JP3700575B2 - Optical receiver and control method thereof - Google Patents

Optical receiver and control method thereof Download PDF

Info

Publication number
JP3700575B2
JP3700575B2 JP2000356198A JP2000356198A JP3700575B2 JP 3700575 B2 JP3700575 B2 JP 3700575B2 JP 2000356198 A JP2000356198 A JP 2000356198A JP 2000356198 A JP2000356198 A JP 2000356198A JP 3700575 B2 JP3700575 B2 JP 3700575B2
Authority
JP
Japan
Prior art keywords
apd
optical receiver
controlling
light
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000356198A
Other languages
Japanese (ja)
Other versions
JP2002158370A (en
Inventor
正志 朔晦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000356198A priority Critical patent/JP3700575B2/en
Publication of JP2002158370A publication Critical patent/JP2002158370A/en
Application granted granted Critical
Publication of JP3700575B2 publication Critical patent/JP3700575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光伝送システムに用いられる光受信回路に関し、とくに光入力に対して広いダイナミックレンジを有する光受信器に関する。
【0002】
【従来の技術】
光伝送システムに用いられる、高速・広帯域の従来の光受信回路としては、図7に示すような回路構成がある(米津宏雄著「光通信素子工学」、工学図書刊(昭和59年2月)参照)。この従来例の受信回路では、受光素子としてバイアス印加されたアバランシェ・フォトダイオード(APD)を用い、光電流を電圧に変換し、信号出力として取り出している。そして、受信信号レベルと最適受信状態のレベル(基準電圧)の差を検出して、その差が絶えず0になるよう、信号が大きい場合は増倍率Mが小さくなるように、信号が小さい場合は増倍率Mが大きくなるようにバイアス電圧を調整するフィードバック回路が設けられている。基準電圧に対応するバイアス電圧は最適な増倍率(M)を与えるように調整される。
【0003】
このような、APDを含んだ従来回路では、大光入力時に動作不良が起こるという欠点があった。大光入力のリミットはAPDの許容光電流値で決まる。受光パワーが大きくなってきた場合、規定されている電流リミットを越えないように、APDは電流増倍率Mの低い状態で動作させる。しかし、Mが低い場合には、図8(メーカー発行の光半導体デバイス・データブックより引用)に示すように応答帯域が劣化する。従って、Mによる帯域制限と最大許容光電流との兼ね合いによって最大受信特性が制限される。
例えば、2.4Gbpsの光受信器の場合を考えると、十分な応答帯域を確保するには、通常M=4〜5に設定する必要がある。光電流リミット値が1mApp(peak to peak)である場合、最大許容光受信レベルは、−9dBm〜−10dBm(波長は1550nm、APDの量子効率は80%として計算)程度でしかなく、光受信器として十分なダイナミックレンジの値ではない。
【0004】
一方、入力光信号レベルが小さい場合、必要な光電流を得るためにAPDは増倍率Mを上げて動作させる。しかし、図9に示すように、APDの逆バイアス特性には大きな温度依存性がある。たとえば、常温(25℃)で最適なMが得られる逆バイアスに設定しても、温度が高くなった場合は、図9に示すように逆バイアス特性が高温側へシフトし、Mが下がり最小受信感度特性の劣化となる。また、温度が低くなった場合は、逆バイアス特性が低温側へシフトするため暗電流が増加し、受信感度特性は劣化する。従来回路では、ある程度は電圧振幅値によって、間接的に温度によって変動する逆バイアスを制御しているが、広い温度範囲で最適な逆バイアスを印加することは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、このような従来技術に難点に鑑みてなされたものであって、その目的とするところは、光伝送システムに用いられる光受信器において、大光入力に対して受光素子または受信回路の飽和動作を抑制し、また、同時に広い温度範囲にわたって最適な逆バイアスを印加することができ、常に安定した受信動作が可能な光結合系および回路構成を提供するものである。
【0006】
【課題を解決するための手段】
本発明の請求項1に係わる発明の光受信器は、アバランシェ・フォトダイオード(APD)を備えた光受信器であって、前記APDへの入射光量を制御する手段と、前記APDに印加する逆バイアス電圧を制御して前記APDの電流増倍率が一定となるように前記入射光量と前記逆バイアス電圧を制御する手段とを併せ備えることを特徴とする。
また、本発明の請求項2に係わる発明の光受信器は、APDと、前記APDに逆バイアスを印加する手段と、前記逆バイアスの電圧を制御して前記APDの電流増倍率が一定となるように前記入射光量と前記逆バイアス電圧を制御する手段と、前記APDに流れる光電流をモニタする手段と、前記モニタ手段の出力に応じて前記APDへの入射光量を制御する手段を備えることを特徴とする。
また、本発明の請求項3に係わる発明の光受信器は、前記請求項2に係わる発明記載の前記入射光量を制御する手段が、光に対する反射率を可変する手段であることを特徴とする。
また、本発明の請求項4に係わる発明の光受信器は、前記請求項3に係わる発明記載の前記反射率を可変する手段が、2次元に配列した複数のマイクロミラーで構成されていることを特徴とする。
また、本発明の請求項5に係わる発明の光受信器は、前記請求項4に係わる発明記載の前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射面の反射角度を可変することを特徴とする。
また、本発明の請求項6に係わる発明の光受信器は、前記請求項2に係わる発明記載の前記逆バイアスの電圧を制御する手段が、前記APDの温度を検知する温度検出手段と、前記APDの温度と前記逆バイアスを印加する手段の最適印加電圧値との対応を記憶させたメモリを備え、前記温度検出手段の検出温度に対して前記メモリから読み出された前記最適印加電圧値を前記逆バイアス印加手段に指示することを特徴とする。
また、本発明の請求項7に係わる発明の光受信器は、フォトダイオード(PD)と、前記PDに流れる光電流を電圧に変換する手段と、前記光電流をモニタする手段と、前記モニタ手段の出力に応じて前記PDへの入射光量を制御する手段を備えた光受信器であって、
前記PDへの入射光量を制御する手段が、2次元に配列した複数のマイクロミラーで構成され光に対する反射率を可変する手段であり、前記PDに流れる光電流が前記光電流を電圧に変換する手段の最大許容入力電流を超えないように、前記PDへの入射光量を制御することを特徴とする。
また、本発明の請求項に係わる発明の光受信器は、前記請求項に係わる発明記載の前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射面の反射角度を可変することを特徴とする。
また、本発明の請求項9に係わる発明の光受信器の制御方法は、アバランシェ・フォトダイオード(APD)を備えた光受信器の制御方法であって、前記APDへの入射光量を制御し、前記APDに印加する逆バイアス電圧を制御して、前記APDの電流増倍率を一定化することを特徴とする。
また、本発明の請求項10に係わる発明の光受信器の制御方法は、APDを備えた光受信器の制御方法であって、前記APDに印加する逆バイアスの電圧を制御し、前記APDに流れる光電流をモニタし、前記モニタ出力に応じて前記APDへの入射光量を制御して、前記APDの電流増倍率を一定化することを特徴とする。
また、本発明の請求項11に係わる発明の光受信器の制御方法は、前記請求項10記載の前記入射光量の制御が、光に対する反射率を可変する手段によることを特徴とする。
また、本発明の請求項12に係わる発明の光受信器の制御方法は、前記請求項11記載の前記反射率を可変する手段が、2次元に配列した複数のマイクロミラーで構成されていることを特徴とする。
また、本発明の請求項13に係わる発明の光受信器の制御方法は、前記請求項12記載の前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射 面の反射角度を可変することを特徴とする。
また、本発明の請求項14に係わる発明の光受信器の制御方法は、前記請求項10記載の前記光受信器が、前記APDの温度を検知する温度検出手段と、前記APDの温度と前記印加する逆バイアスの最適印加電圧値との対応を記憶させたメモリを備え、前記印加する逆バイアス電圧の制御は、前記温度検出手段の検出温度に対して前記メモリから読み出された前記最適印加電圧値であることを特徴とする。
また、本発明の請求項15に係わる発明の光受信器の制御方法は、フォトダイオード(PD)と、前記PDに流れる光電流を電圧に変換する手段と、前記光電流をモニタする手段と、前記モニタ手段の出力に応じて前記PDへの入射光量を制御する手段を備えた光受信器の制御方法であって、前記PDへの入射光量を制御する手段が、2次元に配列した複数のマイクロミラーで構成され光に対する反射率を可変する手段であり、前記PDに流れる光電流が前記光電流を電圧に変換する手段の最大入力電流制限を超えないように、前記PDへの入射光量を制御することを特徴とする。
また、本発明の請求項16に係わる発明の光受信器の制御方法は、前記請求項15記載の前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射面の反射角度を可変することを特徴とする。
【0007】
【発明の実施の形態】
本発明の実施の形態について、図面を参照して説明する。
図1には、APD(アバランシェ・フォト・ダイオード)を用いた本発明の光受信器の第1の実施形態の回路ブロック図を、図2に光受信器の光学系を示す。
図1を参照すると、本光受信器の電気系は、APD1と、電流ッ電圧変換をするトランスインピーダンス型増幅器2と、高電圧電源3と、高電圧電源を制御する高電圧電源制御部4と、APDに流れる光電流を監視する光電流レベルモニタ5と、光の反射方向を可変する反射可変ミラー6と、光電流レベルモニタ5からの信号を受けて反射可変ミラーを制御するミラー制御部7とで構成される。
また、図2の本光受信器の光学系は、光ファイバ8と、光ファイバから出射された光を集光するレンズ9と、光を反射する反射可変ミラー10と、集光された光を受光するAPD1とから構成される。
【0008】
次に、図1、図2を用いて、本発明の光受信器の動作を説明する。
【0009】
本光受信器において、APD1から送出される光信号電流は、トランスインピーダンス型増幅器2によって電圧信号に変換され、電圧信号として出力される。
APD1には、最も良好なS/N比が得られる最適増倍率Mopt(下記(1)式)が存在する。Moptは所望の最小受光パワーを受信したときに最適となるように設定される。2.4Gbpsの受信器の場合、通常は最小受信感度が−33dBm付近になるように設定している。高電圧電源制御部4で制御された高電圧は、前述のMoptの状態を常に保つように逆バイアスをAPDに印加している。
Mopt=(4kTFt /(q(Ip +Idm)Rl))1/(2+x) (1)
ここで、kはボルツマン係数、Tは温度、Ft は雑音指数、qは電荷、Ip は光電流、Idmは増倍暗電流、Rl は負荷抵抗、xは過剰雑音指数をそれぞれ表す。
【0010】
光電流レベルモニタ5は、常にAPDに流れる電流を監視している。通常、受光素子には、動作可能な最大受光電流が規格化されている。この規格に合わせて、入力光パワーが大きい場合は、電流増倍率Mを下げて過電流が流れないようにしている。しかし、図8に示すように、通常Mが低くなりすぎると応答帯域が劣化してくる。これら過電流防止と帯域劣化抑制のため、所定以上の電流を検出した場合、ミラー制御部7は反射可変ミラー6を制御してAPDに入力する光量を抑制し、最適なMのままで規定値以上の電流が流れないように制御を行っている。
【0011】
反射可変ミラー6は、図4に示すようなマイクロ・ミラー・アレイで構成している。マトリックス・アレイを形成している個々のミラーは、たとえば図4に示すような断面構造をしており、本例では下部電極の電圧を制御することでミラーが静電力によって引力や斥力を受けて、支柱を支点にして角度を可変することができる構造となっている。このマイクロ・ミラー・アレイはシリコン・マイクロマシーンなどで製造可能である。反射可変ミラーは、マトリックスアレイ状に並べられた多数のミラー片の一部または全部の角度を変えることによってミラー全体としての反射率を変え、APDへ入射する光量を調節している。上記の構成によって、例えば、従来の2.4Gbpsで用いられている光受信器では、最大光受信レベルは−10dBm程度であったが、本発明では反射可変ミラーを用いることで、0dBm以上の光入力に対しても正常に動作させることが可能である。
【0012】
次に、広い温度範囲で最適な逆バイアスを印加する手段と。その作用について説明する。前述の如く、図8(前掲、光半導体デバイスデータブック)に示されているように、APDの逆バイアス特性は+1〜2%/℃の傾斜特性を持っている。従って、各動作温度によってMoptが得られる逆バイアスの大きさは異なる。
高電圧電源制御部4は、図5に示すように、温度センサ部11と、メモリ部12とコントロール部13とから構成されている。メモリ部12はROMであってセンサー部が検知する各温度で最適な増倍率を与える逆バイアス値を得るための情報が書き込まれている。コントロール部13は温度センサー部11の検知する温度の情報を受け、各温度に対応したAPD1の逆バイアス値に関する情報を読み出し、高電圧電源3に出力する。従って、本構成では、APDに設定される増倍率Mは、温度変動に対して常に最適な増倍率Moptから外れることなく光受信モジュールの動作が可能である。
【0013】
次に、本発明の第2の実施形態について説明する。図は、APDに代えてPIN−PD10(PINフォトダイオード)を用いた場合の実施例である。PIN−PDはアバランシェ効果を用いないため、増倍率最適化を施す手段は必要ない。また、受光素子自体の入力光に対するダイナミックレンジが広く、PIN−PD10の最大光電流制限よりトランスインピーダンス型増幅器2の最大入力電流制限の方が小さい場合が多い。従って、この場合は光入力パワー制御系のみを備え、しかも、PIN−PDの入力光による飽和ではなく、トランスインピーダンス型増幅器の最大入力電流に合わせて制御動作を設定する。
なお、上記の第2の実施形態の説明では、PIN−PDを無バイアスで用いる場合をのべたが、応答速度を高めるために、ブレークダウン電圧未満の逆バイアスを印加して用いてもよい。
また、上記の第2の実施形態の説明では、PIN−PDを用いる場合をのべたが、i層を有することは必ずしも必要はなく、単にpn接合を有する受光素子であっても同様の動作が可能である。
【0014】
【発明の効果】
以上説明したように本発明の光受信器においては、APDと、光電流レベルモニタとミラー制御部と反射可変ミラーとで構成されるAPDへの光入力パワー制御系と、高電圧電源と高電圧電源制御部から構成されるAPDへの高電圧逆バイアス制御系を備えることによって、以下に記載するような効果を奏する。
光入力パワーに関係なく常にAPDを最適な条件で動作させることが可能となり、最小受信レベルから最大受信レベルまで広範囲にわたって良好な受信感度特性が得られる。
APDに入力する光パワーを反射可変ミラーによって制限するため、特に最大受信側の大幅な特性改善が可能であり、広いダイナミックレンジを持つ光受信器の構成が可能である。
個々のAPDやその周辺部の温度特性に合わせた温度補償が可能となるため、光受信器の温度変動による特性劣化を抑制することができ、広温度範囲で良好な受信感度が得られる。
【図面の簡単な説明】
【図1】本発明の光受信器の第1の実施形態の構成を表すブロック図である。
【図2】本発明の光受信器の第1の実施形態が備える光入力パワー制御系の構成を表す図である。
【図3】本発明の光受信器の第1の実施形態の有する光入力パワー制御系が備える反射可変ミラーの平面構成を表す図である。
【図4】本発明の光受信器の第1の実施形態の有する光入力パワー制御系が備える反射可変ミラーを構成するミラー要素の構造を表す図である。
【図5】本発明の光受信器の第1の実施形態が備える逆バイアス高電圧電源制御系の構成を表す図である。
【図6】本発明の光受信器の第2の実施形態の構成を表すブロック図である。
【図7】従来の光受信回路の構成を表す図である。
【図8】APDの電流増倍率と受信帯域幅との関係の一例を示す図である。
【図9】APDの温度に対する暗電流と逆バイアス電圧との関係を示す図である。
【符号の説明】
1 APD
2 トランスインピーダンス型増幅器
3 高電圧電源
4 高電圧電源制御部
5 光電流レベルモニタ
6 反射可変ミラー
7 ミラー制御部
10 PIN−PD
11 温度センサー部
12 メモリ部
13 コントロール部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical receiver circuit used in an optical transmission system, and more particularly to an optical receiver having a wide dynamic range with respect to optical input.
[0002]
[Prior art]
As a conventional high-speed and wide-band optical receiver circuit used in an optical transmission system, there is a circuit configuration as shown in FIG. 7 (Hiroo Yonezu, "Optical communication element engineering", Engineering book publication (February 1984)) reference). In this conventional receiving circuit, a bias-applied avalanche photodiode (APD) is used as a light receiving element, and photocurrent is converted into voltage and extracted as a signal output. Then, the difference between the received signal level and the level of the optimum reception state (reference voltage) is detected, and when the signal is small, the multiplication factor M is decreased when the signal is large so that the difference is constantly zero. A feedback circuit for adjusting the bias voltage so that the multiplication factor M is increased is provided. The bias voltage corresponding to the reference voltage is adjusted to give the optimum multiplication factor (M).
[0003]
Such a conventional circuit including an APD has a drawback in that an operation failure occurs when large light is input. The limit of the large light input is determined by the allowable photocurrent value of the APD. When the received light power increases, the APD is operated in a state where the current multiplication factor M is low so that the prescribed current limit is not exceeded. However, when M is low, the response band deteriorates as shown in FIG. 8 (quoted from the optical semiconductor device data book issued by the manufacturer). Therefore, the maximum reception characteristic is limited by the balance between the band limitation by M and the maximum allowable photocurrent.
For example, considering the case of a 2.4 Gbps optical receiver, it is usually necessary to set M = 4 to 5 in order to ensure a sufficient response band. When the photocurrent limit value is 1 mApp (peak to peak), the maximum allowable optical reception level is only about −9 dBm to −10 dBm (wavelength is 1550 nm, the quantum efficiency of APD is calculated as 80%), and the optical receiver Not enough dynamic range value.
[0004]
On the other hand, when the input optical signal level is small, the APD is operated by increasing the multiplication factor M in order to obtain a necessary photocurrent. However, as shown in FIG. 9, the reverse bias characteristic of the APD has a large temperature dependency. For example, even if the reverse bias is set so that the optimum M is obtained at room temperature (25 ° C.), if the temperature increases, the reverse bias characteristics shift to the high temperature side as shown in FIG. The reception sensitivity characteristic is deteriorated. Further, when the temperature is lowered, the reverse bias characteristic is shifted to a low temperature side, so that the dark current is increased and the reception sensitivity characteristic is deteriorated. In the conventional circuit, the reverse bias that indirectly varies depending on the temperature is controlled to some extent by the voltage amplitude value, but it is difficult to apply the optimum reverse bias in a wide temperature range.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the drawbacks of the prior art, and an object of the present invention is to provide a light receiving element or a receiving circuit for a large light input in an optical receiver used in an optical transmission system. An optical coupling system and a circuit configuration capable of suppressing the saturation operation and simultaneously applying an optimum reverse bias over a wide temperature range and always performing a stable reception operation are provided.
[0006]
[Means for Solving the Problems]
An optical receiver according to a first aspect of the present invention is an optical receiver including an avalanche photodiode (APD), and means for controlling the amount of light incident on the APD and a reverse applied to the APD. and wherein the obtaining Bei together and means current multiplication factor of the APD by controlling a bias voltage to control the reverse bias voltage and the amount of incident light to be constant.
In the optical receiver according to claim 2 of the present invention, the APD, the means for applying a reverse bias to the APD, and the voltage of the reverse bias are controlled to make the current multiplication factor of the APD constant. means for the control the amount of incident light and the reverse bias voltage so, Bei means for monitor light current flowing through the APD, the means for controlling the amount of light entering the APD according to the output of said monitor means characterized in that it obtain.
An optical receiver according to a third aspect of the present invention is characterized in that the means for controlling the amount of incident light according to the second aspect of the present invention is a means for varying the reflectance with respect to light. To do.
Further, in the optical receiver of the invention according to claim 4 of the present invention, the means for varying the reflectance according to the invention of claim 3 is composed of a plurality of micromirrors arranged in two dimensions. It is characterized by.
An optical receiver according to a fifth aspect of the present invention is a reflection of a light reflecting surface of a part or all of the two-dimensionally arranged micromirrors according to the fourth aspect of the invention. The angle is variable.
In the optical receiver according to claim 6 of the present invention, the means for controlling the reverse bias voltage according to the invention according to claim 2 includes temperature detecting means for detecting the temperature of the APD, and A memory storing a correspondence between the temperature of the APD and the optimum applied voltage value of the means for applying the reverse bias, and the optimum applied voltage value read from the memory with respect to the detected temperature of the temperature detecting means; The reverse bias applying means is instructed.
According to a seventh aspect of the present invention, there is provided an optical receiver comprising: a photodiode (PD); means for converting a photocurrent flowing through the PD into a voltage; means for monitoring the photocurrent; and the monitor means. An optical receiver comprising means for controlling the amount of light incident on the PD according to the output of
The means for controlling the amount of light incident on the PD is a means that is made up of a plurality of two-dimensionally arranged micromirrors and that changes the reflectance of light, and the photocurrent flowing through the PD converts the photocurrent into a voltage. so as not to exceed the maximum allowable input current means and that you control the amount of light incident on the PD.
According to an eighth aspect of the present invention, there is provided an optical receiver comprising: a plurality of micromirrors arranged in two dimensions according to the seventh aspect of the invention; The angle is variable.
An optical receiver control method according to claim 9 of the present invention is an optical receiver control method including an avalanche photodiode (APD), and controls the amount of light incident on the APD. The reverse bias voltage applied to the APD is controlled to make the current multiplication factor of the APD constant.
An optical receiver control method according to a tenth aspect of the present invention is an optical receiver control method including an APD, wherein a reverse bias voltage applied to the APD is controlled, and the APD is applied to the APD. The flowing photocurrent is monitored, the amount of light incident on the APD is controlled according to the monitor output, and the current multiplication factor of the APD is made constant.
An optical receiver control method according to an eleventh aspect of the present invention is characterized in that the control of the incident light amount according to the tenth aspect is performed by means for varying the reflectance with respect to light.
In the optical receiver control method according to the twelfth aspect of the present invention, the means for varying the reflectance according to the eleventh aspect is configured by a plurality of micromirrors arranged two-dimensionally. It is characterized by.
According to a thirteenth aspect of the present invention, there is provided a method of controlling an optical receiver according to the thirteenth aspect of the present invention, wherein reflection of light reflecting surfaces of a part or all of the two-dimensionally arranged micromirrors is performed. The angle is variable.
According to a fourteenth aspect of the present invention, there is provided a method for controlling an optical receiver according to the tenth aspect, wherein the optical receiver according to the tenth aspect includes a temperature detecting means for detecting the temperature of the APD, the temperature of the APD, and the temperature of the APD. A memory storing a correspondence with an optimum applied voltage value of the reverse bias to be applied, and the control of the reverse bias voltage to be applied is performed by reading the optimum application read from the memory with respect to the temperature detected by the temperature detecting means; It is a voltage value.
According to a fifteenth aspect of the present invention, there is provided an optical receiver control method comprising: a photodiode (PD); a means for converting a photocurrent flowing through the PD into a voltage; a means for monitoring the photocurrent; An optical receiver control method comprising means for controlling the amount of incident light on the PD according to the output of the monitoring means, wherein the means for controlling the amount of incident light on the PD comprises a plurality of two-dimensionally arranged means. A means configured to change the reflectance with respect to light, which is configured by a micromirror, and the amount of incident light to the PD is set so that the photocurrent flowing through the PD does not exceed the maximum input current limit of the means for converting the photocurrent into a voltage. It is characterized by controlling.
According to a sixteenth aspect of the present invention, there is provided a method of controlling an optical receiver according to the sixteenth aspect of the present invention, wherein reflection of light reflecting surfaces of a part or all of the two-dimensionally arranged micromirrors is performed. The angle is variable.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a circuit block diagram of a first embodiment of an optical receiver of the present invention using an APD (avalanche photo diode), and FIG. 2 shows an optical system of the optical receiver.
Referring to FIG. 1, the electrical system of the present optical receiver includes an APD 1, a transimpedance amplifier 2 that performs current-voltage conversion, a high voltage power source 3, and a high voltage power source control unit 4 that controls the high voltage power source. , A photocurrent level monitor 5 that monitors the photocurrent flowing through the APD, a reflection variable mirror 6 that changes the reflection direction of light, and a mirror control unit 7 that receives the signal from the photocurrent level monitor 5 and controls the reflection variable mirror. It consists of.
The optical system of the present optical receiver in FIG. 2 includes an optical fiber 8, a lens 9 that collects light emitted from the optical fiber, a reflection variable mirror 10 that reflects light, and the collected light. And APD 1 that receives light.
[0008]
Next, the operation of the optical receiver of the present invention will be described with reference to FIGS.
[0009]
In this optical receiver, the optical signal current transmitted from the APD 1 is converted into a voltage signal by the transimpedance amplifier 2 and output as a voltage signal.
APD 1 has an optimum multiplication factor Mopt (the following equation (1)) that provides the best S / N ratio. Mopt is set to be optimum when a desired minimum light receiving power is received. In the case of a 2.4 Gbps receiver, the minimum receiving sensitivity is normally set to be around -33 dBm. The high voltage controlled by the high voltage power supply control unit 4 applies a reverse bias to the APD so as to always maintain the above-mentioned Mopt state.
Mopt = (4 kTF t / (q (I p + I dm ) R l )) 1 / (2 + x) (1)
Here, k is the Boltzmann coefficient, T is the temperature, F t is the noise figure, q is the charge, I p is the photocurrent, I dm is the multiplication dark current, R l is the load resistance, and x is the excess noise figure. .
[0010]
The photocurrent level monitor 5 constantly monitors the current flowing through the APD. Usually, the maximum light receiving current that can be operated is standardized in the light receiving element. In accordance with this standard, when the input optical power is large, the current multiplication factor M is lowered so that no overcurrent flows. However, as shown in FIG. 8, when M is usually too low, the response band deteriorates. In order to prevent these overcurrents and suppress band degradation, when a current exceeding a predetermined value is detected, the mirror control unit 7 controls the reflection variable mirror 6 to suppress the amount of light input to the APD, and keeps the optimum M as the specified value. Control is performed so that the above current does not flow.
[0011]
The reflection variable mirror 6 is composed of a micro mirror array as shown in FIG. Each of the mirrors forming the matrix array has a cross-sectional structure as shown in FIG. 4, for example. In this example, the mirror receives an attractive force or a repulsive force by an electrostatic force by controlling the voltage of the lower electrode. The structure is such that the angle can be varied with the support as a fulcrum. This micro mirror array can be manufactured by a silicon micromachine or the like. The reflection variable mirror adjusts the amount of light incident on the APD by changing the reflectance of the mirror as a whole by changing the angle of some or all of the many mirror pieces arranged in a matrix array. With the above configuration, for example, in a conventional optical receiver used at 2.4 Gbps, the maximum optical reception level is about −10 dBm. However, in the present invention, by using a reflection variable mirror, light of 0 dBm or more is used. It is possible to operate normally for input.
[0012]
Next, means for applying an optimum reverse bias in a wide temperature range. The operation will be described. As described above, as shown in FIG. 8 (supra, the optical semiconductor device data book), the reverse bias characteristic of the APD has a slope characteristic of +1 to 2% / ° C. Therefore, the magnitude of the reverse bias from which Mopt is obtained differs depending on the operating temperature.
As shown in FIG. 5, the high voltage power supply control unit 4 includes a temperature sensor unit 11, a memory unit 12, and a control unit 13. The memory unit 12 is a ROM in which information for obtaining a reverse bias value that gives an optimum multiplication factor at each temperature detected by the sensor unit is written. The control unit 13 receives information on the temperature detected by the temperature sensor unit 11, reads information about the reverse bias value of the APD 1 corresponding to each temperature, and outputs the information to the high voltage power supply 3. Therefore, in this configuration, the multiplication factor M set in the APD can operate the optical reception module without always deviating from the optimum multiplication factor Mopt for the temperature fluctuation.
[0013]
Next, a second embodiment of the present invention will be described. FIG. 6 shows an embodiment in which PIN-PD10 (PIN photodiode) is used instead of APD. Since PIN-PD does not use the avalanche effect, means for performing multiplication factor optimization is not necessary. In addition, the dynamic range for the input light of the light receiving element itself is wide, and the maximum input current limit of the transimpedance amplifier 2 is often smaller than the maximum photocurrent limit of the PIN-PD 10. Therefore, in this case, only the optical input power control system is provided, and the control operation is set according to the maximum input current of the transimpedance amplifier, not the saturation due to the input light of the PIN-PD.
In the description of the second embodiment, the case where the PIN-PD is used without bias is described. However, in order to increase the response speed, a reverse bias less than the breakdown voltage may be applied and used.
In the description of the second embodiment, the case of using the PIN-PD has been described. However, it is not always necessary to have the i layer, and the same operation can be performed even with a light receiving element having a pn junction. Is possible.
[0014]
【The invention's effect】
As described above, in the optical receiver of the present invention, the APD, the optical input power control system to the APD including the photocurrent level monitor, the mirror control unit, and the reflection variable mirror, the high voltage power source, and the high voltage By providing a high voltage reverse bias control system for the APD composed of the power supply control unit, the following effects can be obtained.
Regardless of the optical input power, it becomes possible to always operate the APD under the optimum conditions, and good reception sensitivity characteristics can be obtained over a wide range from the minimum reception level to the maximum reception level.
Since the optical power input to the APD is limited by the reflection variable mirror, it is possible to significantly improve the characteristics particularly on the maximum receiving side, and it is possible to construct an optical receiver having a wide dynamic range.
Since temperature compensation in accordance with the temperature characteristics of individual APDs and their peripheral portions is possible, characteristic deterioration due to temperature fluctuations of the optical receiver can be suppressed, and good reception sensitivity can be obtained in a wide temperature range.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a first embodiment of an optical receiver according to the present invention.
FIG. 2 is a diagram illustrating a configuration of an optical input power control system included in the first embodiment of the optical receiver of the present invention.
FIG. 3 is a diagram illustrating a planar configuration of a reflection variable mirror included in the optical input power control system included in the first embodiment of the optical receiver of the present invention.
FIG. 4 is a diagram illustrating a structure of a mirror element constituting a reflection variable mirror included in the optical input power control system of the first embodiment of the optical receiver of the present invention.
FIG. 5 is a diagram illustrating a configuration of a reverse bias high-voltage power supply control system included in the first embodiment of the optical receiver of the present invention.
FIG. 6 is a block diagram showing a configuration of a second embodiment of the optical receiver of the present invention.
FIG. 7 is a diagram illustrating a configuration of a conventional optical receiving circuit.
FIG. 8 is a diagram illustrating an example of a relationship between an APD current multiplication factor and a reception bandwidth;
FIG. 9 is a diagram showing a relationship between dark current and reverse bias voltage with respect to the temperature of an APD.
[Explanation of symbols]
1 APD
2 Transimpedance type amplifier 3 High voltage power supply 4 High voltage power supply control unit 5 Photocurrent level monitor 6 Reflective variable mirror 7 Mirror control unit 10 PIN-PD
11 Temperature sensor part 12 Memory part 13 Control part

Claims (16)

アバランシェ・フォトダイオード(APD)を備えた光受信器であって、前記APDへの入射光量を制御する手段と、前記APDに印加する逆バイアス電圧を制御する手段を備え、前記APDの電流増倍率が一定となるように前記入射光量と前記逆バイアス電圧を制御することを特徴とする光受信器。An optical receiver comprising an avalanche photodiode (APD), comprising: means for controlling the amount of light incident on the APD; and means for controlling a reverse bias voltage applied to the APD , wherein the current multiplication factor of the APD The incident light quantity and the reverse bias voltage are controlled so that is constant . APDと、前記APDに印加する逆バイアスの電圧を制御する手段と、前記APDに流れる光電流をモニタする手段と、前記モニタ手段の出力に応じて前記APDへの入射光量を制御する手段を備え、前記APDの電流増倍率が一定となるように前記入射光量と前記逆バイアス電圧を制御することを特徴とする光受信器。Controlling the APD, and means for controlling the voltage of the reverse bias you mark addition to the APD, and means for monitor light current flowing through the APD, the amount of light entering the APD according to the output of said monitor means Means for controlling the amount of incident light and the reverse bias voltage so that the current multiplication factor of the APD is constant . 前記入射光量を制御する手段が、光に対する反射率を可変する手段であることを特徴とする前記請求項2記載の光受信器。  3. The optical receiver according to claim 2, wherein the means for controlling the amount of incident light is means for changing a reflectance with respect to light. 前記反射率を可変する手段が、2次元に配列した複数のマイクロミラーで構成されていることを特徴とする前記請求項3記載の光受信器。  4. The optical receiver according to claim 3, wherein the means for changing the reflectance is composed of a plurality of micromirrors arranged in two dimensions. 前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射面の反射角度を可変することを特徴とする前記請求項4記載の光受信器。  5. The optical receiver according to claim 4, wherein a reflection angle of a light reflection surface of a part or all of the plurality of micromirrors arranged in two dimensions is varied. 前記逆バイアスの電圧を制御する手段が、前記APDの温度を検知する温度検出手段と、前記APDの温度と前記逆バイアスを印加する手段の最適印加電圧値との対応を記憶させたメモリを備え、前記温度検出手段の検出温度に対して前記メモリから読み出された前記最適印加電圧値を前記逆バイアス印加手段に指示することを特徴とする前記請求項2記載の光受信器。  The means for controlling the reverse bias voltage includes a temperature detection means for detecting the temperature of the APD, and a memory storing the correspondence between the temperature of the APD and the optimum applied voltage value of the means for applying the reverse bias. 3. The optical receiver according to claim 2, wherein the optimum bias voltage value read from the memory with respect to the temperature detected by the temperature detecting means is instructed to the reverse bias applying means. フォトダイオード(PD)と、前記PDに流れる光電流を電圧に変換する手段と、前記光電流をモニタする手段と、前記モニタ手段の出力に応じて前記PDへの入射光量を制御する手段を備えた光受信器であって、
前記PDへの入射光量を制御する手段が、2次元に配列した複数のマイクロミラーで構成され光に対する反射率を可変する手段であり、前記PDに流れる光電流が前記光電流を電圧に変換する手段の最大入力電流制限を超えないように、前記PDへの入射光量を制御することを特徴とする光受信器。
A photodiode (PD); means for converting a photocurrent flowing through the PD into a voltage; means for monitoring the photocurrent; and means for controlling the amount of light incident on the PD according to the output of the monitor means An optical receiver ,
The means for controlling the amount of light incident on the PD is a means that is made up of a plurality of two-dimensionally arranged micromirrors and that changes the reflectance of light, and the photocurrent flowing through the PD converts the photocurrent into a voltage. An optical receiver characterized in that the amount of light incident on the PD is controlled so as not to exceed the maximum input current limit of the means .
前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射面の反射角度を可変することを特徴とする前記請求項記載の光受信器。8. The optical receiver according to claim 7, wherein a reflection angle of a light reflection surface of a part or all of the plurality of micromirrors arranged in two dimensions is varied. アバランシェ・フォトダイオード(APD)を備えた光受信器の制御方法であって、前記APDへの入射光量を制御し、前記APDに印加する逆バイアス電圧を制御して、前記APDの電流増倍率を一定化することを特徴とする光受信器の制御方法。A method for controlling an optical receiver including an avalanche photodiode (APD), wherein the amount of light incident on the APD is controlled, the reverse bias voltage applied to the APD is controlled, and the current multiplication factor of the APD is increased. A method of controlling an optical receiver, characterized in that it is constant. APDを備えた光受信器の制御方法であって、前記APDに印加する逆バイアスの電圧を制御し、前記APDに流れる光電流をモニタし、前記モニタ出力に応じて前記APDへの入射光量を制御して、前記APDの電流増倍率を一定化することを特徴とする光受信器の制御方法。A method of controlling an optical receiver including an APD, wherein a reverse bias voltage applied to the APD is controlled, a photocurrent flowing through the APD is monitored, and an incident light amount to the APD is determined according to the monitor output. A method for controlling an optical receiver, characterized by controlling to make a current multiplication factor of the APD constant. 前記入射光量の制御が、光に対する反射率を可変する手段によることを特徴とする前記請求項10記載の光受信器の制御方法。11. The method of controlling an optical receiver according to claim 10, wherein the control of the amount of incident light is performed by means for changing a reflectance with respect to light. 前記反射率を可変する手段が、2次元に配列した複数のマイクロミラーで構成されていることを特徴とする前記請求項11記載の光受信器の制御方法。12. The method of controlling an optical receiver according to claim 11, wherein the means for changing the reflectivity is constituted by a plurality of micromirrors arranged two-dimensionally. 前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射面の反射角度を可変することを特徴とする前記請求項12記載の光受信器の制御方法。13. The method of controlling an optical receiver according to claim 12, wherein a reflection angle of a light reflection surface of a part or all of the plurality of micromirrors arranged in two dimensions is varied. 前記光受信器は、前記APDの温度を検知する温度検出手段と、前記APDの温度と前記印加する逆バイアスの最適印加電圧値との対応を記憶させたメモリを備え、前記印加する逆バイアス電圧の制御は、前記温度検出手段の検出温度に対して前記メモリから読み出された前記最適印加電圧値であることを特徴とする前記請求項10The optical receiver includes temperature detection means for detecting the temperature of the APD, and a memory storing a correspondence between the temperature of the APD and the optimum applied voltage value of the reverse bias to be applied, and the reverse bias voltage to be applied 11. The control according to claim 10, wherein the optimum applied voltage value read from the memory with respect to the temperature detected by the temperature detecting means is the control. 記載の光受信器の制御方法。The optical receiver control method described. フォトダイオード(PD)と、前記PDに流れる光電流を電圧に変換する手段と、前記光電流をモニタする手段と、前記モニタ手段の出力に応じて前記PDへの入射光量を制御する手段を備えた光受信器の制御方法であって、A photodiode (PD); means for converting photocurrent flowing through the PD into voltage; means for monitoring the photocurrent; and means for controlling the amount of light incident on the PD according to the output of the monitor means An optical receiver control method comprising:
前記PDへの入射光量を制御する手段が、2次元に配列した複数のマイクロミラーで構成され光に対する反射率を可変する手段であり、前記PDに流れる光電流が前記光電流を電圧に変換する手段の最大入力電流制限を超えないように、前記PDへの入射光量を制御することを特徴とする光受信器の制御方法。The means for controlling the amount of light incident on the PD is a means that is constituted by a plurality of two-dimensionally arranged micromirrors and varies the reflectance of light, and the photocurrent flowing through the PD converts the photocurrent into a voltage. A control method for an optical receiver, characterized in that the amount of light incident on the PD is controlled so as not to exceed the maximum input current limit of the means.
前記2次元に配列した複数のマイクロミラーの一部または全部のマイクロミラーの光反射面の反射角度を可変することを特徴とする前記請求項15記載の光受信器の制御方法。16. The method of controlling an optical receiver according to claim 15, wherein a reflection angle of a light reflection surface of a part or all of the plurality of micromirrors arranged in two dimensions is varied.
JP2000356198A 2000-11-22 2000-11-22 Optical receiver and control method thereof Expired - Fee Related JP3700575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000356198A JP3700575B2 (en) 2000-11-22 2000-11-22 Optical receiver and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000356198A JP3700575B2 (en) 2000-11-22 2000-11-22 Optical receiver and control method thereof

Publications (2)

Publication Number Publication Date
JP2002158370A JP2002158370A (en) 2002-05-31
JP3700575B2 true JP3700575B2 (en) 2005-09-28

Family

ID=18828485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356198A Expired - Fee Related JP3700575B2 (en) 2000-11-22 2000-11-22 Optical receiver and control method thereof

Country Status (1)

Country Link
JP (1) JP3700575B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332702B2 (en) 2002-08-05 2008-02-19 Sumitomo Electric Industries, Ltd. Optical receiver and a method for manufacturing the same
JP5266785B2 (en) * 2008-02-19 2013-08-21 富士通株式会社 Photodetection device and photodetection method
JP2009246621A (en) * 2008-03-31 2009-10-22 Nippon Telegr & Teleph Corp <Ntt> Optical receiver
JP7087018B2 (en) * 2020-04-14 2022-06-20 株式会社東芝 Photodetector and subject detection system using it

Also Published As

Publication number Publication date
JP2002158370A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US5859719A (en) Photogenerator for lightwave networks
US20160307939A1 (en) Microstructure enhanced absorption photosensitive devices
US7214924B2 (en) Light-receiving method of an avalanche photodiode and a bias control circuit of the same
US20140353530A1 (en) Polarization independent dual usage hcg vcsel-detector with high contrast grating and two dimensional period structure
JP2008526003A (en) Germanium-on-silicon photodetector
US20090245807A1 (en) Optical power monitoring circuit, optical transceiver, optical module, optical receiver, amplifier circuit, and integrated circuit
JP3700575B2 (en) Optical receiver and control method thereof
JPS5889887A (en) Semiconductor optical function device
JP4352828B2 (en) Optical receiver
JP4608329B2 (en) Photodetector
CN113169516B (en) Optical amplifier with larger dynamic range
US7067854B2 (en) Optical receiver
US6636681B2 (en) Optical attenuator
O'Brien et al. High-speed integrated optical wireless transceivers for in-building optical LANs
Colace et al. Near-infrared Ge-on-Si power monitors monolithically integrated on SOI chips
JP4908468B2 (en) Optical receiver with built-in variable optical attenuator
US6678444B2 (en) Low power fiberoptic relay for radio communications
JP2001237778A (en) Light-receiving circuit
JP2845120B2 (en) Method and apparatus for evaluating long-distance transmission of semiconductor laser
JP2008244391A (en) Optical module and method of manufacturing the optical module
Pearsall Long wavelength photodetectors
WO2005047964A1 (en) Lightwave control apparatus
JP3299576B2 (en) Optical space communication device
JPS6339223A (en) Light receiving device
JP3439622B2 (en) Light receiving circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees