JP3697877B2 - Underground construction method and underground building formation method - Google Patents

Underground construction method and underground building formation method Download PDF

Info

Publication number
JP3697877B2
JP3697877B2 JP36779497A JP36779497A JP3697877B2 JP 3697877 B2 JP3697877 B2 JP 3697877B2 JP 36779497 A JP36779497 A JP 36779497A JP 36779497 A JP36779497 A JP 36779497A JP 3697877 B2 JP3697877 B2 JP 3697877B2
Authority
JP
Japan
Prior art keywords
underground
ground
pile
parent
parent pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36779497A
Other languages
Japanese (ja)
Other versions
JPH11193529A (en
Inventor
浩 久保田
Original Assignee
明成不動産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明成不動産株式会社 filed Critical 明成不動産株式会社
Priority to JP36779497A priority Critical patent/JP3697877B2/en
Publication of JPH11193529A publication Critical patent/JPH11193529A/en
Application granted granted Critical
Publication of JP3697877B2 publication Critical patent/JP3697877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として地下に小規模の建造物を建設する場合の地下外壁等の形成の際における周囲の土砂の崩壊を防止するための地下工事山留工法と地下建造物の形成方法に関し、とりわけ従来の山留工法における山留壁の矢板の材質と挿入方法(取付方法)及び山留支保工である腹起しの取付位置の改良と同じく山留支保工の切梁を不要となすことにより、山留壁を地下躯体外壁の外型枠として合理的に利用することができ,かつ,地下躯体立上り部分を一度のコンクリ−ト打設で連続的に構築することができる等、従来に比し地下工事における山留と地下建造物の形成を安全で経済的且つ簡易に施工することができる地下工事山留工法と地下建造物の形成方法に係るものである。
【0002】
【従来の技術】
従来の地下工事山留工法と地下建造物の形成方法は、例えば図13及び図14に示す如き方法でなされていた。 即ち,先ず建設地盤1の躯体建設予定地の周囲を囲んで多数の親杭H形鋼2を適宜間隔で並列して打ち込み、並列する親杭2の躯体形成側前面と後面を余堀りするとともにその親杭2のフランジの躯体形成側前面にアングル等を加工したブラケット3を溶接しこれを介して腹起こしH形鋼4を取り付け、対向する腹起し4間に切梁5を掛け渡し連結して親杭2を支持する。 腹起し4と親杭2との間の空隙部にコンクリ−トパッキンを施す。 並列する親杭2のフランジ前面側の躯体形成側と反対側の裏面に木製の多数の横矢板6を取り付けて各親杭2間の空間部を閉塞し、その余堀り部分の埋め戻しをなして山留壁を形成する。 次に並列する親杭2の躯体形成側前面を掘削し、型枠を配してコンクリ−ト打設により地下躯体を形成し、その形成後親杭2,腹起し4,切梁5を撤去するというものであった。
【0003】
【発明が解決しようとする課題】
しかしこの方法の場合には、山留壁の矢板6の材質と挿入方法(親杭に対する取付方法)及び親杭2の支保工である腹起し4と切梁5の取付位置と存在が問題となり、次の如き難点がある。
▲1▼ 山留壁として多数の木製横矢板を用いているため、現場にて切断して設置しなければならずその切断及び取り付けの手間が煩瑣である。 また横矢板の設置手順上空隙部の出現が避けられず,山留背面土に緩みが生じ,地盤の安定性に欠ける。 更に横矢板を取り付けるための親杭背面の余堀りと埋め戻しが必要でその費用と工期がかさむのみならず、余堀り部分の埋め戻し又は横矢板裏込め土の肌落ち等による空隙により地盤の緩みが生じ圧密沈下が大きくなる。 木製横矢板はその材質上腐食による地盤沈下のおそれがあるため、地下外壁の外型枠の代用には困難性が伴う。
▲2▼ 並列する多数の親杭の躯体形成側前面に支保工の腹起しを配設するため、腹起しは親杭前面の掘削後の取り付けとなり、その取り付け作業は足場が悪く危険性を伴い,迅速に行うことができない。 また腹起しのみで親杭の安定した支持を行うことはできず、対向する腹起し間を切梁にて連結支持する必要があり、親杭及び山留の安定支持に多くの部材を必要とする。 更に躯体建設予定地内に山留支保工の腹起しと切梁が存在するため、その支保工材が地下躯体構築時に障害となり、コンクリ−ト打設により一度に連続して地下外壁部分の躯体を形成することができず、図14の如く、支保工材の上方と下方部分とに分けて形成し接続しなければならない。そのためその躯体形成に多大な工期と工事費を要するのみならず、コンクリ−ト打設の打継部が増大し、その部分からの漏水の危険性も増大する。
▲3▼ 躯体形成後の親杭引抜きに伴い、引抜き時の地盤引連れにより周辺地盤が緩むのみならず、コンクリ−ト打設後の地下躯体に衝撃を与えるという悪影響を及ぼす。
本発明は斯かる事情に鑑みなされたもので、山留壁の材質と親杭に対するその取付方法並びに親杭に対する腹起しの取付位置と取付方法とに工夫を図ることにより、上記従来技術の抱える諸難点を解消し、切梁を不要となして支保工材の部材点数を減らし山留工法の省力化を図り得るとともに、設置した山留壁を地下躯体外壁形成の外型枠として有効に合理的に利用し内型枠の支保工も簡易となすことができ、且つ、地下躯体の立ち上がり部分を一度のコンクリ−ト打設で連続的に構築することができる等、従来に比し地下工事における山留と地下建造物の形成を安全で経済的且つ簡易に施工することができる地下工事山留工法と地下建造物の形成方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は上記の目的を達成するために、次の手段を採っている。 即ち、躯体の建設予定地内及びそれを囲む適宜範囲の周囲に亘って適宜深さに表土掘削を施して,その掘削地盤の周囲に躯体の建設予定地を囲んでH形鋼の腹起し材を方形状に配置し連結して据え付け固定配設し、この方形状に配設された腹起し材の躯体形成側前面においてその腹起こし材に所定間隔でマークされた各親杭打設位置の個所にH形鋼の親杭を地盤内に打ち込み並列配設し、各親杭と腹起し材とを接続金具にて緊締せしめ、前記親杭の躯体形成側前面を掘削するとともに、並列する親杭間の空間部内前面側に山留鋼板を上方から圧入して屏風立て状にセットして山留壁を形成する。 そして、この屏風立て状に立設する山留鋼板を外型枠となしてその前面と床地盤上にコンクリ−ト打設により地下外壁と耐圧盤とを夫々形成し、その躯体形成後に腹起し材を解体するものである。
【0005】
【発明の実施の形態】
別紙図面の図1乃至図12を参照して、本発明方法の実施の形態の一例を説明する。 図13及び図14と同一符合のものは、それと同一のものを示す。
【0006】
図1乃至図3は表土掘削と支保工の腹起し材H形鋼4の先行配設工程を示す説明図である。 先ず,図2及び図3で示す如く、建設地盤1の躯体建設予定地内及びそれを囲む適宜範囲の周囲に亘って地上より800mm程度の深さに表土掘削を行う。 地上より800mm程度の深さの部分7は軟質の表土腐食土が堆積しており、この表土腐食土を取り除くことにより、地中障害埋設物の除去を確実になすとともに、建設重機の接地面を安定させ、作業の安全化を図り、建設重機稼動に伴う振動を減少させ、地盤地質の変化を確認する。
【0007】
次いで,図1の如く、その表土掘削地盤の周囲に躯体建設予定地を囲んで角型コンクリ−ト製のベ−ス8を介して腹起し材H形鋼4を方形状に配置し連結して据え付け固定配設する。その据え付け後、各腹起し材4の背面側を残土で埋め戻して固め、腹起し材4に所定間隔で親杭打設位置をマ−クする。 安定した表土掘削地盤の上に腹起し材4をセットするので、その作業は足場が良く、安全かつ迅速に行うことができる。
【0008】
次に,図4及び図5の如く、方形状に連結配設された腹起し材4の躯体形成側前面の前記マ−クされた各打設位置の箇所に、親杭H形鋼2を杭打機にて上方より所定の深さに圧入して打ち込み並列配設し、図6の如く各親杭H形鋼2のフランジ後方側と腹起し材H形鋼4とを接続金具9にて緊締する。 この親杭2の打ち込みは、先行取り付けの腹起し材4が前記の如く打設位置をマ−クする定規の役割を果すので、簡易にかつ精確に行うことができる。 そして腹起し材4が親杭2の後面側に配されることにより、従来のように腹起し材4を親杭2の躯体形成側前面に配するためその間に空隙が生じてコンクリ−トパッキンを介在させるという必要性はない。 また親杭2は表土掘削地盤に方形状に配置し連結して据え付け固定配設された腹起し材4に緊締されて安定支持されるので、従来のように支保工として更に切梁5を必要とするということもない。
【0009】
次に,図7乃至図9の如く、前記親杭2の躯体形成側前面をバックフォ−にて掘削するとともに、並列する各親杭2間の空間部内前面フランジ側部分に山留鋼板10をバックフォ−にて残土を搬出しつつ上方から圧入挿入して屏風立て状にセットして山留壁を形成する。 この山留鋼板10による山留壁完成と同時にそれ以前に親杭2と緊締した腹起し材4が支保工として有効に機能するので山留壁は安定して支持される。 また,山留壁の形成は山留鋼板10にて地山を削り取るように掘削して圧入するため、在来木製矢板のように裏込め作業がいらず、裏込土の肌落ち、横矢板の設置手順上生ずる空隙がなく、山留背面土の緩みが僅少となり、地盤の安定に寄与する。 更に在来の木製矢板のように現場で切断して設置する必要がなく予め用意した既製寸法の鋼板10を機械的に圧入すれば良いため、山留壁形成の手間を大幅に省力化でき、山留壁の切断ロスもない。
【0010】
次に,図10の如く、床地盤上に防振のため砕石を敷き詰めて十分につき固めるとともに、その上面に捨てコンクリ−トを打設する。その際砕石は、防振効果を高め耐圧盤となすために床地盤の中央部分を厚めに敷き詰める。 そして山留鋼板10による山留壁前面にセパレ−タ−用受金物11を溶接により突出して取り付ける。 次に,図11の如く、砕石を敷き詰め捨てコンクリ−トを施した床地盤上に鉄筋を組み立てコンクリ−ト打設により耐圧盤躯体12を形成する。コンクリ−トの打継部分に止水板をセットする。 また,親杭2と山留鋼板10による山留壁前面に壁配筋,壁スラブ型枠,スラブ配筋を施し、この山留壁を地下外壁の外型枠の代用となしてコンクリ−ト打設により地下立上躯体となる地下外壁13を形成する。 山留鋼板10による山留壁を地下外壁13の外型枠の代用とすることにより、地下土中より地下室への湿気の侵入防止に役立つ。
親杭2と山留鋼板10による山留壁は、躯体コンクリ−トと密着して一体化し地下外壁13の構造部材の一部となる。 山留壁にセパレ−タ−用受金物11を溶接して躯体コンクリ−トと山留壁の密着一体化が図れるため、地下外壁13の内型枠の支保工が簡易となる、即ち、コンクリ−ト打設時の型枠の崩壊防止のための片押し材を不要となすことができる。 その結果、地下室内の作業空間を広くとれ、型枠工事の省力化にもつながる。
そして,従来のように親杭2の躯体形成側前面に腹起し材4と切梁5の山留支保工が存在するということがないため、地下立上躯体工事を一度のコンクリ−ト打設により連続して行うことができ、工事の作業能率が良好であるとともに、コンクリ−トの打継ぎ部分からの漏水という不都合もない。
【0011】
次に,図12の如く、地下躯体コンクリ−トが硬化した後、山留支保工の腹起し材H形鋼4を解体し、搬出する。 そしてその解体後の空間部を設備の埋設配管等の場として利用し、その配管後に埋め戻し14をなしておく。
【0012】
【発明の効果】
本発明は上記の構成となしたので、上述の従来技術の有する諸難点は確実に解消され、以下に示す特有の効果を奏する。
【0013】
請求項1に係る発明においては、以下の効果を有する。
(1) 建設地盤に表土掘削を施して表土中に堆積する軟質の腐食土を除去したので、建設重機を接地する地盤が安定し、作業の安全性を図ることができるとともに、建設重機稼動に伴う振動が減少し、その振動波の近隣地への伝播を大幅に減少させることができる。
(2) 山留壁を取付支持する親杭の打ち込みに先行して,親杭を支持する腹起し材を表土掘削により安定した掘削地盤上に据え付け固定配設し、その躯体形成側前面に親杭を打ち込み、親杭と腹起し材とを接続金具にて緊締するようになしたので、従来に比し親杭に対する腹起し材の連結作業を安定した足場で安全に且つ迅速,容易,確実に行うことができる。
そして,腹起し材が掘削地盤上に安定配設されているため、親杭打込の定規として機能しその打ち込み精度を増すことができるとともに、従来親杭支持のために更に必要とした腹起し材間に掛け渡した切梁を不要となすことができ、支保工の部材点数を減らし経済的である。
(3) 親杭間に連結する山留壁として市販品の鋼板を用い,その先端部にて地盤を削り取るように機械的に圧入して親杭間に挿入配設するようになしたので、従来のような横矢板取り付けのための余堀りや埋め戻し更には現場での切断の必要がなく、従来に比し山留壁の形成作業を経済的に,迅速,容易,確実になすことができる。
そして,山留壁の材質が鋼板であり,前記の余堀りや埋め戻しが不要であるため、従来の横矢板のような裏込土の肌落ちや横矢板の設置手順上生ずる空隙がなく、山留背面土の緩みが僅少となり、地盤の安定化に寄与する。 また,矢板の腐食により山留背面土の地盤沈下が将来に亘り心配となるという虞もない。
(4) 前記先行取り付けの腹起し材による親杭の安定支持により、山留壁も安定して支持される。
(5) 山留鋼板の材質と安定支持により、それによる山留壁を地下躯体外壁形成の外型枠として有効に且つ合理的に活用することができる。
(6) 以上のとおり本発明は、地下躯体外壁の形成に必要な山留工事を従来に比し安全で経済的且つ簡易に行うことができる。
【0014】
請求項2に係る発明においては、以下の効果を有する。
(1) 躯体建設予定地内に従来と異なり腹起し材と切梁の山留支保工が存在していないため、その支保工が地下躯体構築時に障害となることはなく、コンクリ−ト打設により一度に連続して地下外壁と耐圧盤との地下躯体を立ち上げ形成することができ、地下躯体形成の工期の短縮と工事費の低減を図ることができる。
また,コンクリ−ト打設の打継部もなく、その接続部分からの漏水の危険性もない。
(2) 鋼板による山留壁を地下躯体外壁の外型枠として活用し,山留壁よりセパレ−タ−用受金物を突出して親杭とともに山留壁と躯体コンクリ−トととの密着一体化を図るようになしたので、内外型枠の部材の節減と型枠配設作業の簡易化を図ることができる。
また,そのため、コンクリ−ト打設時の側圧による型枠の崩壊防止のための片押し材が不要で地下外壁の内型枠の支保工を簡易となすことができるので、可及的に地下室内の作業空間を広くとることができ、型枠工事の省力化に寄与する。
(3) 親杭と鋼板による山留壁は地下躯体外壁と一体化しその構造の一部をなしているので、従来のように親杭と山留壁の引き抜きに伴う地盤の引き連れにより周辺地盤が緩み,コンクリ−ト打設後の地下躯体に衝撃を与え悪影響を及ぼすという不都合はない。
(4) 鋼板による山留壁を地下躯体外壁の外型枠の代用となしているため、地下土中から地下室へ湿気が侵入するのを確実に防止することができる。
(5) 地下躯体の床盤を砕石の緩衝帯を用いた耐圧盤となしているので、地震等の振動波が十分に和らげられ、有感振動を極力小さく押さえることができる。
(6) 以上のとおり本発明は、地下建造物の形成を従来に比し安全で経済的且つ簡易になすことができる。
【図面の簡単な説明】
【図1】本発明の1実施形態を示す腹起し材配設時の平面図である。
【図2】同上の縦断面図である。
【図3】同上の一部拡大断面図である。
【図4】親杭の打ち込みと腹起し材への緊締時の平面図である。
【図5】同上の縦断面図である。
【図6】同上の一部拡大断面図である。
【図7】山留鋼板の圧入配設と躯体建設予定地内の根切時の平面図である

【図8】同上の縦断面図である。
【図9】同上の一部拡大断面図である。
【図10】床地盤への地下躯体耐圧盤形成時の縦断面図である。
【図11】地下躯体外壁形成時の縦断面図である。
【図12】腹起し解体後の空間部への埋め戻しを示す縦断面図である。
【図13】従来の地下工事山留工法の一例を示す斜視図である。
【図14】同従来の地下建造物形成方法の一例を示す縦断面図である。
【符号の説明】
1 建設地盤
2 親杭
3 ブラケット(従来例)
4 腹起し材
5 切梁(従来例)
6 横矢板(従来例)
7 表土掘削部分
8 腹起し材据付用ベ−ス
9 接続金具
10 山留鋼板
11 セパレ−タ用受金物
12 耐圧盤躯体
13 地下外壁躯体
14 腹起し材解体後の埋め戻し部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underground construction mountain retaining method and an underground building forming method for preventing collapse of surrounding earth and sand when forming an underground outer wall or the like mainly when a small-scale building is constructed underground. By eliminating the need for beams for mountain retaining works, as well as the material and insertion method (mounting method) of the pile walls in the conventional mountain retaining method and the improvement of the mounting position of the erection that is the mountain retaining work The mountain retaining wall can be reasonably used as the outer formwork of the outer wall of the underground frame, and the rising part of the underground frame can be constructed continuously by one concrete placement. The present invention relates to an underground construction mountain retaining method and an underground building forming method capable of safely, economically and easily constructing a mountain retaining and an underground structure in underground construction.
[0002]
[Prior art]
The conventional underground construction method and underground building forming method have been performed by the methods shown in FIGS. 13 and 14, for example. That is, first, a large number of parent pile H-shaped steels 2 are driven in parallel at appropriate intervals so as to surround the surrounding area of the construction ground 1 of the construction ground 1, and the front surface and the rear surface of the parallel main piles 2 are dug. At the same time, a bracket 3 with a processed angle or the like is welded to the front surface of the flange of the parent pile 2, and an abdomen H-shaped steel 4 is attached through this, and a cut beam 5 is bridged between the opposite erections 4. Connect and support the parent pile 2. A concrete packing is applied to the gap between the upset 4 and the parent pile 2. A large number of wooden cross-sheet piles 6 are attached to the rear surface opposite to the frame forming side on the front side of the flange of the parent piles 2 in parallel to close the space between the parent piles 2 and the backfill portion is backfilled. A mountain wall is formed. Next, excavate the front side of the main pile 2 on the side of the main pile, arrange the formwork, and form the underground main frame by concrete placement. It was to remove.
[0003]
[Problems to be solved by the invention]
However, in the case of this method, the material and the insertion method (mounting method for the main pile) of the pile wall 6 and the mounting position and existence of the uplift 4 and the cut beam 5 which are the support works of the main pile 2 are problems. There are the following difficulties.
(1) Since a large number of wooden cross-sheet piles are used as the retaining wall, it must be cut and installed at the site, and the labor of cutting and mounting is troublesome. In addition, the appearance of gaps is unavoidable due to the installation procedure of the lateral sheet piles, and the soil behind the Yamadome is loosened, resulting in poor ground stability. Furthermore, it is necessary to overfill and backfill the back of the main pile to install the horizontal sheet piles, which not only increases the cost and construction period, but also due to gaps due to backfilling of the overburden part or skin peeling of the lateral sheet pile backfill soil. The ground will loosen and consolidation settlement will increase. Since wooden cross-sheet piles may cause ground subsidence due to corrosion due to their materials, it is difficult to substitute the outer formwork of the underground outer wall.
(2) Since the support erection is arranged on the front side of the main body of the multiple main piles in parallel, the erection is attached after excavation of the front of the main pile, and the installation work is dangerous and dangerous. It cannot be done quickly. In addition, stable support of the main pile cannot be performed only with the flank, and it is necessary to connect and support the opposite flank with a cross beam, and many members are used for stable support of the main pile and the pile. I need. In addition, there are uplifts and cut beams of Yamato support in the planned construction site, so the support material becomes an obstacle when constructing the underground structure, and the structure of the underground outer wall part continuously at once by concrete placement. As shown in FIG. 14, it is necessary to divide the support material into upper and lower parts and connect them. Therefore, not only a great construction period and construction cost are required for the formation of the housing, but also the number of connecting parts for concrete placement increases, and the risk of water leakage from that part also increases.
(3) With the removal of the main pile after the formation of the frame, not only does the surrounding ground loosen due to the ground pulling at the time of extraction, but also has an adverse effect on the impact on the underground frame after the concrete has been placed.
The present invention has been made in view of such circumstances, and by devising the material of the mountain retaining wall and its mounting method with respect to the parent pile, and the mounting position and mounting method of the flank with respect to the parent pile, Eliminating various difficulties, eliminating the need for cutting beams, reducing the number of members of the support material and reducing the labor of the mountain retaining method, and making the installed retaining wall effective as an outer formwork for forming the outer wall of the underground frame It can be used rationally and the support work for the inner formwork can be simplified, and the rising part of the underground structure can be constructed continuously with a single concrete placement. An object of the present invention is to provide an underground construction mountain retaining method and an underground building forming method capable of safely, economically and easily constructing a mountain retaining and an underground structure in construction.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following means. That is, topsoil excavation is performed to an appropriate depth within the planned construction site and the surrounding area surrounding it, surrounding the planned construction site around the excavated ground, and an H-section steel uprising material Are placed in a square shape, connected and fixedly arranged, and on the front side of the casing of the belly raising material arranged in this square shape, each of the parent pile driving positions marked at predetermined intervals on the belly raising material is arranged . Each parent pile of H-shaped steel is driven into the ground at a location and arranged in parallel. The parent pile and the erection material are fastened with connecting fittings, and the front side of the parent pile is excavated and paralleled. A mountain retaining wall is formed by press-fitting a mountain steel plate from above into the front side of the space between the parent piles and setting it in a wind-like manner. The mountain steel plate standing upright in the shape of a folding screen is used as an outer mold, and the underground outer wall and the pressure platen are formed by concreting on the front and floor ground, respectively. The timber is dismantled.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the method of the present invention will be described with reference to FIGS. The same reference numerals as those in FIGS. 13 and 14 indicate the same elements.
[0006]
FIG. 1 to FIG. 3 are explanatory views showing the prior arrangement process of the top-soil excavation and supporting work erection material H-section steel 4. First, as shown in FIGS. 2 and 3, topsoil excavation is carried out to a depth of about 800 mm from the ground over the planned construction site of the construction ground 1 and around an appropriate range surrounding it. In the portion 7 having a depth of about 800 mm from the ground, soft topsoil corroded soil is deposited. By removing this topsoil corroded soil, it is possible to reliably remove underground obstacles and to connect the ground plane of heavy construction equipment. Stabilize and work safety, reduce vibrations caused by heavy construction equipment operation, and confirm changes in ground geology.
[0007]
Next, as shown in FIG. 1, the erection material H-section steel 4 is arranged in a square shape and connected through a base 8 made of square concrete, surrounding the planned construction site around the topsoil excavation ground. Install and fix. After the installation, the back side of each erection material 4 is backfilled with the remaining soil and hardened, and the parent pile placement positions are marked on the erection material 4 at predetermined intervals. Since the upset material 4 is set on the stable topsoil excavation ground, the work has a good scaffold and can be performed safely and quickly.
[0008]
Next, as shown in FIG. 4 and FIG. 5, the parent pile H-section steel 2 is placed at each of the marked placement positions on the front side of the casing formation side of the bell-raised material 4 connected in a square shape. The piles are pressed into a predetermined depth from above with a pile driving machine and are arranged in parallel. As shown in FIG. 6, the flange rear side of each parent pile H-shaped steel 2 and the flank H-shaped steel 4 are connected to the fitting 9 Tighten at. The master pile 2 can be driven in a simple and accurate manner because the pre-installed erection material 4 serves as a ruler for marking the placement position as described above. And since the angry material 4 is arranged on the rear surface side of the main pile 2, the angry material 4 is arranged on the front side of the main body 2 of the main pile 2 as in the prior art, and a gap is generated between them. There is no need to interpose a top packing. Since Shinkui 2 is stably supported by being clamped in the wale member 4 which is mounted fixed disposed linked disposed in a square shape topsoil excavating ground, a further Setsuhari 5 as shoring as conventional I don't need it.
[0009]
Next, as shown in FIGS. 7 to 9, the front surface of the main pile 2 on the side where the main body is formed is excavated with a backhoe, and the steel plate 10 is attached to the front flange side portion in the space between the parallel parent piles 2 in parallel. While removing the remaining soil at-, it is press-inserted from above and is set up in a folding screen to form a mountain retaining wall. Simultaneously with the completion of the retaining wall by the retaining steel plate 10, the erection material 4 that has been fastened to the parent pile 2 functions effectively as a support work, so that the retaining wall is stably supported. In addition, the mountain wall is formed by excavating and press-fitting in the mountain retaining steel plate 10 so as to scrape the natural ground. There are no gaps in the installation procedure, and the loose soil on the backside of the mountain is minimal, contributing to the stability of the ground. Furthermore, it is not necessary to cut and install at the site like conventional wooden sheet piles, and it is only necessary to mechanically press the steel plate 10 of ready-made dimensions prepared in advance. There is no cutting loss on the Yamato wall.
[0010]
Next, as shown in FIG. 10, crushed stones are laid down on the floor ground for vibration isolation and hardened sufficiently, and discarded concrete is placed on the upper surface. At that time, the crushed stone is spread thickly in the center of the floor ground in order to increase the anti-vibration effect and form a pressure-resistant panel. Then, the separator 11 is attached to the front surface of the mountain wall made of the mountain steel plate 10 so as to protrude by welding. Next, as shown in FIG. 11, the pressure-resistant platen frame 12 is formed by assembling the reinforcing bars on the floor ground on which the crushed stones have been laid and thrown away and concrete is applied. Set the water stop plate at the joint part of the concrete. In addition, wall reinforcement, wall slab formwork, and slab reinforcement are applied to the front of the retaining wall by the main pile 2 and the retaining steel plate 10, and this retaining wall is used as a substitute for the outer formwork of the underground outer wall. The underground outer wall 13 which becomes a basement upper frame is formed by casting. By using the mountain retaining wall of the mountain retaining steel plate 10 as a substitute for the outer formwork of the underground outer wall 13, it is useful for preventing moisture from entering the basement from the underground soil.
The mountain retaining wall made of the parent pile 2 and the steel retaining steel plate 10 is in close contact with the frame concrete and integrated into a part of the structural member of the underground outer wall 13. Since the separator concrete 11 and the retaining wall 11 are welded to the retaining wall 11 so that the frame concrete and the retaining wall can be closely integrated, the support of the inner formwork of the underground outer wall 13 is simplified. -It is possible to eliminate the need for a single-pushing material for preventing the collapse of the formwork at the time of casting. As a result, the work space in the basement can be widened, leading to labor saving in formwork.
And, since there is no uplifting support for the lumber 4 and the beam 5 on the front side of the main pile 2 on the side where the main body is formed, there is no need to carry out the concrete work on the basement. The construction can be carried out continuously, the work efficiency of the construction is good, and there is no inconvenience of water leakage from the connecting part of the concrete.
[0011]
Next, as shown in FIG. 12, after the underground frame concrete is hardened, the bell-raised material H-section steel 4 of the Yamadome support is disassembled and carried out. And the space part after the dismantling is used as a place such as a buried pipe of equipment, and the backfill 14 is made after the pipe.
[0012]
【The invention's effect】
Since the present invention has the above-described configuration, the above-described problems of the prior art are surely solved, and the following specific effects can be obtained.
[0013]
The invention according to claim 1 has the following effects.
(1) Top soil excavation was performed on the construction ground to remove the soft corrosive soil accumulated in the top soil, so that the ground that grounds heavy construction equipment can be stabilized and work safety can be improved, and construction heavy equipment can be operated. The accompanying vibration is reduced, and the propagation of the vibration wave to the neighboring area can be greatly reduced.
(2) Prior to driving the main pile that supports the mountain retaining wall, the lining material that supports the main pile is installed and fixed on the stable excavation ground by topsoil excavation, Because the main pile is driven in and the parent pile and the erection material are tightened with the connecting bracket, the connection work of the erection material to the parent pile is safer, quicker and easier than before. , Can be done reliably.
And since the erection material is stably disposed on the excavation ground, it can function as a ruler for driving the main pile, and the driving accuracy can be increased. Cut beams spanned between raising members can be made unnecessary, and the number of supporting members is reduced and economical.
(3) A commercially available steel plate is used as the mountain retaining wall to be connected between the main piles, and it is mechanically press-fitted so that the ground is scraped off at the tip of the steel plate. There is no need to dig up, backfill, or cut on the spot for attaching horizontal sheet piles as in the past, making it easier, more reliable, faster, easier and more reliable in forming mountain retaining walls than in the past. it can.
And, since the material of the mountain retaining wall is a steel plate, and the above-mentioned excavation and backfilling are unnecessary, there is no void generated due to the skin removal of the back soil and the installation procedure of the horizontal sheet pile like the conventional horizontal sheet pile, Loose loose soil on the back of Yamadome will contribute to the stabilization of the ground. In addition, there is no fear that the ground subsidence of the soil behind the Yamadome will become a concern due to the corrosion of the sheet pile.
(4) The mountain retaining wall is also stably supported by the stable support of the parent pile by the pre-mounted bellows.
(5) Due to the material and stable support of the Yamadome steel plate, the Yamadome wall can be effectively and rationally used as an outer formwork for forming the outer wall of the underground frame.
(6) As described above, according to the present invention, it is possible to safely, economically and easily perform the mountain retaining work necessary for the formation of the outer wall of the underground frame as compared with the conventional one.
[0014]
The invention according to claim 2 has the following effects.
(1) Since there are no uplifted timbers and cut-off beams on the building construction site, there is no obstacle to the construction of the underground building, and concrete is placed. Thus, it is possible to start up and form the underground frame of the underground outer wall and the pressure platen continuously at a time, thereby shortening the construction period of the underground frame and reducing the construction cost.
In addition, there is no connection part for concrete placement, and there is no risk of water leakage from the connection part.
(2) The steel retaining wall made of steel plate is used as the outer frame of the outer wall of the underground frame, and the separator receiving material protrudes from the retaining wall, and the retaining wall and the frame concrete are in close contact with the parent pile. Therefore, it is possible to save the members of the inner and outer molds and simplify the work of arranging the molds.
For this reason, since there is no need for a pressing material to prevent the collapse of the formwork due to the side pressure at the time of placing concrete, it is possible to simplify the support work for the inner formwork of the underground outer wall. The work space inside can be increased, contributing to labor saving in formwork.
(3) The mountain retaining wall made of the main pile and steel plate is integrated with the outer wall of the underground frame and forms a part of the structure. There is no inconvenience that it will loosen and impact the underground structure after the concrete has been cast, causing adverse effects.
(4) Since the mountain retaining wall made of steel plate is used as a substitute for the outer formwork of the outer wall of the underground frame, moisture can be surely prevented from entering the basement from the underground soil.
(5) Because the floor of the underground frame is made of a pressure plate using a crushed stone buffer zone, vibration waves such as earthquakes can be sufficiently mitigated, and sensitive vibrations can be minimized.
(6) As described above, according to the present invention, formation of an underground building can be made safer, more economical and simpler than before.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of the present invention when an angling member is disposed.
FIG. 2 is a longitudinal sectional view of the above.
FIG. 3 is a partially enlarged sectional view of the same.
FIG. 4 is a plan view when the master pile is driven and tightened to the flank material.
FIG. 5 is a longitudinal sectional view of the same.
FIG. 6 is a partially enlarged sectional view of the same.
FIG. 7 is a plan view of the press-fitting arrangement of the Yamatome steel plate and root cutting in the building construction planned site.
FIG. 8 is a longitudinal sectional view of the same.
FIG. 9 is a partially enlarged sectional view of the same.
FIG. 10 is a longitudinal sectional view of the underground ground pressure platen formed on the floor ground.
FIG. 11 is a longitudinal sectional view when forming the outer wall of the underground skeleton.
FIG. 12 is a vertical cross-sectional view showing backfilling in the space after angling and dismantling.
FIG. 13 is a perspective view showing an example of a conventional underground construction mountain retaining method.
FIG. 14 is a longitudinal sectional view showing an example of the conventional underground building forming method.
[Explanation of symbols]
1 Construction ground 2 Parent pile 3 Bracket (conventional example)
4 Raised material 5 Cut beam (conventional example)
6 sheet pile (conventional example)
7 Topsoil excavation part 8 Base for raising flank material 9 Connection fitting 10 Yamatome steel plate 11 Separator support 12 Pressure-resistant panel frame 13 Underground outer wall frame 14 Backfill part after dismantling the flank material

Claims (2)

躯体建設予定地内及びそれを囲む適宜範囲の周囲に亘って適宜深さに表土掘削を施して,その掘削地盤の周囲に躯体建設予定地を囲んでH形鋼の腹起こし材を方形状に配置し連結して据え付け固定配設し、この方形状に配設された腹起こし材の躯体形成側前面においてその腹起こし材に所定間隔でマークされた各親杭打設位置の個所にH形鋼の親杭を地盤内に打ち込み並列配設し,各親杭と腹起こし材とを接続金具にて緊結せしめ、前記親杭の躯体形成側前面を掘削するとともに,並列する各親杭間の空間部内前面側に山留鋼板を上方から圧入して屏風立て状にセットして山留壁を形成することを特徴とする地下工事山留工法。Top soil excavation is performed to an appropriate depth within the frame construction planned site and the surrounding area surrounding it, and an H-shaped steel lining material is arranged in a square shape around the planned site construction around the excavated ground. H-shaped to connect to mounting fixed arranged, positions of the person shape disposed a wale material each parent pile installation position marked at predetermined intervals in the precursor formation side Oite the front thereof wale material Each parent pile of steel is driven into the ground and arranged in parallel , and each parent pile and the lining material are fastened together with a connecting bracket, and the front side of the main body of the parent pile is excavated, and between the parallel parent piles An underground construction mountain retaining method characterized in that a mountain retaining wall is formed by press-fitting a mountain retaining steel plate from above into a space in front of the space and setting it in a folding manner. 躯体建設予定地内及びそれを囲む適宜範囲の周囲に亘って適宜深さに表土掘削を施して,その掘削地盤の周囲に躯体建設予定地を囲んでH形鋼の腹起こし材を方形状に配置し連結して据え付け固定配設し、この方形状に配設された腹起こし材の躯体形成側前面においてその腹起こし材に所定間隔でマークされた各親杭打設位置の個所にH形鋼の親杭を地盤内に打ち込み並列配設し,各親杭と腹起こし材とを接続金具にて緊結せしめ、前記親杭の躯体形成側前面を掘削するとともに,並列する各親杭間の空間部内前面側に山留鋼板を上方から圧入して屏風立て状にセットして山留壁を形成し、この屏風立て状に立設する山留鋼板を外型枠となしてその前面と床地盤上にコンクリ−ト打設により地下外壁と耐圧盤とを夫々形成し、前記腹起こし材を地下外壁と耐圧盤の形成後解体することを特徴とする地下建造物の形成方法。Top soil excavation is performed to an appropriate depth within the frame construction planned site and the surrounding area surrounding it, and an H-shaped steel lining material is arranged in a square shape around the planned site construction around the excavated ground. H-shaped to connect to mounting fixed arranged, positions of the person shape disposed a wale material each parent pile installation position marked at predetermined intervals in the precursor formation side Oite the front thereof wale material Each parent pile of steel is driven into the ground and arranged in parallel , and each parent pile and the lining material are fastened together with a connecting bracket, and the front side of the main body of the parent pile is excavated, and between the parallel parent piles A mountain steel plate is press-fitted from the upper side into the space front side and set in a folding wind shape to form a mountain retaining wall. The mountain steel plate standing in the wind standing shape is used as an outer frame, and its front and floor An underground outer wall and a pressure board are formed on the ground by concrete placement. Method of forming the underground buildings, which comprises disassembling after the formation of underground walls and withstand board a.
JP36779497A 1997-12-27 1997-12-27 Underground construction method and underground building formation method Expired - Fee Related JP3697877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36779497A JP3697877B2 (en) 1997-12-27 1997-12-27 Underground construction method and underground building formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36779497A JP3697877B2 (en) 1997-12-27 1997-12-27 Underground construction method and underground building formation method

Publications (2)

Publication Number Publication Date
JPH11193529A JPH11193529A (en) 1999-07-21
JP3697877B2 true JP3697877B2 (en) 2005-09-21

Family

ID=18490209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36779497A Expired - Fee Related JP3697877B2 (en) 1997-12-27 1997-12-27 Underground construction method and underground building formation method

Country Status (1)

Country Link
JP (1) JP3697877B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774561B2 (en) * 2005-12-27 2011-09-14 光政 村上 Construction method of metal basement
CN101864773B (en) * 2010-04-14 2011-11-30 江苏江中集团有限公司 Deep foundation pit support process
JP7474616B2 (en) * 2020-03-24 2024-04-25 株式会社フジタ Vibration isolation structures
CN114960664A (en) * 2022-04-22 2022-08-30 上海宝冶集团南京建筑有限公司 Deep foundation pit supporting and support changing device for wall-penetrating H-shaped steel support and concrete force transmission belt

Also Published As

Publication number Publication date
JPH11193529A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
KR101302743B1 (en) Phc pile and its using the same soil cement wall construction methode
KR101274974B1 (en) Earth retaining wall and construction method thereof
KR101640449B1 (en) Construction method for open cutting in tunnel portal area
KR101655217B1 (en) Construction method for open cutting in tunnel portal area
JPH07252835A (en) Construction method for diagonal shore strut
JP4069509B2 (en) Construction method of reverse struts in the outer periphery of underground excavation space
JP3724320B2 (en) Construction method for underground structures
JP3697877B2 (en) Underground construction method and underground building formation method
JP2005120663A (en) Structure of earth retaining wall
JPH11303087A (en) Retaining wall using corrosion-resistant structure anchor
KR200370107Y1 (en) Forms for edge girder construction
JP2000144769A (en) Method of landslide protection work for preparing housing lot
JP3135495B2 (en) Construction method of avalanche and rock fall protection fence and avalanche and rock fall protection fence
JP2979117B2 (en) Building foundation method
KR100397958B1 (en) The structure timbering of cut with separating wale and the construction method thereof
JP2741387B2 (en) Construction manhole construction method
KR101218825B1 (en) Method of land-side protection wall using bracing
KR100592397B1 (en) storey spacing support ssoldier pile soil retaining wall
JP2009264088A (en) Underground system temporary frame
JPS63280153A (en) Underground inverted lining method
KR102568229B1 (en) Bottom-up dismantling method using existing building slab
KR101516746B1 (en) Construction method for girder and construction method for underground structure without temporary structure using the same
JPH0813494A (en) Fixing method of earth retaining wall and timbering
JP4889993B2 (en) Construction method of widening shaft
JPH0517955A (en) Execution method for direct foundation and form panel for direct foundation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees