JP3700867B2 - Contactless power and signal transmission device and method of manufacturing the same - Google Patents

Contactless power and signal transmission device and method of manufacturing the same Download PDF

Info

Publication number
JP3700867B2
JP3700867B2 JP24849295A JP24849295A JP3700867B2 JP 3700867 B2 JP3700867 B2 JP 3700867B2 JP 24849295 A JP24849295 A JP 24849295A JP 24849295 A JP24849295 A JP 24849295A JP 3700867 B2 JP3700867 B2 JP 3700867B2
Authority
JP
Japan
Prior art keywords
signal transmission
power
transmission core
coil
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24849295A
Other languages
Japanese (ja)
Other versions
JPH0974034A (en
Inventor
光則 加茂
靖彦 加来
博行 鎌田
龍彦 木場
統治 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP24849295A priority Critical patent/JP3700867B2/en
Publication of JPH0974034A publication Critical patent/JPH0974034A/en
Application granted granted Critical
Publication of JP3700867B2 publication Critical patent/JP3700867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

【001】
【産業上の利用分野】
本発明は、無接触で電力および電気信号を伝送する無接触式電力と信号の伝送装置とその製造方法に関する。
【002】
【従来の技術】
従来の技術として、空隙を介し対向させた一対の偏平円筒形状のトランスコア内に信号伝送用コイルと電力伝送用コイルを同心状に装着した回転トランスがある(例えば、実開昭58−180616 号公報)。
【003】
【発明が解決しようとする課題】
ところが、従来の技術では、信号伝送用コアと電力伝送用コアを共有するため、電力伝送用コイルの漏れ磁束が信号伝送用コイルと鎖交し、ノイズのもととなり、誤信号を伝送するという問題がある。
そこで、本発明は、電力伝送用コイルの漏れ磁束によるノイズを無くし、信頼性の高い無接触式電力と信号の伝送装置とその製造方法を提供することを目的とする。
【004】
【課題を解決するための手段】
上記問題を解決するために、請求項1の発明は、リング状の溝内に電力伝送用コイルを収納した電力伝送用コアと、他のリング状の溝内に信号伝送用コイルを収納した信号伝送用コアとを磁気的に分離する非磁性体のフレームに収納すると共に、前記電力伝送用コアと前記信号伝送用コアを同心状に配置してなる偏平円筒形状のトランスコア一対を空隙を介し対向させた無接触式電力と信号の伝送装置において、前記信号伝送用コアの周辺の外部に、前記電力伝送用コイルの作る磁束と鎖交する、前記信号伝送用コイルとは逆巻のノイズ相殺用コイルを設け、前記信号伝送用コイルに前記ノイズ相殺用コイルを直列に接続したものである。
また、請求項2の発明は、請求項1に記載の無接触式電力と信号の伝送装置において、前記フレームを樹脂とし、前記電力伝送用コア、前記信号伝送用コアと前記ノイズ相殺用コイルを一体にモールドしたものである。
請求項3の発明は、無接触式電力と信号の伝送装置の製造方法に係るものであって、円筒状のダイの上面に、電力伝送用コアの溝と嵌め合うリング状突起と、信号伝送用コアの溝と嵌め合うリング状突起を同心に設け、前記ダイの側面にホルダを嵌め合わせ、前記ホルダの上面をインジェクションプレートで覆蓋したモールド型を用い、事前に、前記信号伝送用コアの底面にノイズ相殺用コイルを接着剤等で仮固定しておき、前記ダイのリング状突起おのおのに、前記信号伝送用コアの溝と前記電力伝送用コアの溝を嵌め合わせ、前記ダイの側面に前記ホルダを嵌め合わせ、リードを前記ホルダの上面に設けた溝内にタイトにセットし、前記ホルダの上面を前記インジェクションプレートで覆蓋し、インジェクションノズルから樹脂を加圧注入し、樹脂が固化した後、前記インジェクションプレートを取り外し、前記ダイを上方向に押し上げ前記ホルダと前記ダイを離型し、前記ダイの上の残った無接触式電力と信号の伝送装置を取り外すようにしたものである。
また、請求項4の発明は、請求項3に記載の無接触式電力と信号の伝送装置の製造方法において、前記リードを基板に設けたターミナルに集中的に接続できるように、前記基板に前記インジェクションノズルと挿通する穴を設け、前記インジェクションプレートに前記基板のターミナルをマスクする溝を設け、前記基板と前記電力伝送用コア間をステーにより仮支持し、樹脂を加圧注入するようにしたものである。
【005】
【作用】
上記手段により、装置においては、1次側および2次側の電力伝送用コイル3と信号伝送用コイル5の作る磁束のほとんどは、電力伝送用コア2および信号伝送用コア4内を個別に流れる。しかし、電力伝送用コイル3の作る磁束の一部が電力伝送用コア2の外部に漏れた場合は、その漏れ磁束が信号伝送用コイル5と鎖交して電圧を誘起しノイズとなる。これに対しては、信号伝送用コイル5に逆巻のノイズ相殺用コイル6を直列に接続して、電力伝送用コイル3からの漏れ磁束によりノイズ相殺用コイル6に誘起された電圧が、信号伝送用コイル5に誘起された電圧を相殺する。
また、ノイズ相殺用コイル6は信号伝送用コア4の外部にあるので、信号伝送用コア4の磁束に影響を与えない。
製造方法においては、フレーム1、電力伝送用コア2、信号伝送用コア4およびノイズ相殺用コイル6が樹脂により一体形成され、電力伝送用コアと信号伝送用コアの表面が同一平面になる。
【006】
【実施例】
以下に、本発明の実施例を図1に基づいて説明する。
図1は実施例を示す、正断面図である。
円筒状の非磁性体部材にリング状の溝11を設け、中心に円筒部12を突設したフレーム1の円筒部12の外径側には、断面がコの字形をしたリング状の電力伝送用コア2を嵌め合わせ固定してある。電力伝送用コア2のリング状の溝21内には、リング状の電力伝送用コイル3を収納してある。フレーム1の上面には保護チューブ3Pを被覆したリード3Lと保護チューブ6Pを被覆したリード6Lが挿通する細孔を放射方向に1か所設けてある。
なお、フレーム1は、あらかじめ単独部品として製作しても、樹脂モールドにより一体形成してもよい。
フレーム1の円筒部12には、円状の溝13を溝21と同心に設けてある。溝13の底部には、リング状の溝64設けてある。溝13内には、リング状の信号伝送用コイル5を収納したリング状の信号伝送用コア4を収納し、リング状の溝64内には信号伝送用コイル5とほぼ同じターン数で逆巻のリング状のノイズ相殺用コイル6を電力伝送用コイル3の作る磁束と鎖交させるように収納してある。信号伝送用コイル5とノイズ相殺用コイル6は直列に接続してある。なお、フレーム1を樹脂モールドにより一体形成する場合は、溝64を省略してよい。
電力伝送用コイル3のリード3Lとノイズ相殺用コイル6のリード6Lは、フレーム1の外部の適宜箇所に出すようにしてある。
上記でトランス1次側10を構成し、同一構成のトランス2次側20を空隙Gを介し対向させる。なお、回転トランス形とする場合は、トランス1次側10またはトランス2次側20の一方もしくは双方を回転する。
【007】
以下に、動作を説明する。
1次側の電力伝送用コイル3および信号伝送用コイル5に通電すると、コイル3および5の作る磁束のほとんどは、電力伝送用コア2および信号伝送用コア4内を個別に流れる。しかし、電力伝送用コイル3の作る磁束の一部が電力伝送用コア2の外部に漏れた場合は、その漏れ磁束が信号伝送用コイル5と鎖交して電圧を誘起しノイズとなる。これに対して、信号伝送用コイル5に、逆巻のノイズ相殺用コイル6を直列に接続されているので、電力伝送用コイル3からの漏れ磁束によりノイズ相殺用コイル6に誘起された電圧が、信号伝送用コイル5に誘起された電圧を相殺する。
【008】
以下に、製造方法について説明する。
上記のトランス1次側10およびトランス2次側20の製造方法の一つとして、フレーム1に電力伝送用コイル3を収納した電力伝送用コア2と信号伝送用コイル5を収納した信号伝送用コア4を嵌め込んで組み立て、おのおのの対向面を研削し平面度を出す方法がある。
ここでは、さらに生産性のよいモールドによる一体成形する製造方法を、図2に基づき説明する。
図2はモールド型の正断面図である。
外径を電力伝送用コア2より若干大きくした円筒状のダイ50の上面には、電力伝送用コア2の溝21と嵌め合うリング状突起51と、信号伝送用コア4の溝41と嵌め合うリング状突起52を同心に設けてある。
ダイ50の側面には、リング状のホルダ60を嵌め合わせる。
ホルダ60の中心には、貫通穴61を設けてある。ホルダ60の高さはダイ50を嵌め合わせたとき、溝の深さが電力伝送用コア2の高さより深くなるようにしてあり、嵌め合わせたとき、ダイ50の上面より若干高い位置の適宜箇所に、放射方向のエジェクションノズル63を設けてある。
ホルダ60の上面には、電力伝送用コイル3の保護チューブ3Pと6Pがタイトに挿通する溝62を放射方向に1か所設けてある。
ホルダ60の上面は、ほぼ中央にインジェクションノズル71を設けたインジェクションプレート70で覆蓋してある。
【009】
以下に、モールドの手順をステップを追って説明する。
事前に、信号伝送用コア4の底面にノイズ相殺用コイル6を直列に接続し、直接もしくはステー9を介し、接着剤等で仮固定しておく。
ステップ 1:リング状突起52に、信号伝送用コア4の溝41を嵌め合わせる。
ステップ 2:リング状突起51に、電力伝送用コア2の溝21を嵌め合わせる。
ステップ 3:ダイ50の側面にホルダ60を嵌め合わせる。
ステップ 4:ホルダ60の溝62に、リード3Lと6Lを挿通した保護チューブ3Pと6Pをタイトにセットする。
ステップ 5:ホルダ60の上面をインジェクションプレート70で覆蓋し、ダイ50、ホルダ60とインジェクションプレート70を強固に固定する。
ステップ 6:インジェクションノズル71から樹脂を加圧注入する。
このとき、電力伝送用コア2と信号伝送用コア4の表面は、インジェクション圧によりダイ50に押しつけられ、同一平面が維持される。
樹脂が固化した後、
ステップ 7:インジェクションプレート70を取り外す。
ステップ 8:ダイ50を上方向に押し上げ、ホルダ60とダイ50を離型する。このとき、エジェクションノズル63に残った樹脂がカットされる。
ステップ 9:ダイ50の上の残ったトランス1次側10またはトランス2次側20を取り外す。
上記のように、モールドにより一体成形するので生産性が高く、電力伝送用コア2と信号伝送用コア4の表面がダイ50の上面と同一平面に精度よく形成される。
【010】
図3に第2の実施例を示す。この例は、実施例のリード3L、6Lを基板8に設けたターミナル81に集中して接続し、外部からの接続を容易にするものである。
(1)フレーム1をあらかじめ単独部品として製作する場合は、フレーム1の軸方向に各リードが挿通する穴を設け各リードを挿通し、この穴を結ぶフレーム1の上面にリード3L、6Lを挿通する溝を軸直角方向に設け、基板8の底面のターミナル81にリード3L、6Lを接続する。
(2)フレーム1を他の部品と樹脂で一体形成する場合は、基板8にインジェクションノズル71Aと挿通する穴82を設け、電力伝送用コア2の上面と基板8の底面間に複数のステー9を設け、各リードを基板8の裏面のターミナル81に接続したのち、基板8をステー9により支持し、基板8、電力伝送用コア2、信号伝送用コア4とノイズ相殺用コイル6間に樹脂をモールドする。
【011】
以下に、製造方法について説明する。
上記(1)の場合は各部品を順次組立ればよいので、説明を省略する。
上記(2)の場合のモールド型の正断面図を図4に示す。
図2のモールド型と異なるところは、インジェクションプレートの構造にある。
インジェクションプレート70Aには、基板8に設けた穴82と合致する位置に、インジェクションノズル71Aを設け、基板8のターミナル81をマスクする溝72を設ける。
製造手順は、ステップ 3までは実施例の製造方法と同一である。以降は下記のステップによる。
ステップ 4:リード3Lと6Lを基板8の裏面のターミナル81に接続する。
ステップ 5:電力伝送用コア2の上面にステー9を仮固定する。
ステップ 6:基板8をステー9上に表面がホルダ60の上面と一致するように、セットする。
ステップ 7:インジェクションノズル71Aを基板8に設けた穴82と合致するように、ホルダ60の上面をインジェクションプレート70Aで覆蓋し、ダイ50、ホルダ60とインジェクションプレート70Aを強固に固定する。
ステップ 8:インジェクションノズル71Aから樹脂を加圧注入する。
樹脂が固化した後、
ステップ 9:インジェクションプレート70Aを取り外す。
ステップ 10:ダイ50を上方向に押し上げ、ホルダ60とダイ50を離型する。
ステップ 11:ダイ50の上の残った、基板8を一体構成したトランス1次側10またはトランス2次側20を取り外す。
その結果、外部接続端子を持った基板とトランスが一体成形される。
【012】
【発明の効果】
上記の構成により、下記の効果がある。
(1)装置においては、ノイズ相殺用コイルに誘起された電圧が、信号伝送用コイルに誘起された電圧を相殺するので、ほぼ完全に誤信号の伝送がなくなり信頼性がさらに向上する。
(2)樹脂モールドによる製造方法においては、各部品が一体形成されるので、生産性が向上するとともに、電力伝送用コアと信号伝送用コアの表面が、同一平面になり、仕上げ加工の必要がなくなる。
【図面の簡単な説明】
【図1】本発明の実施例を示す正断面図。
【図2】本発明の実施例を製造するためのモールド型を示す正断面図。
【図3】本発明の第2の実施例を示す正断面図。
【図4】本発明の第2の実施例を製造するためのモールド型を示す正断面図。
【符号の説明】
1 フレーム
11、13、21、41、62、64、72 溝
12 円筒部
2 電力伝送用コア
3 電力伝送用コイル
3L、6L リード
3P、6P 保護チューブ
4 信号伝送用コア
5 信号伝送用コイル
6 ノイズ相殺用コイル
10 トランス1次側
20 トランス2次側
50 ダイ
51、52 リング状突起
60 ホルダ
61 貫通穴
63 エジェクションノズル
70、70A インジェクションプレート
71、71A インジェクションノズル
8 基板
81 ターミナル
9 ステー
001
[Industrial application fields]
The present invention relates to a contactless power and signal transmission device that transmits power and electrical signals without contact, and a method of manufacturing the same.
[002]
[Prior art]
As a conventional technique, there is a rotary transformer in which a signal transmission coil and a power transmission coil are concentrically mounted in a pair of flat cylindrical transformer cores facing each other through a gap (for example, Japanese Utility Model Publication No. 58-180616). Publication).
003
[Problems to be solved by the invention]
However, in the conventional technology, since the signal transmission core and the power transmission core are shared, the leakage flux of the power transmission coil is linked to the signal transmission coil, causing noise and transmitting an erroneous signal. There's a problem.
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable non-contact power and signal transmission device and method for manufacturing the same, which eliminates noise caused by leakage magnetic flux of the power transmission coil.
[004]
[Means for Solving the Problems]
In order to solve the above problem, the invention of claim 1 is directed to a power transmission core in which a power transmission coil is accommodated in a ring-shaped groove and a signal in which a signal transmission coil is accommodated in another ring-shaped groove. A pair of flat cylindrical transformer cores, in which the power transmission core and the signal transmission core are concentrically arranged, are housed in a non-magnetic frame that magnetically separates the transmission core from a gap. In the contactless power and signal transmission device opposed to each other, the noise cancellation of the reverse winding from the signal transmission coil, which is linked to the magnetic flux generated by the power transmission coil outside the periphery of the signal transmission core. And a noise canceling coil connected in series to the signal transmission coil.
According to a second aspect of the present invention, in the contactless power and signal transmission device according to the first aspect, the frame is made of resin, and the power transmission core, the signal transmission core, and the noise canceling coil It is molded integrally.
A third aspect of the present invention relates to a method for manufacturing a contactless power and signal transmission device, wherein a ring-shaped protrusion that fits into a groove of a power transmission core is formed on a top surface of a cylindrical die, and a signal transmission. A ring-shaped projection that fits into the groove of the core for the core is provided concentrically, a holder is fitted on the side surface of the die, and the upper surface of the holder is covered with an injection plate. The noise canceling coil is temporarily fixed with an adhesive or the like, and the groove of the signal transmission core and the groove of the power transmission core are fitted into each ring-shaped protrusion of the die, and the side surface of the die is The holder is fitted, the lead is tightly set in the groove provided on the upper surface of the holder, the upper surface of the holder is covered with the injection plate, and resin is injected under pressure from the injection nozzle. After the resin is solidified, the injection plate is removed, the die is pushed upward, the holder and the die are released, and the remaining contactless power and signal transmission device on the die is removed. It is a thing.
According to a fourth aspect of the present invention, in the method for manufacturing a contactless power and signal transmission device according to the third aspect, the leads are connected to the substrate so that the leads can be intensively connected to terminals provided on the substrate. A hole to be inserted into the injection nozzle, a groove for masking the terminal of the substrate is provided in the injection plate, a temporary support is provided between the substrate and the power transmission core by a stay, and resin is injected under pressure. It is.
[005]
[Action]
By the above means, in the apparatus, most of the magnetic fluxes generated by the primary side and secondary side power transmission coils 3 and the signal transmission coil 5 flow individually in the power transmission core 2 and the signal transmission core 4. . However, when a part of the magnetic flux generated by the power transmission coil 3 leaks to the outside of the power transmission core 2, the leakage magnetic flux is linked to the signal transmission coil 5 to induce a voltage and become noise. For this, a reverse-winding noise canceling coil 6 is connected in series to the signal transmission coil 5, and the voltage induced in the noise canceling coil 6 by the leakage magnetic flux from the power transmission coil 3 is The voltage induced in the transmission coil 5 is canceled out.
Further, since the noise canceling coil 6 is outside the signal transmission core 4, it does not affect the magnetic flux of the signal transmission core 4.
In the manufacturing method, the frame 1, the power transmission core 2, the signal transmission core 4, and the noise canceling coil 6 are integrally formed of resin, and the surfaces of the power transmission core and the signal transmission core are flush with each other.
[006]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a front sectional view showing an embodiment.
Ring-shaped power transmission having a U-shaped cross section is provided on the outer diameter side of the cylindrical portion 12 of the frame 1 provided with a ring-shaped groove 11 in a cylindrical non-magnetic member and a cylindrical portion 12 protruding from the center. The core 2 is fitted and fixed. A ring-shaped power transmission coil 3 is accommodated in the ring-shaped groove 21 of the power transmission core 2. The upper surface of the frame 1 is provided with one fine hole in the radial direction through which the lead 3L covered with the protective tube 3P and the lead 6L covered with the protective tube 6P are inserted.
The frame 1 may be manufactured as a single component in advance or may be integrally formed by a resin mold.
A circular groove 13 is provided concentrically with the groove 21 in the cylindrical portion 12 of the frame 1. A ring-shaped groove 64 is provided at the bottom of the groove 13. The groove 13 houses the ring-shaped signal transmission core 4 in which the ring-shaped signal transmission coil 5 is housed. The ring-shaped groove 64 is reversely wound with the same number of turns as the signal transmission coil 5. The ring-shaped noise canceling coil 6 is accommodated so as to be linked to the magnetic flux generated by the power transmission coil 3. The signal transmission coil 5 and the noise canceling coil 6 are connected in series. In addition, when the frame 1 is integrally formed by a resin mold, the groove 64 may be omitted.
The lead 3L of the power transmission coil 3 and the lead 6L of the noise canceling coil 6 are arranged at appropriate locations outside the frame 1.
The transformer primary side 10 is configured as described above, and the transformer secondary side 20 having the same configuration is opposed to the gap G. In the case of the rotary transformer type, one or both of the transformer primary side 10 and the transformer secondary side 20 are rotated.
[007]
The operation will be described below.
When the primary-side power transmission coil 3 and the signal transmission coil 5 are energized, most of the magnetic flux generated by the coils 3 and 5 flows individually in the power transmission core 2 and the signal transmission core 4. However, when a part of the magnetic flux generated by the power transmission coil 3 leaks to the outside of the power transmission core 2, the leakage magnetic flux is linked to the signal transmission coil 5 to induce a voltage and become noise. On the other hand, since the reverse winding noise canceling coil 6 is connected in series to the signal transmission coil 5, the voltage induced in the noise canceling coil 6 by the leakage magnetic flux from the power transmission coil 3 is reduced. The voltage induced in the signal transmission coil 5 is canceled out.
[008]
Below, a manufacturing method is demonstrated.
As one of the manufacturing methods of the transformer primary side 10 and the transformer secondary side 20 described above, a power transmission core 2 in which the power transmission coil 3 is housed in the frame 1 and a signal transmission core in which the signal transmission coil 5 is housed. There is a method of inserting and assembling 4 and grinding each opposing surface to obtain flatness.
Here, a manufacturing method for integrally forming with a mold having higher productivity will be described with reference to FIG.
FIG. 2 is a front sectional view of the mold.
On the upper surface of a cylindrical die 50 having an outer diameter slightly larger than that of the power transmission core 2, a ring-shaped protrusion 51 that fits with the groove 21 of the power transmission core 2 and a groove 41 of the signal transmission core 4 fit. Ring-shaped protrusions 52 are provided concentrically.
A ring-shaped holder 60 is fitted on the side surface of the die 50.
A through hole 61 is provided at the center of the holder 60. The height of the holder 60 is such that when the die 50 is fitted, the depth of the groove is deeper than the height of the core 2 for power transmission. In addition, an ejection nozzle 63 in the radial direction is provided.
On the upper surface of the holder 60, there is provided one groove 62 in the radial direction through which the protective tubes 3P and 6P of the power transmission coil 3 are tightly inserted.
The upper surface of the holder 60 is covered with an injection plate 70 provided with an injection nozzle 71 at substantially the center.
[0109]
Below, the procedure of a mold is demonstrated step by step.
In advance, a noise canceling coil 6 is connected in series to the bottom surface of the signal transmission core 4 and temporarily fixed with an adhesive or the like directly or via a stay 9.
Step 1: The groove 41 of the signal transmission core 4 is fitted into the ring-shaped protrusion 52.
Step 2: The groove 21 of the power transmission core 2 is fitted into the ring-shaped protrusion 51.
Step 3: The holder 60 is fitted on the side surface of the die 50.
Step 4: The protective tubes 3P and 6P through which the leads 3L and 6L are inserted are tightly set in the grooves 62 of the holder 60.
Step 5: The upper surface of the holder 60 is covered with the injection plate 70, and the die 50, the holder 60 and the injection plate 70 are firmly fixed.
Step 6: Resin is injected under pressure from the injection nozzle 71.
At this time, the surfaces of the power transmission core 2 and the signal transmission core 4 are pressed against the die 50 by the injection pressure, and the same plane is maintained.
After the resin has solidified,
Step 7: Remove the injection plate 70.
Step 8: The die 50 is pushed upward to release the holder 60 and the die 50. At this time, the resin remaining in the ejection nozzle 63 is cut.
Step 9: The remaining transformer primary side 10 or transformer secondary side 20 on the die 50 is removed.
As described above, since it is integrally formed by molding, the productivity is high, and the surfaces of the power transmission core 2 and the signal transmission core 4 are accurately formed in the same plane as the upper surface of the die 50.
[0101]
FIG. 3 shows a second embodiment. In this example, the leads 3L and 6L of the embodiment are concentratedly connected to a terminal 81 provided on the substrate 8 to facilitate connection from the outside.
(1) When the frame 1 is manufactured as a single component in advance, a hole through which each lead is inserted is provided in the axial direction of the frame 1 and each lead is inserted, and the leads 3L and 6L are inserted into the upper surface of the frame 1 connecting the holes. A groove is formed in a direction perpendicular to the axis, and the leads 3L and 6L are connected to the terminal 81 on the bottom surface of the substrate 8.
(2) When the frame 1 is integrally formed with other components and resin, a hole 82 through which the injection nozzle 71A is inserted is provided in the substrate 8, and a plurality of stays 9 are provided between the upper surface of the power transmission core 2 and the bottom surface of the substrate 8. After connecting each lead to the terminal 81 on the back surface of the substrate 8, the substrate 8 is supported by the stay 9, and the resin is interposed between the substrate 8, the power transmission core 2, the signal transmission core 4 and the noise canceling coil 6. Is molded.
[0111]
Below, a manufacturing method is demonstrated.
In the case of the above (1), the components may be assembled in sequence, and the description is omitted.
FIG. 4 shows a front sectional view of the mold in the case (2).
The difference from the mold of FIG. 2 is the structure of the injection plate.
The injection plate 70 </ b> A is provided with an injection nozzle 71 </ b> A and a groove 72 that masks the terminal 81 of the substrate 8 at a position that matches the hole 82 provided in the substrate 8.
The manufacturing procedure is the same as the manufacturing method of the embodiment up to Step 3. After that, follow the steps below.
Step 4: Connect the leads 3L and 6L to the terminal 81 on the back surface of the substrate 8.
Step 5: The stay 9 is temporarily fixed to the upper surface of the power transmission core 2.
Step 6: The substrate 8 is set on the stay 9 so that the surface thereof coincides with the upper surface of the holder 60.
Step 7: The upper surface of the holder 60 is covered with the injection plate 70A so that the injection nozzle 71A is aligned with the hole 82 provided in the substrate 8, and the die 50, the holder 60 and the injection plate 70A are firmly fixed.
Step 8: Resin is injected under pressure from the injection nozzle 71A.
After the resin has solidified,
Step 9: Remove the injection plate 70A.
Step 10: The die 50 is pushed upward, and the holder 60 and the die 50 are released.
Step 11: Remove the transformer primary side 10 or the transformer secondary side 20, which is integrally formed with the substrate 8, remaining on the die 50.
As a result, the substrate having the external connection terminals and the transformer are integrally formed.
[0112]
【The invention's effect】
The above configuration has the following effects.
(1) In the apparatus, the voltage induced in the noise canceling coil cancels out the voltage induced in the signal transmitting coil, so that there is almost no error signal transmission and the reliability is further improved.
(2) In the manufacturing method using the resin mold, since the parts are integrally formed, the productivity is improved, and the surfaces of the power transmission core and the signal transmission core are in the same plane and need to be finished. Disappear.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an embodiment of the present invention.
FIG. 2 is a front sectional view showing a mold for manufacturing an embodiment of the present invention.
FIG. 3 is a front sectional view showing a second embodiment of the present invention.
FIG. 4 is a front sectional view showing a mold for manufacturing a second embodiment of the present invention.
[Explanation of symbols]
1 Frame 11, 13, 21, 41, 62, 64, 72 Groove 12 Cylindrical part 2 Power transmission core 3 Power transmission coil 3L, 6L Lead 3P, 6P Protective tube 4 Signal transmission core 5 Signal transmission coil 6 Noise Cancellation coil 10 Transformer primary side 20 Transformer secondary side 50 Die 51, 52 Ring-shaped protrusion 60 Holder 61 Through hole 63 Ejection nozzle 70, 70A Injection plate 71, 71A Injection nozzle 8 Substrate 81 Terminal 9 Stay

Claims (4)

リング状の溝内に電力伝送用コイルを収納した電力伝送用コアと、他のリング状の溝内に信号伝送用コイルを収納した信号伝送用コアとを磁気的に分離する非磁性体のフレームに収納すると共に、前記電力伝送用コアと前記信号伝送用コアを同心状に配置してなる偏平円筒形状のトランスコア一対を空隙を介し対向させた無接触式電力と信号の伝送装置において、
前記信号伝送用コアの周辺の外部に、前記電力伝送用コイルの作る磁束と鎖交する、前記信号伝送用コイルとは逆巻のノイズ相殺用コイルを設け、前記信号伝送用コイルに前記ノイズ相殺用コイルを直列に接続したことを特徴とする無接触式電力と信号の伝送装置。
A non-magnetic frame that magnetically separates a power transmission core that houses a power transmission coil in a ring-shaped groove and a signal transmission core that houses a signal transmission coil in another ring-shaped groove. And a non-contact power and signal transmission device in which a pair of flat cylindrical transformer cores formed by concentrically arranging the power transmission core and the signal transmission core are opposed to each other through a gap,
Provided outside the periphery of the signal transmission core is a noise canceling coil that is linked to the magnetic flux generated by the power transmission coil and is reversely wound from the signal transmission coil, and the noise cancellation is provided in the signal transmission coil. Non-contact power and signal transmission device characterized by connecting coils for use in series.
前記フレームを樹脂とし、前記電力伝送用コア、前記信号伝送用コアと前記ノイズ相殺用コイルを一体にモールドした請求項1に記載の無接触式電力と信号の伝送装置。The contactless power and signal transmission device according to claim 1 , wherein the frame is made of resin, and the power transmission core, the signal transmission core, and the noise canceling coil are integrally molded. 円筒状のダイの上面に、電力伝送用コアの溝と嵌め合うリング状突起と、信号伝送用コアの溝と嵌め合うリング状突起を同心に設け、前記ダイの側面にホルダを嵌め合わせ、前記ホルダの上面をインジェクションプレートで覆蓋したモールド型を用い、事前に、前記信号伝送用コアの底面にノイズ相殺用コイルを接着剤等で仮固定しておき、前記ダイのリング状突起おのおのに、前記信号伝送用コアの溝と前記電力伝送用コアの溝を嵌め合わせ、前記ダイの側面に前記ホルダを嵌め合わせ、リードを前記ホルダの上面に設けた溝内にタイトにセットし、前記ホルダの上面を前記インジェクションプレートで覆蓋し、インジェクションノズルから樹脂を加圧注入し、樹脂が固化した後、前記インジェクションプレートを取り外し、前記ダイを上方向に押し上げ前記ホルダと前記ダイを離型し、前記ダイの上の残った無接触式電力と信号の伝送装置を取り外すことを特徴とする無接触式電力と信号の伝送装置の製造方法。The upper surface of the cylindrical die, fitted with ring-shaped protrusions mate with the grooves of a power transmission core is provided with a ring-shaped protrusions mate with the grooves of the signal transmission core concentrically, a holder on the side surface of the die, the Using a mold with the top surface of the holder covered with an injection plate, a noise canceling coil is temporarily fixed to the bottom surface of the signal transmission core with an adhesive or the like in advance, and each of the ring-shaped protrusions of the die The groove of the signal transmission core and the groove of the power transmission core are fitted, the holder is fitted to the side surface of the die, and the lead is tightly set in the groove provided on the upper surface of the holder, and the upper surface of the holder The injection plate is covered, and resin is injected under pressure from the injection nozzle. After the resin has solidified, the injection plate is removed and the die is moved upward. Was released the said holder die pushed toward manufacturing method of a transmission apparatus of contactless power and signal, characterized in that removing the transmission device contact-free power and signal remaining on the said die. 前記リードを基板に設けたターミナルに集中的に接続できるように、前記基板に前記インジェクションノズルと挿通する穴を設け、前記インジェクションプレートに前記基板のターミナルをマスクする溝を設け、前記基板と前記電力伝送用コア間をステーにより仮支持し、樹脂を加圧注入する請求項3に記載の無接触式電力と信号の伝送装置の製造方法。 Said lead so that it can be centrally connected to the terminal provided on the substrate, a hole for inserting said injection nozzle to the substrate is provided, the groove masking the substrate terminal in the injection plate provided, the substrate and the power 4. The method for manufacturing a contactless power and signal transmission device according to claim 3 , wherein the transmission core is temporarily supported by a stay and the resin is injected under pressure.
JP24849295A 1995-09-01 1995-09-01 Contactless power and signal transmission device and method of manufacturing the same Expired - Fee Related JP3700867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24849295A JP3700867B2 (en) 1995-09-01 1995-09-01 Contactless power and signal transmission device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24849295A JP3700867B2 (en) 1995-09-01 1995-09-01 Contactless power and signal transmission device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0974034A JPH0974034A (en) 1997-03-18
JP3700867B2 true JP3700867B2 (en) 2005-09-28

Family

ID=17178977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24849295A Expired - Fee Related JP3700867B2 (en) 1995-09-01 1995-09-01 Contactless power and signal transmission device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3700867B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999176B2 (en) * 2007-11-30 2012-08-15 三重電子株式会社 Drive device
JP4999177B2 (en) * 2007-11-30 2012-08-15 三重電子株式会社 Movable transmission device
JP5839020B2 (en) 2013-11-28 2016-01-06 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP6179375B2 (en) 2013-11-28 2017-08-16 Tdk株式会社 Coil unit
JP6432251B2 (en) 2013-11-28 2018-12-05 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP2015106581A (en) 2013-11-28 2015-06-08 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP6164421B2 (en) 2013-11-28 2017-07-19 Tdk株式会社 Power transmission coil unit and wireless power transmission device
DE102018201814B4 (en) 2018-02-06 2024-05-16 Vitesco Technologies GmbH Housing with an energy transfer coil and the electronic circuits required for energy transfer

Also Published As

Publication number Publication date
JPH0974034A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
JP5478555B2 (en) Ignition coil for internal combustion engine
JPH0367028B2 (en)
JPH01238005A (en) Modular radio frequency electric source transformer
KR101740612B1 (en) Line filter
JP3700867B2 (en) Contactless power and signal transmission device and method of manufacturing the same
JP3064853B2 (en) choke coil
JP4837485B2 (en) Inductor and method of manufacturing inductor
JPH1197261A (en) Ignition coil
JP3671171B2 (en) Coil device and manufacturing method thereof
JP5941717B2 (en) Resin mold coil device
JPH05316694A (en) Manufacture of motor stator
JPH02150004A (en) Inductance element
JP4014965B2 (en) Ignition coil for internal combustion engine
KR200158848Y1 (en) Stator of motor
JP5287773B2 (en) Core in induction equipment
JP3446133B2 (en) High frequency transformer
JP2763844B2 (en) Core case
KR100275290B1 (en) Choke
CA2237339C (en) Bearing for high speed coil winding
JP2000311823A (en) Closed magnetic path core of ignition coil for internal combustion engine
KR100556974B1 (en) Outer core assembling structure of stator for liner motor and assembling method thereof
JP3371498B2 (en) Transformer and method of manufacturing the same
JPH066501Y2 (en) Coil bobbin
JP2000150274A (en) Power receiving core for noncontact power feeding
JPH0110910Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050707

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees