囲の曲率(R)を求める曲率演算過程を含めても良い。
これにより、全長にわたりクラウニングを有するローラ(1)であっても、クラウニングの各部の曲率(R)を求めることができる。
【0007】
この発明の形状管理方法において、前記母線測定過程よりも前に、ローラ外形母線形状の設計値線に対する許容差線を設定する過程と、前記母線測定過程で得られたローラ外形母線形状が前記許容差線間に入っているか否かを判定する判定過程とを含むようにしても良い。
このように、許容差線を設定して判定を行うことで、良否判定を簡単に行うことができる。
【0008】
この発明のクラウニング付きローラの製造方法は、略全長にわたりクラウニングを有するローラを素材から成形する過程と、その形成されたローラを、この発明の上記いずれかの形状管理方向で管理する過程とを含む。
【0009】
この発明のローラのクラウニング形状管理装置を、実施形態に対応する図1を参照して説明する。このクラウニング形状管理装置は、端面の垂直面精度が確保され被測定ローラ(1)を軸方向に挟み込む一対の基準片(6),(7)、および前記被測定ローラ(1)を前記基準片(6),(7)と共に径方向に位置決め状態に設置可能な治具本体(8)を有する測定治具(4)と、この測定治具(4)に設置された被測定ローラ(1)に軸方向に沿って触針(10)を走らせ、基準片(6),(7)の被測定ローラ近傍部を含めてローラ外形の母線形状を測定する測定器(5)と、この測定器(5)で得られたローラ外形母線形状から両側の基準片(6),(7)の端面位置を求め、これら端面位置からローラ外形母線形状の軸方向中心点(O)を求める中心点演算手段(20)と、この手段(20)で得られた軸方向中心点(O)を基準として、前記ローラ外形母線形状の所定軸方向位置における前記軸方向中心点(O)からの半径方向距離であるドロップ量を求めるドロップ量演算手段(21)とを備える。
この構成のクラウニング形状管理装置によると、この発明の上記管理方法によりクラウニング形状の管理を行うことができる。
【0010】
この発明装置において、前記測定器(5)で得られたローラ外形母線形状につき、前記中心点演算手段(20)で得られた軸方向中心点(O)を基準として、軸方向に所定距離離れた位置からさらに所定距離離れた位置までの範囲の曲率を求める曲率演算手段(22)を設けても良い。
【0011】
また、この発明装置において、ローラ外形母線形状の設計値線に対する許容差線が設定され、前記測定器(5)で得られたローラ外形母線形状を前記許容差線に重ねて表示し、または前記ローラ外形母線形状が前記許容差線間に入っているか否かを判定する判定手段(23)を設けても良い。
【0012】
【発明の実施の形態】
この発明の一実施形態を図面と共に説明する。このローラのクラウニング形状管理装置は、被測定ローラ1の外形母線形状を測定する測定手段2と、この測定手段2で測定された外形母線形状のデータを解析するデータ解析手段3とで構成される。被測定ローラ1は、針状ころ軸受やその他の機械部品の転がり接触用の転動体となるローラであり、全長にわたってクラウニングを有している。測定手段2は、測定器5と測定治具4とで構成される。測定治具4は、この例では、測定器5に着脱自在に設置されるものとしてある。
【0013】
測定治具4は、被測定ローラ1を軸方向に挟み込む一対の基準片6,7、および被測定ローラ1を基準片6,7と共に径方向に位置決め状態に設置可能な治具本体8を有する。基準片6,7は、被測定ローラ1を挟む面である端面の垂直面精度が確保された円柱状のものであり、被測定ローラ1の理想の最大径と同じ外形を有する。図2に示すように、治具本体8は、V溝8aを有しており、このV溝8aに被測定ローラ1および基準片6,7を配置することで、これら被測定ローラ1および基準片6,7を径方向に位置決め状態に設置可能とされている。この例では、V溝8aの底部には、被測定ローラ1の配置される軸方向部分に矩形断面の凹部8aaが形成されている。
【0014】
片方の基準片6は、治具本体8の一端の係合部8bに係合して軸方向に位置決めされ、もう片方の基準片7は、基準片押し付け手段9により被測定ローラ1に押し付けられる。基準片押し付け手段9は、治具本体8の他端の係合部8cと基準片7との間に介在しており、板ばね等のばね類やその他の弾性体からなる。基準片押し付け手段9は、シリンダ装置等の押し付け用の駆動源を有するものであっても良い。
なお、基準片6,7は、端面の垂直面精度が確保されたものであれば良く、好ましくは、上記端面から続いて測定器5の触針を触れさせる径方向の基準となる面を有するものであれば良く、必ずしも円柱状のものでなくても良い。また、片方の基準片6は治具本体8に一体に固定されたものであっても良い。換言すれば、治具本体8を、片方の基準片6となる部分を一体に持つものとしても良い。
【0015】
測定器5は、図1に示すように、被測定ローラ1の外面をなぞりながら触針10を軸方向に走らせて形状測定するものであり、測定器機構部11と、測定データ処理部12と、測定器制御部13と、測定治具4の設置台(図示せず)とを有する。測定器機構部11は、触針10の取付けられた測定ヘッド11aを測定治具4の軸方向Xに移動させる軸方向移動機構11b、およびこれに直交する方向(上下方向)Yに、触針10が被測定物に軽接触する程度に測定ヘッド11aを移動させる昇降機構11cを有し、かつ触針10のX,Y方向の先端位置を検出するセンサ類14を有している。触針10は、測定ヘッド11aの移動方向の抵抗が作用することで、測定ヘッド11aに対して、その移動方向の前後に所定の傾き角度だけ傾動自在とされ、かつ上記抵抗が無くなることで、元の中立角度である垂直姿勢に戻るものとされている。
【0016】
測定器制御部13は、測定器機構部11の移動を制御する手段である。
測定データ処理部12は、測定器機構部11のセンサ類14から、被測定物の形状データであるローラ外形母線形状のデータを得て外部に送る手段である。測定データ処理部12は、センサ類14から得た生データの状態で外部に送るようにしても良いが、この例では、解析修正データ生成手段15により所定の処理を施した修正データの状態でローラ外形母線形状のデータを外部に送るものとしてある。また、測定データ処理部12は、軸方向Xに所定間隔の点列データ(サンプリングデータ)として測定データを得るものとしてあり、その場合、解析修正データ生成手段15は、後のデータ処理の容易や送信時間の短縮のために、少ない点列データ数でローラ外形母線形状を示すデータに変換するものとされる。また、解析修正データ生成手段15は、傾き補正手段16を有しており、入力された測定データは、被測定物と軸方向Xの平行度が保たれた状態のデータに補正される。傾き補正手段16は、必ずしも設けなくても良い。
【0017】
データ解析手段3は、コンピュータ装置で構成される解析演算部17と、CRTや液晶表示装置,またはプリンタ等の表示手段18とを備える。解析演算部17は、形状データ記憶部19、中心点演算手段20、ドロップ量演算手段21、曲率演算手段22、および判定手段23を有し、必要に応じて傾き補正手段24が設けられる。
解析演算部17を構成する前記各手段20〜24の詳細な機能は、後に形状管理方法と共に説明するが、基本的な機能を説明する。
【0018】
形状データ記憶手段19は、測定手段2から送られたローラ外形母線形状のデータを記憶する手段である。
中心点演算手段20は、ローラ外形母線形状から両側の基準片6,7の端面位置を求め、これら端面位置からローラ外形母線形状の軸方向中心点O(図3(B))を求める手段である。
ドロップ量演算手段21は、ローラ外形母線形状の所定軸方向位置における軸方向中心点Oからの半径方向距離であるドロップ量d(図3(C))を求める手段である。
曲率演算手段22は、ローラ外形母線形状につき、軸方向中心点Oを基準として、軸方向に所定距離離れた位置からさらに所定距離離れた位置までの範囲の曲率R(図3(D))を求める手段である。
判定手段23は、ローラ外形母線形状の設計値線ma に対する許容差線mb を設定し、測定器5で得られたローラ外形母線形状の実測値線mc が許容差線mb 間に入っているか否かを画面等に表示しまたは判定する手段である。
傾き補正手段24は、形状データ記憶手段19に記憶されたローラ外形母線形状のデータを傾き補正したデータに変換する手段である。傾き補正手段24を機能させた場合は、その補正後のローラ外形母線形状のデータが、各手段20〜23の処理に用いられる。この傾き補正手段24と測定手段2の傾き補正手段16とは、併用しても良く、またいずれか片方だけを用いても良く、両方とも設けなくても良い。
【0019】
つぎに、クラウニング形状管理方法を説明する。
(1)被測定ローラの位置決め過程。
図2に示すように、被測定ローラ1は、両側の基準片6,7で挟み、治具本体8のV溝8a上に載置する。これにより被測定ローラ1は径方向に位置決めされる。次に、片側の基準片7の端面を、板ばね等の基準片押し付け手段9で押えることによって、軸方向の固定を行う。このように被測定ローラ1のセットされた測定治具4を、測定器5の測定治具設置台(図示せず)にセットする。
【0020】
(2)形状測定(母線測定過程)。
図2(A)の矢印方向に図1の触針10を走らせて、基準片6,7の被測定ローラ近傍部を含めてローラ外形の母線形状を測定する。測定された結果を図3(A)に示す。このローラ外形母線形状を示す曲線mは、被測定ローラ1の外形を示す曲線部分m1と、基準片6,7の端面を示す曲線部分m2と、基準片6,7の外径面を示す曲線部分m3とが含まれる。基準片6,7の端面を示す曲線部分m2は、後に説明するように、触針10を用いる測定器5の機能上、垂直線とはならず、傾斜した線として表れる。このローラ外形母線形状は、測定器5の出力では点列データで示される。曲線mは、その点列データを補完して得た曲線である。
【0021】
(3)軸方向の中心点を求める(中心点演算過程)。
測定器5で得られた測定データは、データ解析手段3の形状データ記憶手段19に送られ、中心点演算手段20により、そのローラ外形母線形状の軸方向の中心点Oが求められる。この中心点演算過程では、まず始めに、図3(B)に示すように、被測定ローラ1の端面の位置を決めるために、母線形状曲線mにおける基準片6,7の外径を示す曲線部分m3と端面を示す曲線部分m2の交点から、端面の垂線a−a′を引き、同様に反対側の端面を決める垂線b−b′を引く。両垂線間の中心C−C′を求め、その位置に中心点Oを決定する。
端面を示す曲線部分m2は、詳しくは、図4(B)に拡大して示すように、架空線部分m2aと、接触線部分m2bとからなる。これにつき説明する。基準片6,7自体の端面と外径面の直角度は、問題のない精度とされている。ただし、図4(A)のように、触針10は太さがあって、その先端近傍部は円すい面部10aとされている。また、触針10は、保護のために所定角度まで傾き可能に設けられている。そのため、図5(A)に鎖線で示すように、矢印方向に進行しながら被測定ローラ1の外径面をなぞっていた触針10が基準片6の端面に当たると、触針10はその側面が基準片端面に当たることになるため、同図(B)のように傾きを生じながら上昇および進行を続け、この間に図4(B)の架空線部分m2aの測定データが出力される。触針10が上昇して、図4(C)のように触針10の円すい面部10aが基準片6の外径面と端面との角部に当たるようになると、円すい面部10aの傾きのため、図4(B)の接触線部分m2bが出力されるようになる。円すい面部10aの先端、つまり触針10の先端10bが基準片6の外径面と端面との角部に当たった位置は、接触線部分m2bと外径面の曲線部分m3との交点Qである。したがって、この接触線部分m2bと外径面の曲線部分m3との交点Qから、上記の図3(B)の垂線a−a′を引き、基準片6の端面位置、つまり被測定ローラ1の端面位置とする。図5は片方の基準片6に接する箇所につき説明したが、もう片方の基準片7に接する箇所も同様の曲線形状となる。
【0022】
交点Qは、次のようにして求められる。この実施形態で用いた測定器5では、ローラ外形母線形状の測定データは、図8に概念的に示すように、点列データで出力される。中心点演算手段20は、この点列データにつき折れ線で近似する機能と、その折れ線を構成する2本の近似直線の交点を演算する機能とを有し、この近似直線の交点を曲線部分間の交点とする。この折れ線近似を行う場合は、具体的には、点列をグループ化して、それぞれのグループで主成分分析による直線の当て嵌めを行う(図8の例では、点P1〜Pkまでのグループで近似直線L1を当て嵌め、Pk〜P10までで近似直線L2を当て嵌める)。図4(B)の交点Qは、このような折れ線近似機能と交点演算機能とで求められる。
【0023】
(4)任意の点におけるドロップ量を求める(ドロップ量演算過程)。
図1のドロップ量演算手段21は、上記のように求められた中心点Oを基準として、図3(C)に示すように、ローラ外形母線(曲線m)上を軸方向に所定距離tだけ移動した位置S点のY方向距離dを求める。このdが位置S点でのクラウニングドロップ量となる。上記の距離tを任意に変更して演算することで、ローラ外形母線上の任意点のドロップ量を得る。
【0024】
(5)任意の範囲での曲率を求める(曲率演算過程)。
曲率演算手段22は、上記のように求められた中心点Oを基準として、図3(D)に示すように、ローラ外形母線(m)上を軸方向に所定距離tだけ移動した位置S点から、距離Xの範囲での曲率Rを求める。上記の距離tおよび距離Xを任意に変更して演算することで、ローラ外形母線上の任意範囲のクラウニング曲率Rを得る。
【0025】
(6)許容差線間に実測値線が入っているのか判定する(判定過程)。
判定手段23には、測定よりも前に、ローラ外形母線の設計値線ma (図6(A))に対して、Y軸方向の正逆の各方向につき、許容される製造誤差範囲を示す曲線である許容差線mb を予め設定しておく。測定が行われると、判定手段23は、上記のように得られた中心点Oを基準として(すなわち、中心点O同士を一致させて)、図6(A)のようにローラ外形母線の実測値線mc を許容差線mb に重ね合わせ、表示手段18の画面、または出力用紙に表示する。
このように実測値線mc と許容差線mb を重ねて表示することで、人が、その表示結果を見て、許容差線mb 間に入っているか否かの判定や、さらに詳しい解析を行うことができる。
なお、判定手段23は、この例では単に表示手段18に実測値線mc と許容差線mb を表示するものとしたが、判定手段23は、許容差線mb 間に実測値線mc が入っているか否かの判定までを行うようにしても良く、また許容差線mb から実測値線mc がはみ出た場合に、そのはみ出した部分を、線の色,線種,太さ等の表示形態の変更状態で表示させるようにしても良い。また、画面表示は、図6(A)のように被測定ローラ1の全体が表示される状態と、その一部を拡大して示す状態とに切換可能とすることが好ましい。
図7は、許容差線mb の設定例を示す。この例では、許容差線mb は、中心点Oから端部側に離れる距離LX が長くなるに従って許容差が大きくなるようにように設定されている。ローラ外形母線の設計値線ma は、この例では、端面から所定の範囲wが面取り部であり、この面取り部から滑らかにクラウニング形状部が続くように設計されている。
【0026】
なお、前記の測定例は、被測定ローラ1が全長にわたりクラウニングを有するものである場合につき説明したが、この発明の管理方法および管理装置は、例えば図11(A)に示すようなストレート部1aを有するローラ1の場合にも適用することができる。
【0027】
図9は、この発明のクラウニング形状管理方法を採用したローラ製造方法の一例、および軸受製造方法の一例を示す。
このローラ製造方法は、略全長にわたりクラウニングを有するローラ1を素材1wから成形する過程R1と、この形成されたローラ1を、上記実施形態のいずれかのクラウニング形状管理方法で管理する管理過程R2とを含む。管理過程R2は上記の判定過程を含むことが好ましく、判定の結果、許容差線mb から実測値線mc がはみ出すローラ1は、管理過程R2において、製品となるローラ1の流れ経路から除外する。
この軸受製造方法は、このローラ製造方法で製造されたローラ1を、組立過程R3で、他の軸受部品(例えば、保持器、内輪、外輪)と共に軸受に組み立てる方法である。製造される軸受は、内外輪等の軌道輪を有する針状ころ軸受、または保持器とローラとで構成される保持器付き針状ころであり、ラジアル形式の軸受であっても、アキシャル形式の軸受であっても良い。
【0028】
【発明の効果】
この発明のローラのクラウニング形状管理方法および装置によると、全長にわたりクラウニングが施されたローラであっても、クラウニング形状の管理が精度良く行える。
母線測定により得られたローラ外形母線形状が許容差線間に入っているか否かを示す判定過程ないし判定手段を設けた場合は、全長にわたりクラウニングが施されたローラであっても、クラウニング形状が許容範囲にあるか否かの判定が容易に行える。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかるローラのクラウニング形状管理装置の概念構成を示すブロック図である。
【図2】(A)は測定治具の軸方向の破断正面図、(B)は同図(A)のB−B線断面図である。
【図3】この発明の一実施形態にかかるローラのクラウニング形状管理方法の各過程を示す説明図である。
【図4】(A)は測定器の触針の先端形状を示す正面図、(B)はその触針がなぞって得られる基準片の端面付近の母線形状を示す説明図である。
【図5】同測定器の触針が基準片に当たるときの動作を示す説明図である。
【図6】(A)はローラ外形母線の許容差線と実測値線の重ね合わせ画面例を示す説明図、(B)はローラ全体を示す画面例を示す説明図である。
【図7】設計値線と許容差線の関係の一例を示す説明図である。
【図8】データ解析手段の折れ線近似機能の説明図である。
【図9】ローラ製造方法および軸受製造方法の一例を示す工程説明図である。
【図10】(A)は全長にわたりクラウニングを有するローラとドロップ量の関係を示す説明図、(B)は同ローラと任意位置の曲率の関係を示す説明図である。
【図11】(A)は両側がクラウニングでかつ中央部がストレート部となったローラとドロップ量の関係を示す説明図、(B)は従来のドロップ量測定方法の説明図である。
【符号の説明】
1…被測定ローラ
2…測定手段
3…データ解析手段
4…測定治具
5…測定器
6,7…基準片
8…治具本体
10…触針
12…測定データ処理部
17…解析演算部
18…表示手段
20…中心点演算手段
21…ドロップ量演算手段
22…曲率演算手段
23…判定手段
m…ローラ外形母線形状の曲線
a …設計値線
b …許容差線
c …実測値線
O…軸方向の中心点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a roller crowning shape management method and apparatus for managing the crowning shape of a roller in a machine part such as a needle roller bearing or a one-way clutch.
[0002]
[Prior art]
As a roller used for a machine part such as a needle bearing or a one-way clutch, a roller subjected to crowning may be used in view of the performance of the machine part. As shown in FIG. 11 (B), the roller subjected to the crowning is generally one in which an intermediate portion in the axial direction is a straight portion 1a and both sides thereof are crowned portions 1b.
It is necessary to control whether or not a roller used for a bearing or the like is within a tolerance by measuring the shape after forming the roller shape from a material. In the roller having the crowning portion 1b, the crowning shape needs to be managed.
In the conventional crowning measuring method, since the straight portion 1a is on the outer diameter generatrix of the roller 1, a parallel portion is provided at that portion, and as shown in FIG. 11B, a reference piece for positioning the roller end face (not shown) ) Is a drop amount d ′ indicating how much the position S ′ where the end surface position has moved to the center side by the predetermined distance X ′ is dropping in the Y direction (roller radial direction) from the position of the straight portion 1 a of the roller 1. I was measuring. Therefore, it is a one-sided measurement of the roller 1.
[0003]
[Problems to be solved by the invention]
In order to improve the performance of machine parts, as shown in FIG. 10, it has been attempted to use a roller 1 that has been crowned over its entire length. Since the roller 1 having the crowning over the entire length does not have a straight portion serving as a reference for parallel projection, the crowning shape cannot be measured in the above-described conventional measurement direction.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide a roller crowning shape management method and apparatus capable of accurately managing a crowning shape even if the roller is crowned over its entire length.
Another object of the present invention is to make it easy to determine whether or not the crowning shape is within an allowable range.
[0005]
[Means for Solving the Problems]
The roller crowning shape management method of the present invention will be described with reference to FIGS. 1 and 3 corresponding to the embodiment. In this crowning shape management method, the roller to be measured (1) is sandwiched in the axial direction by a pair of reference pieces (6) and (7) in which the vertical surface accuracy of the end face is secured, and is positioned in the radial direction. Positioning step on the jig main body (8), and the stylus (10) is run along the axial direction on the roller to be measured (1) so that the reference piece (6), (7) is near the roller to be measured. And the end face positions of the reference pieces (6), (7) on both sides are obtained from the obtained bus outline bus shape, and the roller outline bus shape is determined from these end face positions. Using the center point calculation process for obtaining the axial center point (O) and the obtained axial center point (O) as a reference, the axial center point (O) at a predetermined axial position (S) of the roller outer shape Drop amount (d) which is the radial distance from Finding and a drop amount calculating process.
In this way, in order to measure the outer shape bus bar shape of the roller to be measured including the reference pieces (6) and (7), the end face position of the reference piece is obtained from this bus bar shape, so that the axial center of the roller outer shape bus bar shape is obtained. The point (O) can be obtained easily and accurately. Even with the roller (1) having the crowning over the entire length, the drop amount (d) at the predetermined axial position is calculated on the basis of the axial center point (O) of the roller outer shape determined in this way. The amount of drop due to crowning can be easily and accurately determined.
[0006]
In the shape management method according to the present invention, with respect to the roller outer shape bus shape obtained in the bus bar measurement process, a predetermined distance (t) in the axial direction with reference to the axial center point (O) obtained in the center point calculation process. You may include the curvature calculation process which calculates | requires the curvature (R) of the range from the distant position to the position further predetermined distance (X) away.
Thereby, even if it is a roller (1) which has crowning over the full length, the curvature (R) of each part of crowning can be calculated | required.
[0007]
In the shape management method of the present invention, prior to the bus bar measuring step, a process of setting a tolerance line for a design value line of the roller outer bus bar shape, and a roller outer bus bar shape obtained in the bus bar measuring process include the allowable bus line shape. And a determination process for determining whether or not the difference line exists.
In this way, it is possible to easily perform pass / fail determination by setting the tolerance line and performing the determination.
[0008]
The method of manufacturing a roller with crowning according to the present invention includes a step of forming a roller having a crowning over substantially the entire length from a material, and a step of managing the formed roller in any one of the shape management directions of the present invention. .
[0009]
The roller crowning shape management device of the present invention will be described with reference to FIG. 1 corresponding to the embodiment. This crowning shape management device is provided with a pair of reference pieces (6) and (7), in which the vertical surface accuracy of the end face is ensured, and the measured roller (1) is sandwiched in the axial direction, and the measured roller (1) is connected to the reference piece. (6), (7) and a measuring jig (4) having a jig body (8) that can be set in a radially positioned state, and a measured roller (1) installed in the measuring jig (4) A measuring instrument (5) for running the stylus (10) along the axial direction to measure the generatrix of the outer shape of the roller including the vicinity of the measured roller of the reference pieces (6), (7), and this measuring instrument Center point calculation for obtaining the end face positions of the reference pieces (6) and (7) on both sides from the roller outline bus shape obtained in (5) and obtaining the axial center point (O) of the roller outline bus shape from these end face positions. Means (20) and the axial center point (O) obtained by this means (20) To, and a drop amount calculating means (21) for obtaining the drop amount is a radial distance from the axial center point in a predetermined axial position of the roller outer generatrix shape (O).
According to the crowning shape management device of this configuration, the crowning shape can be managed by the management method of the present invention.
[0010]
In the apparatus of the present invention, the roller outer shape bus shape obtained by the measuring instrument (5) is separated by a predetermined distance in the axial direction with reference to the axial center point (O) obtained by the center point calculating means (20). Curvature calculation means (22) for obtaining a curvature in a range from a predetermined position to a position further away by a predetermined distance may be provided.
[0011]
In the apparatus of the present invention, a tolerance line for the design value line of the roller outer shape bus bar shape is set, and the roller outer shape bus bar shape obtained by the measuring device (5) is displayed so as to overlap the tolerance line, or A determination means (23) for determining whether or not a roller outer shape bus line shape is between the tolerance lines may be provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. This roller crowning shape management device is composed of a measuring means 2 for measuring the outer shape bus bar shape of the roller 1 to be measured and a data analyzing means 3 for analyzing the data of the outer shape bus bar shape measured by the measuring means 2. . The roller 1 to be measured is a roller serving as a rolling element for rolling contact of needle roller bearings and other machine parts, and has a crowning over its entire length. The measuring means 2 includes a measuring instrument 5 and a measuring jig 4. In this example, the measuring jig 4 is detachably attached to the measuring instrument 5.
[0013]
The measuring jig 4 has a pair of reference pieces 6 and 7 that sandwich the roller 1 to be measured in the axial direction, and a jig body 8 that can be placed in a radially positioned state together with the reference pieces 6 and 7. . The reference pieces 6 and 7 have a cylindrical shape in which the vertical surface accuracy of the end surface that is the surface sandwiching the roller 1 to be measured is secured, and has the same outer shape as the ideal maximum diameter of the roller 1 to be measured. As shown in FIG. 2, the jig body 8 has a V-groove 8a. By disposing the measured roller 1 and the reference pieces 6 and 7 in the V-groove 8a, the measured roller 1 and the reference The pieces 6 and 7 can be installed in a radially positioned state. In this example, a concave portion 8aa having a rectangular cross section is formed at the bottom portion of the V groove 8a in the axial direction portion where the roller 1 to be measured is disposed.
[0014]
One reference piece 6 is engaged with an engaging portion 8 b at one end of the jig body 8 and positioned in the axial direction, and the other reference piece 7 is pressed against the roller 1 to be measured by the reference piece pressing means 9. . The reference piece pressing means 9 is interposed between the engagement portion 8c at the other end of the jig body 8 and the reference piece 7, and is made of a spring such as a leaf spring or other elastic body. The reference piece pressing means 9 may have a driving source for pressing such as a cylinder device.
The reference pieces 6 and 7 may be any ones that ensure the vertical surface accuracy of the end surfaces, and preferably have a surface that serves as a reference in the radial direction for touching the stylus of the measuring instrument 5 from the end surface. What is necessary is just a thing, and it does not necessarily need to be cylindrical. One reference piece 6 may be integrally fixed to the jig body 8. In other words, the jig body 8 may integrally have a portion that becomes one of the reference pieces 6.
[0015]
As shown in FIG. 1, the measuring device 5 measures the shape by running the stylus 10 in the axial direction while tracing the outer surface of the roller 1 to be measured. The measuring device mechanism 11, the measurement data processing unit 12, And a measuring instrument control unit 13 and an installation base (not shown) for the measuring jig 4. The measuring instrument mechanism 11 includes an axial movement mechanism 11b that moves the measurement head 11a to which the stylus 10 is attached in the axial direction X of the measurement jig 4, and a stylus in a direction (vertical direction) Y perpendicular to the axial movement mechanism 11b. An elevating mechanism 11c that moves the measuring head 11a to such an extent that 10 is in light contact with the object to be measured, and sensors 14 that detect the tip position of the stylus 10 in the X and Y directions are provided. The stylus 10 can be tilted by a predetermined tilt angle before and after the moving direction with respect to the measuring head 11a by the resistance in the moving direction of the measuring head 11a, and the resistance is eliminated. It is supposed to return to the vertical position that is the original neutral angle.
[0016]
The measuring instrument control unit 13 is a means for controlling the movement of the measuring instrument mechanism unit 11.
The measurement data processing unit 12 is a means for obtaining from the sensors 14 of the measuring instrument mechanism unit 11 data of the roller outer shape bus shape, which is the shape data of the object to be measured, and sending it to the outside. The measurement data processing unit 12 may be sent to the outside in the state of raw data obtained from the sensors 14. In this example, however, the measurement data processing unit 12 is in the state of correction data that has been subjected to predetermined processing by the analysis correction data generation means 15. The data of the roller outer shape bus shape is sent to the outside. The measurement data processing unit 12 obtains measurement data as point sequence data (sampling data) at a predetermined interval in the axial direction X. In this case, the analysis correction data generation means 15 facilitates subsequent data processing. In order to shorten the transmission time, the data is converted into data indicating the roller outer shape bus shape with a small number of point sequence data. Moreover, the analysis correction data generation means 15 has an inclination correction means 16, and the input measurement data is corrected to data in a state in which the parallelism in the axial direction X with the object to be measured is maintained. The inclination correction means 16 is not necessarily provided.
[0017]
The data analysis unit 3 includes an analysis calculation unit 17 configured by a computer device and a display unit 18 such as a CRT, a liquid crystal display device, or a printer. The analysis calculation unit 17 includes a shape data storage unit 19, a center point calculation unit 20, a drop amount calculation unit 21, a curvature calculation unit 22, and a determination unit 23, and an inclination correction unit 24 is provided as necessary.
Detailed functions of the respective means 20 to 24 constituting the analysis calculation unit 17 will be described later together with a shape management method, but basic functions will be described.
[0018]
The shape data storage means 19 is a means for storing the data of the roller outer shape bus shape sent from the measuring means 2.
The center point calculating means 20 is a means for obtaining the end face positions of the reference pieces 6 and 7 on both sides from the roller outline bus shape and obtaining the axial center point O (FIG. 3 (B)) of the roller outline bus shape from these end face positions. is there.
The drop amount calculating means 21 is a means for obtaining a drop amount d (FIG. 3C) which is a radial distance from the axial center point O at a predetermined axial position of the roller outer shape bus shape.
The curvature calculation means 22 calculates a curvature R (FIG. 3D) in a range from a position separated by a predetermined distance in the axial direction to a position further separated by a predetermined distance with respect to the axial center point O for the roller outer shape bus shape. It is a means to seek.
Decision means 23 sets the tolerance line m b with respect to the design value line m a roller outer generatrix shape, between the measured value lines m c of the roller outer generatrix shape obtained by the measuring device 5 is tolerance line m b It is means for displaying or determining whether or not it is present on a screen or the like.
The inclination correction means 24 is a means for converting the roller outer shape bus shape data stored in the shape data storage means 19 into data whose inclination is corrected. When the tilt correcting means 24 is functioned, the corrected roller outer shape bus shape data is used for the processing of each means 20-23. The inclination correction means 24 and the inclination correction means 16 of the measurement means 2 may be used in combination, or only one of them may be used, or both may not be provided.
[0019]
Next, a crowning shape management method will be described.
(1) Positioning process of the roller to be measured.
As shown in FIG. 2, the roller 1 to be measured is sandwiched between reference pieces 6 and 7 on both sides and placed on the V groove 8 a of the jig body 8. Thereby, the roller 1 to be measured is positioned in the radial direction. Next, the end face of the reference piece 7 on one side is pressed by the reference piece pressing means 9 such as a leaf spring, thereby fixing in the axial direction. In this way, the measurement jig 4 on which the roller 1 to be measured is set is set on a measurement jig installation base (not shown) of the measuring instrument 5.
[0020]
(2) Shape measurement (bus measurement process).
The stylus 10 in FIG. 1 is run in the direction of the arrow in FIG. 2A, and the generatrix shape of the roller outer shape including the vicinity of the roller to be measured of the reference pieces 6 and 7 is measured. The measured results are shown in FIG. The curve m indicating the outer shape of the roller outer shape is a curve portion m1 indicating the outer shape of the roller 1 to be measured, a curve portion m2 indicating the end face of the reference pieces 6 and 7, and a curve showing the outer diameter surface of the reference pieces 6 and 7. A portion m3 is included. As will be described later, the curved portion m2 indicating the end surfaces of the reference pieces 6 and 7 does not become a vertical line but appears as an inclined line in terms of the function of the measuring instrument 5 using the stylus 10. This roller outer shape bus shape is indicated by point sequence data in the output of the measuring instrument 5. A curve m is a curve obtained by complementing the point sequence data.
[0021]
(3) Find the axial center point (center point calculation process).
The measurement data obtained by the measuring instrument 5 is sent to the shape data storage means 19 of the data analysis means 3, and the center point calculation means 20 obtains the center point O in the axial direction of the roller outline bus shape. In this center point calculation process, first, as shown in FIG. 3B, in order to determine the position of the end face of the roller 1 to be measured, a curve indicating the outer diameter of the reference pieces 6 and 7 in the bus shape curve m. From the intersection of the part m3 and the curved part m2 indicating the end face, a perpendicular line a-a 'of the end face is drawn, and similarly, a perpendicular line bb' that determines the opposite end face is drawn. The center CC ′ between the two perpendiculars is obtained, and the center point O is determined at that position.
Specifically, the curved line portion m2 indicating the end face is composed of an overhead line portion m2a and a contact line portion m2b as shown in an enlarged view in FIG. This will be described. The perpendicularity between the end surfaces of the reference pieces 6 and 7 themselves and the outer diameter surface is assumed to have no problem. However, as shown in FIG. 4A, the stylus 10 has a thickness, and the vicinity of the tip is a conical surface portion 10a. Further, the stylus 10 is provided to be tiltable up to a predetermined angle for protection. Therefore, as shown by a chain line in FIG. 5A, when the stylus 10 tracing the outer diameter surface of the roller 1 to be measured hits the end surface of the reference piece 6 while moving in the direction of the arrow, the stylus 10 Will hit the reference one end face, and ascend and continue to advance as shown in FIG. 4B, during which the measurement data of the overhead line portion m2a in FIG. 4B is output. When the stylus 10 is lifted and the conical surface portion 10a of the stylus 10 comes into contact with the corner between the outer diameter surface and the end surface of the reference piece 6 as shown in FIG. 4C, the conical surface portion 10a is inclined. The contact line portion m2b in FIG. 4B is output. The position where the tip of the conical surface portion 10a, that is, the tip 10b of the stylus 10 hits the corner between the outer diameter surface and the end surface of the reference piece 6 is an intersection Q between the contact line portion m2b and the curved portion m3 of the outer diameter surface. is there. Therefore, the perpendicular line aa ′ in FIG. 3B is drawn from the intersection point Q of the contact line portion m2b and the curved surface portion m3 of the outer diameter surface, and the position of the end surface of the reference piece 6, that is, the roller 1 to be measured. End face position. Although FIG. 5 has been described with respect to the portion in contact with one reference piece 6, the portion in contact with the other reference piece 7 has a similar curved shape.
[0022]
The intersection point Q is obtained as follows. In the measuring instrument 5 used in this embodiment, the measurement data of the roller outer shape bus shape is output as point sequence data as conceptually shown in FIG. The center point calculation means 20 has a function of approximating the point sequence data with a polygonal line and a function of calculating the intersection of two approximate lines constituting the polygonal line, and the intersection of the approximate lines is calculated between the curve portions. Intersection. In the case of performing this polyline approximation, specifically, the point sequence is grouped and a straight line fitting is performed by principal component analysis in each group (in the example of FIG. 8, approximation is performed in groups of points P1 to Pk). Fit the straight line L1 and fit the approximate straight line L2 from Pk to P10). The intersection Q in FIG. 4B is obtained by such a broken line approximation function and an intersection calculation function.
[0023]
(4) A drop amount at an arbitrary point is obtained (drop amount calculation process).
The drop amount calculation means 21 in FIG. 1 uses the center point O obtained as described above as a reference, and as shown in FIG. 3 (C), on the roller outer generatrix (curve m) by a predetermined distance t in the axial direction. A distance d in the Y direction of the moved position S is obtained. This d is the crowning drop amount at the position S. By calculating by arbitrarily changing the distance t, a drop amount at an arbitrary point on the roller outline bus is obtained.
[0024]
(5) Obtain curvature in an arbitrary range (curvature calculation process).
The curvature calculation means 22 is a position S point that is moved by a predetermined distance t in the axial direction on the roller outline bus (m) as shown in FIG. 3 (D) with the center point O obtained as described above as a reference. From this, the curvature R in the range of the distance X is obtained. By calculating the distance t and the distance X arbitrarily, the crowning curvature R in an arbitrary range on the roller outer shape bus is obtained.
[0025]
(6) It is determined whether an actual measurement value line is included between the tolerance lines (determination process).
Prior to the measurement, the determination unit 23 indicates an allowable manufacturing error range in each of the forward and reverse directions in the Y-axis direction with respect to the design value line m a of the roller outer shape bus (FIG. 6A). setting the tolerance line m b is a curve showing advance. When the measurement is performed, the determination means 23 uses the center point O obtained as described above as a reference (that is, matches the center points O), as shown in FIG. the value line m c superimposed on tolerance line m b, displayed on the screen of the display unit 18 or the output paper.
By displaying in this way overlapping the measured value lines m c tolerance line m b, human, looking at the display result, the determination and whether entered between tolerance line m b, More Analysis can be performed.
The determination unit 23 is simply assumed to view the tolerance line m b a measured value line m c to the display unit 18 in this example, the determination unit 23, found line m between the tolerance line m b c well be performed until decides whether or not entered, and when the protruding actual measurement value line m c from tolerance line m b, the protruding portion, line color, line type, thickness You may make it display in the change state of display forms, such as this. Moreover, it is preferable that the screen display can be switched between a state in which the entire roller to be measured 1 is displayed as shown in FIG. 6A and a state in which a part thereof is enlarged.
Figure 7 shows an example of the setting of the tolerance lines m b. In this example, the tolerance line mb is set so that the tolerance increases as the distance L X away from the center point O toward the end portion increases. Design value line m a roller outer bus, in this example, the predetermined range w from the end face is chamfered part is designed to smooth crowning profile part is followed from the chamfered portion.
[0026]
In the above measurement example, the case where the roller 1 to be measured has a crowning over the entire length has been described. However, the management method and the management apparatus of the present invention are, for example, a straight portion 1a as shown in FIG. The present invention can also be applied to the roller 1 having the following.
[0027]
FIG. 9 shows an example of a roller manufacturing method and a bearing manufacturing method that employ the crowning shape management method of the present invention.
This roller manufacturing method includes a process R1 for forming a roller 1 having a crowning over a substantially entire length from a material 1w, and a management process R2 for managing the formed roller 1 by any one of the crowning shape management methods of the above-described embodiments. including. Management process R2 is preferably including the above determination process, the result of the determination, the roller 1 protruding the measured value lines m c from tolerance line m b is the management process R2, excluded from the flow path roller 1 serving as a product To do.
This bearing manufacturing method is a method of assembling the roller 1 manufactured by this roller manufacturing method into a bearing together with other bearing components (for example, a cage, an inner ring, and an outer ring) in an assembly process R3. The bearings to be manufactured are needle roller bearings having bearing rings such as inner and outer rings, or needle rollers with cages composed of cages and rollers, and even radial type bearings of axial type It may be a bearing.
[0028]
【The invention's effect】
According to the crowning shape management method and apparatus for a roller of the present invention, the crowning shape can be accurately managed even for a roller that has been crowned over its entire length.
When a determination process or determination means is provided to indicate whether or not the roller outer shape bus shape obtained by the bus bar measurement is between the tolerance lines, the crowning shape is the same even if the roller is crowned over its entire length. It can be easily determined whether or not it is within the allowable range.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a conceptual configuration of a roller crowning shape management device according to an embodiment of the present invention;
2A is a front view of a measuring jig in the axial direction, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A.
FIG. 3 is an explanatory view showing each process of a crowning shape management method for a roller according to an embodiment of the present invention.
4A is a front view showing a tip shape of a stylus of a measuring instrument, and FIG. 4B is an explanatory diagram showing a generatrix shape near the end face of a reference piece obtained by tracing the stylus.
FIG. 5 is an explanatory diagram showing an operation when the stylus of the measuring instrument hits a reference piece.
6A is an explanatory diagram showing an example of a screen on which a tolerance line of a roller outer shape bus and an actual measurement value line are superimposed, and FIG. 6B is an explanatory diagram showing an example of a screen showing the entire roller.
FIG. 7 is an explanatory diagram illustrating an example of a relationship between a design value line and a tolerance line.
FIG. 8 is an explanatory diagram of a polygonal line approximation function of the data analysis means.
FIG. 9 is a process explanatory view showing an example of a roller manufacturing method and a bearing manufacturing method.
FIG. 10A is an explanatory diagram showing the relationship between a roller having crowning over the entire length and the drop amount, and FIG. 10B is an explanatory diagram showing the relationship between the roller and the curvature at an arbitrary position.
11A is an explanatory diagram showing a relationship between a drop amount and a roller having both sides crowned and a central portion being a straight portion, and FIG. 11B is an explanatory diagram of a conventional drop amount measuring method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Roll to be measured 2 ... Measuring means 3 ... Data analyzing means 4 ... Measuring jig 5 ... Measuring instrument 6, 7 ... Reference piece 8 ... Jig body 10 ... Stylus 12 ... Measurement data processing part 17 ... Analytical calculating part 18 ... display means 20 ... center point calculation means 21 ... drop amount calculation means 22 ... curvature calculation means 23 ... determination means m ... roller outer shape bus line curve m a ... design value line m b ... tolerance line m c ... actual value line O ... Axial center point

Claims (7)

被測定ローラを、端面の垂直面精度の確保された一対の基準片により軸方向に挟み付け、かつ径方向に位置決めされた状態に治具本体上に設置する位置決め過程と、被測定ローラに触針を軸方向に沿って走らせ、基準片の被測定ローラ近傍部を含めてローラ外形の母線形状を測定する母線測定過程と、得られたローラ外形母線形状から両側の基準片の端面位置を求め、これら端面位置からローラ外形母線形状の軸方向の中心点を求める中心点演算過程と、得られた軸方向中心点を基準として、前記ローラ外形母線形状の所定軸方向位置における前記軸方向中心点からの半径方向距離であるドロップ量を求めるドロップ量演算過程とを含むローラのクラウニング形状管理方法。A positioning process in which the roller to be measured is sandwiched in the axial direction by a pair of reference pieces with vertical surface accuracy ensured and positioned on the jig body in a radially positioned state, and the roller to be measured is touched. Run the needle along the axial direction to measure the bus bar shape of the roller shape including the vicinity of the measured roller of the reference piece, and find the end face positions of the reference pieces on both sides from the obtained roller outer shape bus shape. The center point calculation process for obtaining the axial center point of the roller contour bus shape from these end face positions, and the axial center point at the predetermined axial position of the roller contour bus shape based on the obtained axial center point A method for managing a crowning shape of a roller, including a drop amount calculation process for obtaining a drop amount which is a radial distance from the roller. 前記母線測定過程で得られたローラ外形母線形状につき、前記中心点演算過程で得られた軸方向中心点を基準として、軸方向に所定距離離れた位置からさらに所定距離離れた位置までの範囲の曲率を求める曲率演算過程を含む請求項1記載のローラのクラウニング形状管理方法。With respect to the roller outer shape bus shape obtained in the bus bar measurement process, a range from a position that is a predetermined distance apart in the axial direction to a position that is further a predetermined distance away from the axial center point obtained in the center point calculation process. The roller crowning shape management method according to claim 1, further comprising a curvature calculation process for obtaining a curvature. 前記母線測定過程よりも前に、ローラ外形母線形状の設計値線に対する許容差線を設定する過程と、前記母線測定過程で得られたローラ外形母線形状が前記許容差線間に入っているか否かを判定する判定過程とを含む請求項1または請求項2記載のローラのクラウニング形状管理方法。Prior to the bus measurement process, a process of setting a tolerance line for the design value line of the roller outer shape bus shape, and whether or not the roller outer shape bus shape obtained in the bus measurement process is between the tolerance lines 3. A roller crowning shape management method according to claim 1 or 2, further comprising a determination step of determining whether or not. 略全長にわたりクラウニングを有するローラを素材から成形する過程と、この形成されたローラを、請求項1または請求項2または請求項3記載のクラウニング形状管理方法により管理する過程とを含むクラウニング付きローラの製造方法。A roller with crowning, comprising: a step of forming a roller having a crowning over a substantially entire length from a material; and a step of managing the formed roller by the crowning shape management method according to claim 1, claim 2, or claim 3. Production method. 端面の垂直面精度が確保され被測定ローラを軸方向に挟み込む一対の基準片、および前記被測定ローラを前記基準片と共に径方向に位置決め状態に設置可能な治具本体を有する測定治具と、この測定治具に設置された被測定ローラに軸方向に沿って触針を走らせ、基準片の被測定ローラ近傍部を含めてローラ外形の母線形状を測定する測定器と、この測定器で得られたローラ外形母線形状から両側の基準片の端面位置を求め、これら端面位置からローラ外形母線形状の軸方向の中心点を求める中心点演算手段と、この手段で得られた軸方向中心点を基準として、前記ローラ外形母線形状の所定軸方向位置における前記軸方向中心点からの半径方向距離であるドロップ量を求めるドロップ量演算手段とを備えたローラのクラウニング形状管理装置。A measuring jig having a pair of reference pieces in which the vertical surface accuracy of the end face is ensured and sandwiching the roller to be measured in the axial direction, and a jig body capable of setting the roller to be measured together with the reference piece in a radially positioned state; A measuring instrument for measuring the generatrix shape of the outer shape of the roller including the vicinity of the measuring roller of the reference piece, including the vicinity of the measuring roller of the reference piece, is obtained by running the stylus along the axial direction of the measuring roller installed in the measuring jig. The center point calculation means for obtaining the end face positions of the reference pieces on both sides from the obtained roller outer shape bus shape, obtaining the axial center point of the roller outer shape bus shape from these end face positions, and the axial center point obtained by this means As a reference, a roller crowning shape management device comprising drop amount calculation means for obtaining a drop amount that is a radial distance from the axial center point at a predetermined axial position of the roller outer shape bus shape . 前記測定器で得られたローラ外形母線形状につき、前記中心点演算手段で得られた軸方向中心点を基準として、軸方向に所定距離離れた位置からさらに所定距離離れた位置までの範囲の曲率を求める曲率演算手段を設けた請求項5記載のローラのクラウニング形状管理装置。With respect to the roller outer shape bus shape obtained by the measuring device, the curvature in a range from a position that is a predetermined distance apart in the axial direction to a position that is further a predetermined distance apart from the axial center point obtained by the center point calculation means The roller crowning shape management device according to claim 5, further comprising a curvature calculating means for obtaining the above. ローラ外形母線形状の設計値線に対する許容差線が設定され、前記測定器で得られたローラ外形母線形状を前記許容差線に重ねて表示し、または前記ローラ外形母線形状が前記許容差線間に入っているか否かを判定する判定手段を設けた請求項5または請求項6記載のローラのクラウニング形状管理装置。A tolerance line with respect to the design value line of the roller outer shape bus shape is set, and the roller outer shape bus shape obtained by the measuring device is displayed superimposed on the tolerance line, or the roller outer shape bus shape is between the tolerance lines. The roller crowning shape management device according to claim 5 or 6, further comprising a determination unit for determining whether or not the roller is contained.
JP04320699A 1999-02-22 1999-02-22 Roller crowning shape management method and apparatus Expired - Lifetime JP3701808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04320699A JP3701808B2 (en) 1999-02-22 1999-02-22 Roller crowning shape management method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04320699A JP3701808B2 (en) 1999-02-22 1999-02-22 Roller crowning shape management method and apparatus

Publications (2)

Publication Number Publication Date
JP2000241153A JP2000241153A (en) 2000-09-08
JP3701808B2 true JP3701808B2 (en) 2005-10-05

Family

ID=12657459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04320699A Expired - Lifetime JP3701808B2 (en) 1999-02-22 1999-02-22 Roller crowning shape management method and apparatus

Country Status (1)

Country Link
JP (1) JP3701808B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071927B2 (en) * 2000-10-13 2008-04-02 Ntn株式会社 Clutch unit
JP4376545B2 (en) * 2003-05-14 2009-12-02 Ntn株式会社 Measuring method of tapered surface shape of tapered roller bearing

Also Published As

Publication number Publication date
JP2000241153A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JP4363506B2 (en) Measuring method of tread wear amount of pneumatic tire
JP2701141B2 (en) Roundness measuring device
US9228858B2 (en) Rotation angle detecting apparatus
US7882723B2 (en) Abnormality detecting method for form measuring mechanism and form measuring mechanism
US7359829B2 (en) Method of inspecting the profile of the connection zone between the cylindrical portion and the taper of a roller for a turbomachine roller bearing
CN107605782B (en) Fan and its shake the head control method and oscillation controller
JP2001280947A (en) Shape measuring instrument and shape measuring method
JP3701808B2 (en) Roller crowning shape management method and apparatus
JP6217343B2 (en) Curved plate shape inspection device
EP2492048B1 (en) Tolerance detection method and tolerance detection device for shape measuring apparatus
JP2727067B2 (en) Shape measuring instruments
JP6611582B2 (en) Measuring device and measuring method
JP2001221659A (en) Optical scale apparatus and optical rotary scale apparatus
CN107144247A (en) A kind of digital display axle run-out instrument and axle glitch detection method
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
US2468875A (en) Radial clearance gauge
JPH09264719A (en) Method for measuring screw dimensions and apparatus therefor
JP2003148948A (en) Method and instrument for measuring bending of preform for optical fiber, and method of manufacturing preform for optical fiber
JP2002005175A (en) Roller
RU2205364C1 (en) Method of measuring parameters of shaft keyway
JPH09269211A (en) Outer diameter measuring method and device for pipe body, bar body and the like
JP3855734B2 (en) 3D cam profile measuring apparatus and 3D cam profile measuring method
JP2001041738A (en) Circularity measurement method and device
JP2000146560A (en) Method and apparatus for segment thickness of lens
JPH09269220A (en) Outer diameter measuring method and device for traveling pipe body, bar body and the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term