JP3701058B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP3701058B2
JP3701058B2 JP21995395A JP21995395A JP3701058B2 JP 3701058 B2 JP3701058 B2 JP 3701058B2 JP 21995395 A JP21995395 A JP 21995395A JP 21995395 A JP21995395 A JP 21995395A JP 3701058 B2 JP3701058 B2 JP 3701058B2
Authority
JP
Japan
Prior art keywords
subject
exposure
exposure control
signal
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21995395A
Other languages
Japanese (ja)
Other versions
JPH0965346A (en
Inventor
謙二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP21995395A priority Critical patent/JP3701058B2/en
Publication of JPH0965346A publication Critical patent/JPH0965346A/en
Application granted granted Critical
Publication of JP3701058B2 publication Critical patent/JP3701058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は撮像装置に関し、自動露出制御(AE制御)機能を有する撮像装置に適用して有用なものである。
【0002】
【従来の技術】
従来、撮像装置におけるAE制御は、被写体の輝度に関する情報に基づいて行われていた。即ち、被写体を撮像する撮像手段の出力信号から輝度成分を検出して積算し、この輝度信号の積算値が設定値に等しくなるようにアイリスやプリアンプ内のAGC回路を制御することによって、撮像手段の露出が適正な露出になるよう制御する。
【0003】
【発明が解決しようとする課題】
ところで、上記の如く輝度信号に基づいてAE制御を行うのは、被写体の画像全体では赤(R)、緑(G)、青(B)が同程に存在しこれらを積算すると無彩色になるということを前提にしているためである。NTSC方式では、輝度信号Yは下式に基づいて求める。
Y=0.3R+0.59G+0.11B
【0004】
ところが被写体によっては特定の色成分が多くて単一色に近いような場合があり、かかる場合には上記のような輝度信号に基づく露出制御では露出が適正に制御されないという問題があった。特に、緑成分は被写体として撮像する場合が多く、かかる問題が顕著に表れる。
【0005】
例えば、木の葉、芝生、草花など緑色のものを背景にして主被写体(人物等)を撮像するような場合、画像中に緑成分が多いため輝度信号の値が小さくなり、その結果人物が逆光であると判断して絞りを過度に開け過ぎてしまい、実際には太陽光があたっている主被写体が露出過大となって白く飛んでしまう。
【0006】
現実には赤成分や青成分が多い被写体というのは少ないが、緑成分が多い被写体というのは比較的多いため、被写体に緑成分が多い場合について対策することが特に望まれている。
【0007】
従って本発明は上記従来技術に鑑み、被写体に緑成分等の特定の色成分が多い場合にも適切な露出制御を行うことができるAE制御機能を備えた撮像装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決する発明は、被写体を撮像する撮像手段と、
この撮像手段の出力信号を用いて露出制御信号を作成する露出制御信号作成手段と、
前記露出制御信号に基づいて露出を制御する露出制御手段と、
前記撮像手段の出力信号から被写体の色相に関する情報を検出する検出手段と、
この検出手段の出力に基づいて前記被写体に特定の色成分が多いと判断した場合には前記露出制御手段によって制御される露出が減少するように前記露出制御信号を補正する補正手段とを有し
前記補正手段で判断する特定の色成分は緑成分であり、
前記検出手段では、被写体の色相に関する情報として色差信号R−YとB−Yの積算値を出力すると共に、前記補正手段では、前記色差信号R−YとB−Yの積算値の合成ベクトルが色差信号R−YとB−Yを直交座標軸とする座標の第3象限内に存在する場合に被写体に緑成分が多いと判断し露出制御手段によって制御される露出が減少するように露出制御信号を補正し、
且つ、前記補正手段では、ワイド側にズームを引いている途中で被写体に緑成分が多いと判断した場合には、露出を、前記緑成分が多いと判断する前の状態のまま保持させることを特徴とする。
【0017】
従って発明によれば、緑成分の多い被写体を撮像すると、補正手段では、このときの被写体の色相に関する情報から前記被写体には成分が多いと判断し、露出制御手段によって制御される露出が減少するように露出制御信号を補正する。その結果、露出が過大になるのを防止することができる。
【0018】
また発明によれば、色差信号R−YとB−Yの積分値の合成ベクトルが座標の第3象限内又は第3象限の特定領域内にある場合に、被写体に緑成分が多いと判断される。
【0022】
また発明によれば、ワイド側にズームを引いている途中で被写体に緑成分が多いと判断されると、露出が前の状態に保持され、これによって露出が過大になるのを防止することができる。
【0023】
また上記第9の発明によれば、画面内のどの領域において特定の色成分が多いと判断されたかに応じて補正量が重み付けされる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
【0025】
図1は本発明の実施例に係る撮像装置の構成を示すブロック図、図2は図1に示す撮像装置の明るさ判断部及び制御部における処理内容を示すフローチャート、図3は図1に示す撮像装置の色相判断部における処理内容を示すフローチャート、図4,図5及び図6は図1に示す撮像装置の色相判断部における色相判断方法を示す説明図である。
【0026】
図1に示すように、本実施例に係る撮像装置は、レンズ12、アイリス1、撮像素子であるCCD2、AGC回路3aを有するプリアンプ3、A/D変換回路4、信号処理回路5、信号分離回路8、積算回路6、明るさ判断部7aと色相判断部7bと制御部7cとを有するマイコン7、ゲート回路10、D/A変換回路11、及びアイリス1を駆動するアイリスドライバー9を有している。
【0027】
従って、被写体(図示せず)からの光は、レンズ12、アイリス1を通ってCCD2に入力され、このCCD2によって電気信号に変換される。この電気信号は、プリアンプ3でサンプリング及びゲインコントロールされた後、A/D変換回路4でディジタル信号aに変換される。そして、このディジタル信号aは信号処理回路5と信号分離回路8とに各々入力される。
【0028】
信号処理回路5では、ディジタル信号aを処理して、輝度信号と色信号とをミックスしたYC信号(映像信号)を出力する。
【0029】
一方、信号分離回路8では、ディジタル信号aを輝度信号Yと色差信号R−Y,B−Yとに分離し、これらを積算回路6へ出力する。積算回路6では信号分離回路8から出力された輝度信号Yと色差信号R−Y,B−Yとを積分するが、このときの積分エリアはゲート回路10によって設定される。通常のAE制御では、画面中央部のエリアや、画面上部を除いたエリアが積分エリアとなる。
【0030】
従って積算回路6では、ゲート回路10で設定された積算エリア(画面中央部のエリア等)内の輝度信号Yと色差信号R−Y,B−Yとを各々積算し、輝度信号の積算値(Y)と色差信号の積算値(R−Y),(B−Y)とをマイコン7へ出力する。輝度信号の積算値(Y)はマイコン7の明るさ判断部7aに入力され、色差信号の積算値(R−Y),(B−Y)はマイコン7の色相判断部7bに入力される。
【0031】
明るさ判断部7aでは、図2のフローチャートに示すように、まずアイリスの位置情報e(図1参照)をアイリス1から入力し(S1)、更に前述の如く輝度信号の積算値(Y)を積算回路6から入力する(S2)。続いて、入力したアイリス位置情報e及び輝度信号の積算値(Y)と、マイコン7に保持しているAGC回路3aの制御値及びCCD2の感度値とから被写体の明るさ(EV値)を算出し、この算出したEV値をマイコン7の制御部7cへ出力する(S3)。
【0032】
制御部7cでは、図2のフローチャートに示すように、明るさ判断部7aから入力したEV値に基づいて、被写体が通常制御領域内の明るさか否かを判断する(S4)。通常制御領域外の明るさであれば、別ルーチンによる処理(詳細な説明は省略)を行う(S5)。
【0033】
一方、通常制御領域内の明るさであれば、輝度信号の積算値(Y)と明るさの設定値SVとを比較し、輝度信号の積算値(Y)が設定値SVと等しくなるようアイリス1及びAGC回路3aを制御(フィードバック制御)する。即ち、輝度信号の積算値(Y)が設定値SVよりも小さければ、露出制御信号であるアイリス制御信号c又はAGC制御信号d(図1参照)を調整して、輝度信号Yを増やす方向にアイリス1又はAGC回路3aを制御し(S7)、逆に輝度信号の積算値(Y)が設定値SVよりも大きければ、アイリス制御信号c又はAGC制御信号dを調整して、輝度信号Yを減らす方向にアイリス1又はAGC回路3aを制御する(S8)。なお、アイリス制御信号cとAGC制御信号dは、D/A変換回路11でアナログ信号に変換された後アイリスドライバー9とAGC回路3aとに各々入力される。
【0034】
そして、色相判断部7bでは、被写体の色相に応じてアイリス制御信号c又はAGC制御信号dを補正する。具体的には、図3のフローチャートに示すように、色差信号の積算値(R−Y),(B−Y)を積算回路6から入力し(S11)、「(R−Y)≦0 かつ (B−Y)≦0」が成り立つか否か、即ち、図4に示す色差信号R−YとB−Yを直交座標軸とする座標の第3象限内に(R−Y),(B−Y)の合成ベクトルが存在するか否かを判断することによって被写体に緑成分が多いか否かを判断する。なお図4中には参考のためR、G、B、Cy(シアン)、Ye(黄)、及びMg(マゼンタ)のベクトル位置を示す。
【0035】
上記の合成ベクトルが第3象限外にある場合には、明るさの設定値SVを標準値に設定する(S13)。即ち、明るさの設定値SVに対して何も補正が行われず、従ってアイリス制御信号c及びAGC制御信号dは補正されずにそのまま出力される。一方、上記の合成ベクトルが第3象限内に存在する場合には被写体に緑成分が多いと判断して、明るさの設定値SVを下げるような補正値b(図1参照)を制御部7cに出力する。その結果、制御部7cでは、補正値bに基づいて明るさの設定値SVが下げられ、アイリス制御信号c或るいはAGC制御信号dが下げられる。
【0036】
かくして、木の葉や芝生など緑色のものを背景にして人物等の主被写体を撮影しても、適正な露出制御を行うことができるため、露出が過大になって主被写体が白く飛んでしまうというような現象を防ぐことができる。
【0037】
なお、上記の如く(R−Y)と(B−Y)の合成ベクトルが第3象限内にあるか否かによって被写体に緑成分が多いか否かを判断するような比較的大まかな色相の検出でも十分に実用的であるが、図5又は図6に示すように、より詳細な色相の検出を行うようにしてもよい。
【0038】
図5に示す検出方法は、第3象限を色の飽和度も加味した複数の領域(図示の場合はA1,A2,A3,A4の4領域)に分割し、これらの領域の何れに(R−Y)と(B−Y)の合成ベクトルが存在するかを下記の判断条件(図3のS12の判断条件を下記の判断条件に変える)によって判断し、各領域ごとに補正値bの値を変えるという方法である。例えば、合成ベクトルがA1領域にある場合には補正値bの値を最っとも大きくし、A2領域、A3領域、A4領域の順に補正値bの値を小さくしていく。
【0039】
領域(A1+A2+A3+A4):(R−Y)≦0 かつ(B−Y)≦0
領域(A1+A2+A3)・・・:(R−Y)≦R3かつ(B−Y)≦B3
領域(A1+A2)・・・・・・:(R−Y)≦R2かつ(B−Y)≦B2
領域(A1)・・・・・・・・・:(R−Y)≦R1かつ(B−Y)≦B1
【0040】
図6に示す方法は、合成ベクトルが単に第3象限内にあるか否かを判断するのではなく、下記の判断条件(図3のS12の判断条件を下記の判断条件に変える)基づき、第3象限内の特定領域に限定(即ち色相と飽和度を限定)し、当該領域内に合成ベクトルがある場合に補正値bを出力するという方法である。
【0041】
Rm≦(R−Y)≦Rn かつ Bm≦(B−Y)≦Bn
【0042】
以上のように、第3象限を色の飽和度も加味した複数の領域に分割し、又は第3象限内の特定領域に限定することにより、より適切な露出制御を行うことができる。
【0043】
更には、上記の如く緑の色相が検出された場合には明るさの設定値SVを下げる方向に補正を行うことを基本とした上で、以下の▲1▼〜▲4▼に示すような補正条件を設けてもよい。
【0044】
▲1▼ 輝度によって、補正量を変える。
即ち、被写体の輝度に関する情報(EV値)から被写体の輝度を判断し、被写体の輝度が高い場合には、屋外で被写体に太陽光があっていることが多いことから、コントラストも高いと考えられるため、補正量を大きくし、逆に輝度が低い場合には、屋内などでの撮影が考えられ、あまりコントラストが高くない場合が多いため、補正量を少なめにする。これによって、より適切な露出制御を行うことができる。
【0045】
▲2▼ 緑成分の量によって補正量を変える。
即ち、緑成分の検出量が多い場合には、被写体の多くの部分が緑の木の葉や芝生など緑色のものによって占められていることが考えられるため、補正量を多めにする。これによっても、より適切な露出制御を行うことができる。
【0046】
▲3▼ 補正するのではなく、前のデータを保持する。
即ち、ズーム操作による撮影の途中で画面内に緑成分が増えた場合には、補正を加えて明るさの設定値SVを変えるのではなく、アイリス制御信号c及びAGC制御信号dの値を前の値に保持して露出を前の状態に保持しても良い。例えば、緑色の葉の中にある白い花を撮影する場合を考える。始めテレ側(望遠)で白い花を撮影し、その後除々にワイド側(広角)に引くと、画面内に緑色の葉の面積が増えてきて輝度信号の値が低下する。このためアイリス1又はAGC回路3を制御して輝度信号レベルを上げようとする。その結果、ワイド側にいくほど白い花の部分はCCD2の当該部分が飽和して白く飛んでしまう。そこで、このようにズーム操作をしている途中で緑成分が多いと判断したときには、アイリス制御信号c及びAGC制御信号dの値を前の値に保持し露出を前の状態に保持しても良い。このように制御することによっても、白い花が白く飛んでしまうのを防ぐことができる。
【0047】
▲4▼ 分割測光AE制御のデータを利用して補正量に重み付けをする。
分割測光AE制御を行う場合の分割パターン例を図7に示す。この場合、中央のエリア1には人物など主被写体が入ることが多いと考えられるので、一番重みづけを重くしている。その他のエリア2,3,4は背景などが入ると考えられるので順に重み付けを軽くする。エリア5は空が入る可能性が多いため、そのデータを削除するか重み付けを軽くする。
このような分割測光AE制御を行っている場合、エリア毎に色信号のデータも同時に取り、エリア1に緑成分が多い場合には、補正を少なくし(あるいは補正無し)、周辺のエリア2,3,4に緑成分が多い場合には補正量を多くする。このようにすることによっても、より適切な露出制御を行うことができる。但し、分割の仕方は設計思想によって様々に変わるため、図7に示す分割パターンに限定するものではない。
【0048】
なお、上記実施例では、色差信号に基づいて被写体に緑成分が多いか否かを判断したが、勿論、これに限定するものではなく、例えばR,G,Bの信号に基づき、Gの信号レベルが他のR,Bの信号レベルと比較してある程度以上に大きい場合には、被写体に緑が多いと判断して露出制御信号を補正するようにしてもよい。
【0049】
また、上記実施例では、特に効果の大きい緑の色相に基づく露出制御信号の補正について説明したが、勿論、本発明は他の色相(赤色、青色等)に基づいて露出制御信号を補正する場合にも適用することができる。
【0050】
【発明の効果】
以上発明の実施の形態と共に具体的に説明したように、本発明によれば、被写体の色相に応じて露出制御信号の補正を行うため、被写体の色相にかかわらず適切な露出制御を行うことができる。特に、木の葉や芝生のように緑色のものを背景にして人物等を撮影するような場合のように、被写体に緑成分が多い場合に本発明の効果が特に大きい。
【図面の簡単な説明】
【図1】本発明の実施例に係る撮像装置の構成を示すブロック図である。
【図2】図1に示す撮像装置の明るさ判断部及び制御部における処理内容を示すフローチャートである。
【図3】図1に示す撮像装置の色相判断部における処理内容を示すフローチャートである。
【図4】図1に示す撮像装置の色相判断部における色相の判断方法を示す説明図である。
【図5】図1に示す撮像装置の色相判断部における色相の判断方法を示す説明図である。
【図6】図1に示す撮像装置の色相判断部における色相の判断方法を示す説明図である。
【図7】分割測光を行う場合の分割パターンの一例を示す説明図である。
【符号の説明】
1 アイリス
2 CCD
3 プリアンプ
3a AGC回路
4 A/D変換回路
5 信号処理回路
6 積算回路
7 マイコン
7a 明るさ判断部
7b 色相判断部
7c 制御部
8 信号分離回路
9 アイリスドライバー
10 ゲート回路
11 D/A変換回路
12 レンズ
R−Y,B−Y 色差信号
(R−Y),(B−Y) 色差信号の積分値
Y 輝度信号
(Y) 輝度信号の積分値
b 補正値
c アイリス制御信号
d AGC制御信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an imaging apparatus, and is useful when applied to an imaging apparatus having an automatic exposure control (AE control) function.
[0002]
[Prior art]
Conventionally, AE control in an imaging apparatus has been performed based on information relating to the luminance of a subject. That is, by detecting and integrating the luminance component from the output signal of the imaging means for imaging the subject and controlling the AGC circuit in the iris and preamplifier so that the integrated value of this luminance signal becomes equal to the set value, the imaging means Control the exposure of the camera to an appropriate exposure.
[0003]
[Problems to be solved by the invention]
By the way, the AE control based on the luminance signal as described above is such that red (R), green (G), and blue (B) are present in the entire image of the subject, and when these are integrated, an achromatic color is obtained. This is because it is premised on that. In the NTSC system, the luminance signal Y is obtained based on the following equation.
Y = 0.3R + 0.59G + 0.11B
[0004]
However, depending on the subject, there are cases where there are many specific color components and it is close to a single color. In such a case, there is a problem that the exposure is not properly controlled by the exposure control based on the luminance signal as described above. In particular, the green component is often imaged as a subject, and such a problem appears remarkably.
[0005]
For example, when a main subject (such as a person) is imaged against a green background such as leaves, lawn, or flowers, the luminance signal value is small because there are many green components in the image. It is determined that there is too much aperture, and the main subject that is actually exposed to sunlight is overexposed and flies white.
[0006]
In reality, there are few subjects with many red and blue components, but there are relatively many subjects with many green components. Therefore, it is particularly desirable to take measures against a case where the subject has many green components.
[0007]
Therefore, in view of the above-described prior art, it is an object of the present invention to provide an imaging apparatus having an AE control function capable of performing appropriate exposure control even when a subject has a lot of specific color components such as a green component. .
[0008]
[Means for Solving the Problems]
The present invention for solving the above-described problems includes an imaging means for imaging a subject,
Exposure control signal creating means for creating an exposure control signal using the output signal of the imaging means;
Exposure control means for controlling exposure based on the exposure control signal;
Detecting means for detecting information relating to the hue of the subject from the output signal of the imaging means;
Correction means for correcting the exposure control signal so that the exposure controlled by the exposure control means decreases when it is determined that the subject has a large number of specific color components based on the output of the detection means. ,
The specific color component determined by the correcting means is a green component,
The detection means outputs the integrated value of the color difference signals RY and BY as information relating to the hue of the subject, and the correction means outputs a combined vector of the integrated values of the color difference signals RY and BY. An exposure control signal that determines that the subject has a large amount of green component and the exposure controlled by the exposure control means decreases when the color difference signals RY and BY are within the third quadrant of coordinates having orthogonal coordinate axes. To correct
In addition, in the correction unit, when it is determined that the subject has a large amount of green component while zooming to the wide side, the exposure is maintained as it was before the determination that the green component is large. Features.
[0017]
Therefore, according to the present invention, when a subject with a large amount of green component is imaged, the correction means determines that the subject has a large amount of green component from the information regarding the hue of the subject at this time, and the exposure controlled by the exposure control means is determined. The exposure control signal is corrected so as to decrease. As a result, it is possible to prevent the exposure from becoming excessive.
[0018]
Further, according to the present invention, it is determined that the subject has a large amount of green component when the combined vector of the integrated values of the color difference signals RY and BY is in the third quadrant of coordinates or in a specific region of the third quadrant. Is done.
[0022]
Further, according to the present invention, when it is determined that the subject has a large amount of green component during zooming to the wide side, the exposure is maintained in the previous state, thereby preventing the exposure from becoming excessive. Can do.
[0023]
According to the ninth aspect of the invention, the correction amount is weighted according to which area in the screen it is determined that the specific color component is large.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0025]
1 is a block diagram illustrating a configuration of an imaging apparatus according to an embodiment of the present invention, FIG. 2 is a flowchart illustrating processing contents in a brightness determination unit and a control unit of the imaging apparatus illustrated in FIG. 1, and FIG. 3 is illustrated in FIG. FIG. 4, FIG. 5 and FIG. 6 are explanatory diagrams showing a hue determination method in the hue determination unit of the imaging apparatus shown in FIG.
[0026]
As shown in FIG. 1, the imaging apparatus according to this embodiment includes a lens 12, an iris 1, a CCD 2 that is an imaging device, a preamplifier 3 having an AGC circuit 3a, an A / D conversion circuit 4, a signal processing circuit 5, and a signal separation. Circuit 8, integrating circuit 6, microcomputer 7 having brightness determination unit 7 a, hue determination unit 7 b and control unit 7 c, gate circuit 10, D / A conversion circuit 11, and iris driver 9 for driving iris 1 ing.
[0027]
Therefore, light from a subject (not shown) is input to the CCD 2 through the lens 12 and the iris 1 and is converted into an electrical signal by the CCD 2. This electrical signal is sampled and gain controlled by the preamplifier 3 and then converted to a digital signal a by the A / D conversion circuit 4. The digital signal a is input to the signal processing circuit 5 and the signal separation circuit 8 respectively.
[0028]
The signal processing circuit 5 processes the digital signal a and outputs a YC signal (video signal) obtained by mixing the luminance signal and the color signal.
[0029]
On the other hand, the signal separation circuit 8 separates the digital signal a into a luminance signal Y and color difference signals RY and BY and outputs them to the integrating circuit 6. The integration circuit 6 integrates the luminance signal Y and the color difference signals RY and BY output from the signal separation circuit 8, and the integration area at this time is set by the gate circuit 10. In normal AE control, the area at the center of the screen and the area excluding the upper part of the screen are integration areas.
[0030]
Therefore, the integrating circuit 6 integrates the luminance signal Y and the color difference signals RY and BY in the integrating area (such as the area at the center of the screen) set by the gate circuit 10 and integrates the luminance signal integrated value ( Y) and the integrated values (R−Y) and (B−Y) of the color difference signals are output to the microcomputer 7. The integrated value (Y) of the luminance signal is input to the brightness determining unit 7a of the microcomputer 7, and the integrated values (RY) and (BY) of the color difference signal are input to the hue determining unit 7b of the microcomputer 7.
[0031]
As shown in the flowchart of FIG. 2, the brightness determination unit 7a first inputs the position information e of the iris (see FIG. 1) from the iris 1 (S1), and further, as described above, the integrated value (Y) of the luminance signal. Input from the integrating circuit 6 (S2). Subsequently, the brightness (EV value) of the subject is calculated from the input iris position information e and the integrated value (Y) of the luminance signal, the control value of the AGC circuit 3a held in the microcomputer 7 and the sensitivity value of the CCD 2. Then, the calculated EV value is output to the control unit 7c of the microcomputer 7 (S3).
[0032]
As shown in the flowchart of FIG. 2, the control unit 7c determines whether or not the subject has brightness within the normal control region based on the EV value input from the brightness determination unit 7a (S4). If the brightness is outside the normal control region, processing by another routine (detailed explanation is omitted) is performed (S5).
[0033]
On the other hand, if the brightness is within the normal control area, the integrated value (Y) of the luminance signal is compared with the set value SV of the brightness, and the integrated value (Y) of the luminance signal is equal to the set value SV. 1 and the AGC circuit 3a are controlled (feedback control). That is, if the integrated value (Y) of the luminance signal is smaller than the set value SV, the iris control signal c or the AGC control signal d (see FIG. 1) that is the exposure control signal is adjusted to increase the luminance signal Y. If the iris 1 or the AGC circuit 3a is controlled (S7), and if the integrated value (Y) of the luminance signal is larger than the set value SV, the iris control signal c or the AGC control signal d is adjusted to obtain the luminance signal Y. The iris 1 or the AGC circuit 3a is controlled in the decreasing direction (S8). The iris control signal c and the AGC control signal d are converted into analog signals by the D / A conversion circuit 11, and then input to the iris driver 9 and the AGC circuit 3a, respectively.
[0034]
Then, the hue determination unit 7b corrects the iris control signal c or the AGC control signal d according to the hue of the subject. Specifically, as shown in the flowchart of FIG. 3, the integrated values (R−Y) and (B−Y) of the color difference signals are input from the integrating circuit 6 (S11), and “(R−Y) ≦ 0 and (B−Y) ≦ 0 ”holds true, that is, within the third quadrant of coordinates having the color difference signals RY and BY as orthogonal coordinate axes shown in FIG. It is determined whether or not the subject has many green components by determining whether or not the composite vector of Y) exists. In FIG. 4, the vector positions of R, G, B, Cy (cyan), Ye (yellow), and Mg (magenta) are shown for reference.
[0035]
If the combined vector is outside the third quadrant, the brightness setting value SV is set to a standard value (S13). That is, no correction is performed on the brightness setting value SV, so that the iris control signal c and the AGC control signal d are output without being corrected. On the other hand, if the combined vector is present in the third quadrant, it is determined that the subject has a large amount of green component, and a correction value b (see FIG. 1) that decreases the brightness setting value SV is determined by the control unit 7c. Output to. As a result, in the control unit 7c, the brightness setting value SV is lowered based on the correction value b, and the iris control signal c or the AGC control signal d is lowered.
[0036]
Thus, even if a main subject such as a person is photographed against a green background such as a leaf or lawn, it is possible to perform appropriate exposure control, so that the overexposure causes the main subject to fly white. Can be prevented.
[0037]
It should be noted that, as described above, a relatively rough hue that determines whether or not the subject has a large amount of green component depending on whether or not the combined vector of (R−Y) and (B−Y) is in the third quadrant. Although detection is sufficiently practical, more detailed hue detection may be performed as shown in FIG. 5 or FIG.
[0038]
In the detection method shown in FIG. 5, the third quadrant is divided into a plurality of regions (four regions A1, A2, A3, and A4 in the illustrated example) that take into account the color saturation, and any of these regions (R Whether the combined vector of (Y) and (BY) exists is determined by the following determination condition (the determination condition of S12 in FIG. 3 is changed to the following determination condition), and the value of the correction value b for each region It is a method of changing. For example, when the composite vector is in the A1 area, the correction value b is maximized, and the correction value b is decreased in the order of the A2, A3, and A4 areas.
[0039]
Region (A1 + A2 + A3 + A4): (R−Y) ≦ 0 and (B−Y) ≦ 0
Region (A1 + A2 + A3): (R−Y) ≦ R3 and (B−Y) ≦ B3
Region (A1 + A2): (R−Y) ≦ R2 and (B−Y) ≦ B2
Region (A1)...: (R−Y) ≦ R1 and (B−Y) ≦ B1
[0040]
The method shown in FIG. 6 does not simply determine whether the combined vector is in the third quadrant, but based on the following determination condition (the determination condition of S12 in FIG. 3 is changed to the following determination condition) This is a method of limiting to a specific area in three quadrants (that is, limiting hue and saturation), and outputting a correction value b when there is a composite vector in the area.
[0041]
Rm ≦ (R−Y) ≦ Rn and Bm ≦ (B−Y) ≦ Bn
[0042]
As described above, more appropriate exposure control can be performed by dividing the third quadrant into a plurality of regions in consideration of the color saturation, or by limiting the third quadrant to a specific region in the third quadrant.
[0043]
Further, when a green hue is detected as described above, the correction is performed in the direction of decreasing the brightness setting value SV, and the following (1) to (4) are performed. Correction conditions may be provided.
[0044]
(1) Change the correction amount according to the brightness.
That is, the brightness of the subject is determined from the information on the brightness of the subject (EV value), and when the brightness of the subject is high, the subject is often exposed to sunlight outdoors, so the contrast is considered high. For this reason, when the correction amount is increased and the brightness is low, the image is taken indoors and the contrast is not so high in many cases, so the correction amount is reduced. Thereby, more appropriate exposure control can be performed.
[0045]
(2) Change the correction amount according to the amount of green component.
That is, when the detected amount of the green component is large, it is considered that a large part of the subject is occupied by a green object such as a green tree leaf or a lawn, so the correction amount is increased. This also makes it possible to perform more appropriate exposure control.
[0046]
(3) The previous data is retained instead of being corrected.
That is, when the green component increases in the screen during shooting by zooming operation, the values of the iris control signal c and the AGC control signal d are not changed without correcting and changing the brightness setting value SV. It is also possible to hold the exposure in the previous state by holding at this value. For example, consider the case of photographing a white flower in a green leaf. When a white flower is first photographed on the tele side (telephoto) and then gradually pulled to the wide side (wide angle), the area of the green leaf increases in the screen and the value of the luminance signal decreases. Therefore, the iris signal 1 or the AGC circuit 3 is controlled to increase the luminance signal level. As a result, the portion of the white flower that goes to the wide side becomes white as the portion of the CCD 2 is saturated. Therefore, when it is determined that there is a large amount of green component during the zoom operation, the values of the iris control signal c and the AGC control signal d are held at the previous values and the exposure is held at the previous state. good. By controlling in this way, white flowers can be prevented from flying white.
[0047]
(4) The correction amount is weighted by using the data of the division photometry AE control.
An example of a division pattern in the case of performing the division photometry AE control is shown in FIG. In this case, since it is considered that a main subject such as a person often enters the central area 1, the most weight is given. The other areas 2, 3 and 4 are considered to contain backgrounds, so the weights are reduced in order. Since there is a high possibility that the area 5 is empty, the data is deleted or weighted.
When such divided photometry AE control is performed, color signal data is also taken for each area. If the green component is large in area 1, the correction is reduced (or no correction), When the green component is large in 3 and 4, the correction amount is increased. This also makes it possible to perform more appropriate exposure control. However, since the way of division varies depending on the design concept, it is not limited to the division pattern shown in FIG.
[0048]
In the above-described embodiment, it is determined whether or not the subject has a large amount of green component based on the color difference signal. However, the present invention is not limited to this. For example, based on the R, G, and B signals, the G signal If the level is higher than a certain level compared to the other R and B signal levels, it may be determined that the subject has a lot of green and the exposure control signal may be corrected.
[0049]
In the above embodiment, the correction of the exposure control signal based on the green hue having a particularly large effect has been described. Of course, the present invention corrects the exposure control signal based on another hue (red, blue, etc.). It can also be applied to.
[0050]
【The invention's effect】
As specifically described above with the embodiment of the present invention, according to the present invention, since the exposure control signal is corrected according to the hue of the subject, appropriate exposure control can be performed regardless of the hue of the subject. it can. In particular, the effect of the present invention is particularly great when the subject has a large amount of green components, such as when a person or the like is photographed against a green background such as leaves or lawns.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of an imaging apparatus according to an embodiment of the present invention.
2 is a flowchart illustrating processing contents in a brightness determination unit and a control unit of the imaging apparatus illustrated in FIG. 1;
3 is a flowchart showing processing contents in a hue determination unit of the imaging apparatus shown in FIG. 1;
4 is an explanatory diagram illustrating a hue determination method in a hue determination unit of the imaging apparatus illustrated in FIG. 1; FIG.
FIG. 5 is an explanatory diagram illustrating a hue determination method in a hue determination unit of the imaging apparatus illustrated in FIG. 1;
6 is an explanatory diagram illustrating a hue determination method in a hue determination unit of the imaging apparatus illustrated in FIG. 1;
FIG. 7 is an explanatory diagram showing an example of a division pattern when performing division photometry.
[Explanation of symbols]
1 Iris 2 CCD
3 Preamplifier 3a AGC circuit 4 A / D conversion circuit 5 Signal processing circuit 6 Integration circuit 7 Microcomputer 7a Brightness determination unit 7b Hue determination unit 7c Control unit 8 Signal separation circuit 9 Iris driver 10 Gate circuit 11 D / A conversion circuit 12 Lens RY, BY Color difference signals (RY), (BY) Color difference signal integral value Y Luminance signal (Y) Luminance signal integral value b Correction value c Iris control signal d AGC control signal

Claims (1)

被写体を撮像する撮像手段と、
この撮像手段の出力信号を用いて露出制御信号を作成する露出制御信号作成手段と、
前記露出制御信号に基づいて露出を制御する露出制御手段と、
前記撮像手段の出力信号から被写体の色相に関する情報を検出する検出手段と、
この検出手段の出力に基づいて前記被写体に特定の色成分が多いと判断した場合には前記露出制御手段によって制御される露出が減少するように前記露出制御信号を補正する補正手段とを有し、
前記補正手段で判断する特定の色成分は緑成分であり、
前記検出手段では、被写体の色相に関する情報として色差信号R−YとB−Yの積算値を出力すると共に、前記補正手段では、前記色差信号R−YとB−Yの積算値の合成ベクトルが色差信号R−YとB−Yを直交座標軸とする座標の第3象限内に存在する場合に被写体に緑成分が多いと判断し露出制御手段によって制御される露出が減少するように露出制御信号を補正し、
且つ、前記補正手段では、ワイド側にズームを引いている途中で被写体に緑成分が多いと判断した場合には、露出を、前記緑成分が多いと判断する前の状態のまま保持させることを特徴とする撮像装置。
Imaging means for imaging a subject;
Exposure control signal creating means for creating an exposure control signal using the output signal of the imaging means;
Exposure control means for controlling exposure based on the exposure control signal;
Detecting means for detecting information relating to the hue of the subject from the output signal of the imaging means;
Correction means for correcting the exposure control signal so that the exposure controlled by the exposure control means decreases when it is determined that the subject has a large number of specific color components based on the output of the detection means. ,
The specific color component determined by the correcting means is a green component,
The detection means outputs the integrated value of the color difference signals RY and BY as information relating to the hue of the subject, and the correction means outputs a combined vector of the integrated values of the color difference signals RY and BY. An exposure control signal that determines that the subject has a large amount of green component and the exposure controlled by the exposure control means decreases when the color difference signals RY and BY are within the third quadrant of coordinates having orthogonal coordinate axes. To correct
In addition, in the correction unit, when it is determined that the subject has a large amount of green component while zooming to the wide side, the exposure is maintained as it was before the determination that the green component is large. An imaging device that is characterized.
JP21995395A 1995-08-29 1995-08-29 Imaging device Expired - Fee Related JP3701058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21995395A JP3701058B2 (en) 1995-08-29 1995-08-29 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21995395A JP3701058B2 (en) 1995-08-29 1995-08-29 Imaging device

Publications (2)

Publication Number Publication Date
JPH0965346A JPH0965346A (en) 1997-03-07
JP3701058B2 true JP3701058B2 (en) 2005-09-28

Family

ID=16743633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21995395A Expired - Fee Related JP3701058B2 (en) 1995-08-29 1995-08-29 Imaging device

Country Status (1)

Country Link
JP (1) JP3701058B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321701B1 (en) 1998-12-30 2002-07-18 박종섭 Automatic exposure control apparatus and method using counter which counts value of green pixels
JP4636739B2 (en) * 2001-06-29 2011-02-23 キヤノン株式会社 IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, PROGRAM, AND COMPUTER-READABLE STORAGE MEDIUM
JP4626432B2 (en) * 2005-07-25 2011-02-09 富士フイルム株式会社 Color discriminating method and apparatus in imaging apparatus and exposure control method of imaging apparatus

Also Published As

Publication number Publication date
JPH0965346A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
JP2766067B2 (en) Imaging device
US6906744B1 (en) Electronic camera
US20070159537A1 (en) Imaging apparatus and method
WO2003085963A1 (en) Digital color image pre-processing
JP3701058B2 (en) Imaging device
JPH11289548A (en) White balance control method and device
US5019894A (en) White balance adjusting circuit
JP4649734B2 (en) Video signal processing apparatus and recording medium on which video signal processing program is recorded
JP3142603B2 (en) White balance device for imaging equipment
JP3033102B2 (en) Exposure control device for electronic imager
JP3609138B2 (en) Video camera
JPH03274884A (en) White balance control circuit
JP3055985B2 (en) White balance adjustment device
JPH10271518A (en) Video camera device
JP3100815B2 (en) Camera white balance control method
JPH07143509A (en) Chromanoise suppressing method for video camera
JPH074018B2 (en) Auto white balance adjustment circuit
JP4458114B2 (en) Imaging device
JP2002185976A (en) Video signal processor and recording medium with video signal processing program recorded thereon
JPH06351037A (en) Auto-white balance device
KR0125304B1 (en) White balance adjustment apparatus
JPH04109774A (en) Exposure adjustment device for camera
JP3310973B2 (en) Exposure control device for image sensor
JP2584358B2 (en) White balance adjustment device
JP3434086B2 (en) Automatic white balance correction device and correction method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees