JP3696436B2 - Method for classifying particles in airflow and measuring particle size distribution - Google Patents

Method for classifying particles in airflow and measuring particle size distribution Download PDF

Info

Publication number
JP3696436B2
JP3696436B2 JP14516999A JP14516999A JP3696436B2 JP 3696436 B2 JP3696436 B2 JP 3696436B2 JP 14516999 A JP14516999 A JP 14516999A JP 14516999 A JP14516999 A JP 14516999A JP 3696436 B2 JP3696436 B2 JP 3696436B2
Authority
JP
Japan
Prior art keywords
particles
concentration
particle size
ratio
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14516999A
Other languages
Japanese (ja)
Other versions
JP2000334385A (en
Inventor
博文 辻
尚夫 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP14516999A priority Critical patent/JP3696436B2/en
Publication of JP2000334385A publication Critical patent/JP2000334385A/en
Application granted granted Critical
Publication of JP3696436B2 publication Critical patent/JP3696436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は気流中粒子の分級方法と粒径分布測定方法に関する。さらに詳述すると、本発明は、例えば微粉炭の送炭管、ボイラ排ガスおよび集じん装置など気流中に粒子を含有して輸送する系を取り扱う分野において、輸送する気流中の粒子の分級あるいは粒径分布測定を精度良く簡易かつ迅速に行うのに好適な気流中粒子の分級方法と粒径分布測定方法に関する。
【0002】
【従来の技術】
従来の気流中粒子の粒径分布測定は、主流管を流れる気流の流速(以下「主流流速」ともいう)Uと、計測のためこの気流の一部を吸引用ノズルを用いて採取するときの吸引流速Uとを等しくした等速吸引と呼ばれる条件下において採取された粒子状物質(以下、単に「粒子」という)をカスケードインパクタなどの分級装置によって粒径別に数段に分級し、それぞれを秤量することにより行われていた。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した技術においては、粒子を採取する際に常に等速吸引条件を満足させる必要があり、吸引流速Uが若干でも主流流速Uと異なった場合には正確な粒子濃度Cひいては粒径分布が得られなくなるという問題がある。
【0004】
また、分級装置は煩雑な操作を伴うため取り扱いが困難であり、かつ各分級部において分離採取された粒子をそれぞれ秤量する必要があるなど、迅速な測定という観点からは課題が多く残されていた。さらに、主流流速Uが絶えず変動する場合は、吸引条件をその変動に応じて正確に追従させることが実用上難しく、測定精度を高めることが困難であった。
【0005】
本発明は、複雑な装置を用いることなく気流中の粒子を簡単かつ正確に分級し得る気流中粒子の分級方法、およびこの分級方法を利用して気流中の粒子の粒径分布を簡単かつ正確に測定することができる気流中粒子の粒径分布測定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる目的を達成するため、請求項1記載の気流中粒子の分級方法は、流速Uで流れる気流中の粒子を下流側へ向けた吸引用ノズルで流れ方向と逆向きに吸引すると共に、流速Uと吸引流速Uの流速比U/Uを変化させ、吸引される粒子の割合がこの流速比U/Uの変化および粒径によって変化することを利用して粒子を分級するものである。
【0007】
このように気流中粒子を分級し、あるいは粒径分布測定をする場合、粒子が気流の流れから受ける影響は粒径の大きさによって異なってくる。例えば、粒径が比較的小さいものは採取量(つまり粒子濃度C)が流速の変化の影響を受け難いのに比べ、比較的大きな場合には慣性力が大きくなり流速の変化の影響を受け易い。
【0008】
したがって、主流流速Uと吸引流速Uとの流速比U/Uを変えると、流速の変化に影響を受け難い粒子と受け易い粒子とでは吸引用ノズルに吸引される量に差が生じ、粒子量に違いが生じて粒子濃度Cが真の値(気流中粒子の真の濃度)Cからずれるようになる。すなわち、流速比U/Uの値を適宜変化させることによって吸引される粒子の大きさを異ならせ、吸引時に分級することが可能となる。
【0009】
しかも、この気流中粒子の分級方法では、吸引用ノズルを気流の下流側へ向け、気流中の粒子を流れから反転させるように逆向きに吸引しているため、粒径が比較的小さく慣性の小さなものも分級することができる(このような粒子サンプリングを本明細書では適宜「逆向きサンプリング」と呼ぶ)。したがって、この逆向きサンプリングを利用した分級方法によれば、ノズルを気流上流側に向けた状態で気流中粒子を分級する従来の方法とは異なる領域の粒子を、取り込む時点で分級しながら吸引することができるようになる。
【0010】
請求項2記載の気流中粒子の粒径分布測定方法は、流速Uで流れる気流中の粒子を下流側へ向けた吸引用ノズルで流れ方向と逆向きに吸引すると共に、気流の流速Uと吸引流速Uの流速比U/Uを変化させ、これにより各粒子の吸引される割合を異ならせて吸引気流中の粒子濃度Cを変化させ、該粒子濃度Cと気流中粒子の真の濃度Cとの濃度比C/Cを求め、流速比U/Uの値によって定まる濃度比C/Cと粒径xの粒子との間の相関関係を利用することによりすべての粒径の粒子に対応する粒子濃度Cを求め、さらに、仮定しておいたある粒径分布f (x)との差を求め、該差が小さくなるように粒径分布f (x)を再計算し、差が収束するまで繰り返し計算を行うことにより、得られた濃度比C/Cが実際に実験で求めた濃度比C/Cに合致するように対応した粒径分布f(x)を求めるようにしたものである。
【0011】
この場合、流速比U/Uをずらしたときの粒子濃度Cの変化は、吸引流速Uの変化の影響が粒径によって異なるため、同時に粒径分布の変化についての情報も含んでいる。そして、主流流速U下において吸引流速Uが変化すると粒子の採取量(吸引量)Mへ影響を及ぼし、この影響は粒径分布に支配されていて、これが粒子濃度比C/Cと流速比U/Uとの相関関係として表われる。そこで、この相関関係を利用し、粒径分布を数学的に計算で求めることができる。
【0012】
また、採取される気流中の粒子は、粒径の大きさによって気流の流れから受ける影響が異なるものであり、粒径が比較的小さいものは気流の流れが変化することによる影響が少なく、気流の流れと逆向きにサンプリングした場合に吸引される気流の流れにのって吸引され易い。したがって、この逆向きサンプリングでは主に粒径の小さな領域の粒子を採取することができ、しかも、前向きサンプリングの場合よりも分級精度が高い。
【0013】
請求項3記載の気流中粒子の粒径分布測定方法は、流速Uで流れる気流中の粒子を上流側へ向けた吸引用ノズルで流れ方向と同じ向きに吸引すると共に、気流の流速Uと吸引流速Uの流速比U/Uを変化させ、気流中粒子を異なる2条件以上の流速比U/Uの下で吸引し、この吸引された粒子の量から求まる吸引気流中の粒子濃度Cと気流中の真の濃度Cとの濃度比C/Cと流速比U/Uとの比例関係を表す直線の傾きを求める前向き非等速サンプリング過程と、粒子を下流側へ向けた吸引用ノズルで流れ方向と逆向きに吸引すると共に、気流の流速Uと吸引流速Uの流速比U/Uを変化させ、これにより吸引される粒子の割合を変化させて吸引気流中の粒子濃度Cを変え、該粒子濃度Cと気流中粒子の真の濃度Cとの濃度比C/Cを求める逆向きサンプリング過程とから成り、流速比U/Uの値によって定まる濃度比C/Cと粒子の粒径xとの間の相関関係を利用することにより粒径に対応する粒子濃度Cを求め、さらに、仮定しておいたある粒径分布f (x)との差を求め、該差が小さくなるように粒径分布f (x)を再計算し、差が収束するまで繰り返し計算を行うことにより、得られた濃度比C/Cが実際に実験で求めた濃度比C/Cに合致するように対応した粒径分布f(x)を求めるものである。
【0014】
この場合、まず吸引用ノズルを気流の上流側へ向け、主流流速Uと異なる複数の吸引流速条件の下で粒子を吸引し、その際の流速比U/Uおよび濃度比C/Cの関係を表す直線の傾きを求める(前向き非等速サンプリング)。また、逆向きサンプリングにより粒子濃度Cと粒子濃度比C/Cを求める。そして、直線の傾きならびに上述した逆向きサンプリング時の濃度比C/Cと流速比U/Uの関係から粒径分布を数学的に求めることができる。
【0015】
本発明のように前向きおよび逆向きの両サンプリング過程から成る場合、まず前向き過程では、流速比U/Uを1からずらすと測定される粒子濃度Cも変化するが、この粒子濃度Cの変化は、吸引流速Uの変化の影響が粒径によって異なることから、同時に粒径分布の変化についての情報も含んでいる。この粒径分布の変化は、例えば図2に示すような粒子濃度Cと流速比U/Uとの相関関係の傾きあるいは図3に示すような粒子濃度比C/Cと流速比U/Uとの相関関係の傾きとして表われる。つまり、主流流速U下において吸引流速Uが変化すると粒子の採取量(吸引量)Mへ影響を及ぼすが、この影響は粒径分布に支配されていて、これが粒子濃度比C/Cと流速比U/Uとの比例直線の傾きとして表われる。したがって、この傾きを求めることにより粒径分布を計算で求めることができる。この場合、少なくとも2つの異なった条件下の流速比U/Uにおける粒子の採取量Mの差異から各測定流速比U/Uにおける粒子濃度Cと粒子濃度比C/Cを求めれば、この粒子濃度比C/Cを利用して粒径分布を求めることができる。
【0016】
さらに、本発明では、このような前向きサンプリングに加えて逆向きサンプリングを行うことにより粒径分布を表す式を複数得ることを可能としている。このため、特に広範な粒径分布を示す粒子に関し、粒径分布を表す式をより精度良く求めることができる(本明細書と図面では、このように吸引用ノズルが上流側を向いた前向きサンプリングと逆向きサンプリングとを利用したサンプリング方法を適宜「両向き法」と呼ぶ)。
【0017】
請求項4記載の発明は、請求項2または3記載の気流中粒子の粒径分布測定方法において、気流中粒子の真の濃度Cは、気流の上流側へ向けた吸引用ノズルで気流中粒子を流れ方向と同じ向きに吸引する際、吸引流速Uを気流の流速Uと等しくして得られた気流中粒子を秤量して求めるようにしたものである。この場合、上流側へ向けた吸引用ノズルにより等速吸引条件(流速比U/U=1)の下で吸引することによって気流中の真の粒子濃度Cが求められる。
【0018】
請求項5記載の発明は、請求項2または3記載の気流中粒子の粒径分布測定方法において、気流中粒子の真の濃度Cは、気流の上流側へ向けた吸引用ノズルで気流中粒子を流れ方向と同じ向きに吸引する際、少なくとも2つの異なる流速比U/Uの条件下で粒子濃度Cを求め、この粒子濃度Cと流速比U/Uとの関係を表す直線と流速比U/U=1を表す直線との交点から求めるようにしたものである。
【0019】
ここで、測定時の流速比U/Uと粒子濃度Cとの関係をプロットすると図2に示すような線形性を有するグラフが求められ、流速比U/Uと粒子の採取量(粒子重量)Mとの間に相関関係があることが認められる。そこで、少なくとも2条件の流速比U/Uにおける粒子濃度Cの値を求め、各測定時の流速比U/Uと粒子濃度Cの相関関係を示す図2の直線から、流速比U/Uが1のときの粒子濃度を表す真の粒子濃度Cつまり気流中粒子の濃度を求めることができる。
【0020】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。
【0021】
図1に、本発明にかかる気流中粒子の分級方法と粒径分布測定方法を実施する粒径分布測定装置1の一例を示す。この測定装置1は、測定対象たる排ガスを流す主流管10と、この主流管10内を流れる被測定ガス(排ガス)を採取する吸引用ノズル2と、粒子を捕集するフィルタ装置3と、ドレンポット4と、ガスメータ5と、バルブ6,9と、真空ポンプ7と、特に図示していない流速計などによって構成されている。
【0022】
吸引用ノズル2は、主流管10内を流れる排ガスを採取してフィルタ装置3へ導くもので、主流管10内の排ガスの流れに向かって端部2aが開口するように主流管10の中央に配置されるとともに、開口端部2aを気流の上流側あるいは下流側を向かせることができるように回転可能に設けられる。この場合、特に詳しく図示していないが、吸引用ノズル2のうちフィルタ装置3よりも上部分全体を回転可能としても良いし、あるいは吸引用ノズル2のうち一部分のみ回転可能としても良い。回転させる手段は、モータなどの各種アクチュエータを用いたものの他、手動とすることも可能である。この吸引用ノズル2は、開口端部2aを上流側と下流側を向かせることができるように少なくとも180°の可動範囲を有するが、それ以上の可動範囲であっても勿論構わない。吸引用ノズル2の開口端部2aは内径dの筒状に形成されるとともに、この開口端部2aからフィルタ装置3までは途中のカーブ2bを経由して断面がほぼ一定形状のまま連続する滑らかな形状とされている。そして、測定対象たる煙道排ガスなどの気流が、この内径dの主流管10内を吸引流速Uで輸送される。
【0023】
フィルタ装置3は、排ガス中に含まれる粒子を捕捉する粒子捕集用フィルタ8を内部に有する装置である。この粒子捕集用フィルタ8は捕集した粒子を秤量するために取り出し可能に設置されている。また、ドレンポット4は排ガスの吹き溜め装置であり、ガスメータ5は吸引用ノズル2を介して吸引した排ガスの量Vを測定する装置である。また、バルブ6,9は、吸引用ノズル2の吸い込み力を制御したり、真空ポンプ7による吸い込み運転を制御する装置として設けられている。
【0024】
なお、主流管10を流れる気流の主流流速Uの測定には、特に図示していないが例えばピトー管や熱線風速計などが用いられる。そして粒子の採取は、真空ポンプ7の吸引力により吸引用ノズル2の開口端部2aからガスを吸引流速Uで吸引することにより行われる。吸引された粒子は、全て粒子捕集用フィルタ8を内蔵したフィルタ装置3において採取され、秤量した吸引前および吸引後のフィルタ重量の差から粒子採取量Mが求められる。
【0025】
一方、吸引ガス量Vはガスメータ5により計測される。そして、吸引流速Uはこの吸引ガス量V、吸引時間Tおよび吸引用ノズル2の開口端部2aにおける断面積S(S=π・d /4)から関係式U=V/(T・S)により求められる。その際の粒子濃度Cは、粒子採取量Mと吸引ガス量Vとから関係式C=M/Vにより求められる。
【0026】
以上のように構成された粒径分布測定装置1において、主流流速Uを一定にしたまま吸引流速Uを変化させ、主流流速Uと異なる値に設定すると同じ流れの排ガス中から採取される粒子量Mに違いが生じる。いいかえると、採取される気流中粒子は粒径の大きさによって気流の流れから受ける影響が異なり、粒径が比較的小さいものは採取量M(すなわち粒子濃度C)が流速の変化の影響を受け難いが、比較的大きな場合には慣性力が大きくなり流速の変化の影響を受け易く、気流の流れの状態変化による違いが生じる。
【0027】
したがって、主流流速Uと吸引流速Uとの流速比U/Uを変えると、流速の変化の影響を受け難い粒子と受け易い粒子とでは吸引用ノズル2に吸引される量に差が生じる。このため、流速比U/Uを適宜変化させることによって吸引される粒子の大きさが異なることとなり、吸引時に分級されて採取されるようになる。本明細書中では、このように流速比U/Uを適宜変化させて行う粒子のサンプリングを適宜「非等速サンプリング」と呼ぶ。なお、吸引流速Uを変化させることにより流速比U/Uを変化させるほか、主流流速Uを変化させることによってもこの流速比U/Uを変化させることが可能である。
【0028】
例えば異なる6種類の吸引流速U〜Uで粒子を採取し、そのときに測定された粒子濃度をC〜Cとした場合、主流流速Uに対する比率U/U〜U/Uは、図2に示すようにC〜Cに対して常に直線関係を示す。このことから、流速比U/Uの変化と粒子濃度C(あるいは採取量M)の変化とをプロットすると両者は線形性を有していることがわかる。したがって、この関係を利用し、真の粒子濃度Cを示す条件である主流流速Uと吸引流速Uの比が1の等速吸引条件時の粒子濃度Cを図2のグラフから容易に求めることが可能となる。
【0029】
ここで、本実施形態の粒子濃度Cの測定では、図2に示すように6点における異なる流速比U/Uを得ているがこれに特に限定されるものではない。粒子濃度Cと流速比U/Uとの直線関係を得るには、流速比U/Uのデータを少なくとも2点について得ていれば理論的に求めることが可能である。少なくとも2点において計測した上記の測定値のプロット、好ましくは3点以上のプロットを直線で結び、流速比U/U=1となる地点での粒子濃度Cの値がすなわち気流中の粒子濃度の値Cとなる。
【0030】
以上は、図1において実線で示すように吸引用ノズル2の開口端部2aを気流の上流側に向け、気流の流れ方向と同じ向きに粒子を吸引する前向きサンプリングを行う場合であるが、この開口端部2aを図中想像線で示すように下流側に向けた逆向きサンプリングを行う場合は、粒子の測定濃度Cと真濃度Cの比率C/Cは粒径x、主流流速Uによって異なる。すなわち、粒径xが大きくなるにつれて慣性パラメータψも大きくなり、これに伴い、図4に示すように測定された粒子濃度Cは真の粒子濃度Cから遠ざかる。この場合、濃度比C/Cは粒径xの粒子について数式1で与えられる。
【0031】
【数1】

Figure 0003696436
ここで、ψは慣性パラメータであり、次式で表される。
【0032】
【数2】
Figure 0003696436
なお、この慣性パラメータψと粒子濃度比C/Cとの関係は上述したように図4に示すようになる。また、吸引用ノズル2を逆向きにした状態で流速比U/Uを変化させた場合、粒子濃度比C/Cは同図に示すように変化する。
【0033】
主流流速U、ガスの粘度μ、組成が一定であれば、数式1は粒径xと吸引流速Uのみの関数となる。この場合、数式1は各々の粒径xに対して成立するため、粒径分布f(x)を持つ粒子群に対する測定濃度Cは、数式1を粒径分布で加重平均することにより求められる。
【0034】
【数3】
Figure 0003696436
一方、前向きサンプリングにおいて、流速比U/Uが1と異なるときの粒子採取量Mへの影響は、図3に示すように粒径x、主流流速Uによって異なり、粒径xが大きく主流流速Uが速いほど、測定された粒子濃度Cは真の粒子濃度Cから遠ざかる。この真の粒子濃度Cからの偏差は、粒径xの粒子について次の式で与えられる。
【0035】
【数4】
Figure 0003696436
上述したのと同様に、数式4は各々の粒径xについて成立するため、粒径分布f(x)を持つ粒子群に対する測定濃度Cは、数式4を粒径分布で加重平均することにより求められる。
【0036】
【数5】
Figure 0003696436
すなわち、粒子群についても、粒子濃度比C/Cは流速比U/Uに対して1次関数形となるため、実験によって得られる粒子濃度比C/Cと流速比U/Uの関係も1次関数形となり、次式で表される。
【0037】
【数6】
Figure 0003696436
数式5と数式6を比較すると次の数式7が成立する。
【0038】
【数7】
Figure 0003696436
次に、上述した逆向きサンプリング時の濃度比C/Cならびに前向きサンプリング時の濃度比C/Cと流速比U/Uの相関関係を表す傾きから粒径分布を求める。
【0039】
今、吸引用ノズル2の向きを反転させた場合にn回の吸引流速の条件で粒子の逆向きサンプリングを行ったとすると、数式3から次の数式8が得られる。
【0040】
【数8】
Figure 0003696436
次に、主流方向と吸引用ノズル2の向きを同一に設定した場合に、実験的に数式7のAを求めることができる。このAは粒径分布f(x)との間に数式7に示したような関係がある。
【0041】
また、数式7および数式8は同一の形式で表されているので、これらを統一的に記述すると
【0042】
【数9】
Figure 0003696436
が得られる。ここで、
【0043】
【数10】
Figure 0003696436
【数11】
Figure 0003696436
【0044】
【数12】
Figure 0003696436
【数13】
Figure 0003696436
であり、k(x)は特性関数である。なお、数式9は粒径分布f(x)を求めるための基準となる式で、粒径分布f(x)と実測データgとの関係を示している。ここで、iの数を増加させることは解くべき方程式の数が増加して解の精度が向上するため好ましいが、このiが3より大きい条件では解がほとんど真の解に近い場合が多いため、少なくともiが3であれば十分な解を得ることが可能である。
【0045】
次に、粒径分布f(x)を数式9から求めるため、以下に示す非線形緩和法を適用する場合について説明する。ここでは、以下に示すように、得られた濃度比C/C が実際に実験で求めた濃度比C/C に合致するように対応した粒径分布f(x)を求めることとする。すなわち、まず、数式9を適切な積分下限および上限の下でm分割する。この場合、第j分割における粒径範囲をx〜xj+1、中位径をx 、粒径差をΔx=xj+1−xとしたときの積分は以下の近似式で表される。
【0046】
【数14】
Figure 0003696436
(x)は、i番目の方程式で評価された粒径分布であり、上式から緩和法を用いて計算が行われる。解が収束した場合には次の数式15を満足する。一方、計算値がgにならなければ、以下の数式16により推定し、数式14によってふたたび計算する。
【0047】
【数15】
Figure 0003696436
計算の初期条件としては、適当なf(x)を仮定した後で、次式を用いた繰り返し計算を行う。kは繰り返しの回数を表す。
【0048】
【数16】
Figure 0003696436
ただし、r (k)は次式で表される。
【0049】
【数17】
Figure 0003696436
この理論に関し、i=1〜nとして計算を行う手法においては、逆向きサンプリング時の分級のみが用いられ、例えばi=3であれば異なる吸引流速の下で3回測定が行われる。一方、i=1〜n+1として計算を行う手法は、前向きサンプリングおよび逆向きサンプリングの両分級過程を経たものであり、ここでは前向きサンプリング時において流速比U/Uと濃度比C/Cの関係を表す直線が1つ得られるので合計i+1(i=3であれば4)の式が得られる。このi+1個の式すべてを用いて粒径分布f(x)を求める手法が両向き法であり、逆向き吸引時に得られるi個の式のみから粒径分布f(x)を求める手法が逆向きサンプリング法ということになる。
【0050】
ここで、上述した実施形態の理論の妥当性を検証するため行った検討について説明する。まず、真の粒径分布および主流流速Uを設定し、これらより逆向きサンプリング時の濃度比C/Cおよび前向きサンプリング時の流速比U/Uと濃度比C/Cの直線の傾きを計算した。次に、これらの計算結果より、上述した理論に従い粒径分布を求めると共に、逆向きサンプリング法および両向き法を用いた場合の粒径分布を計算した。
【0051】
図5および図6は、これらの結果と真の粒径分布を示したものである。図5においては、2つの計算結果は真の粒径分布と良い一致を示している。一方、図6においては、真の粒径分布が図5のものより広く設定されており、逆向きサンプリング法では、数ミクロン以上の領域において、真の分布との差異がみられている。しかし、両向き法においては、広範な粒径分布を有する粒子の段階的な分級が可能であるため、極めて正確に真の分布を再現していることが示されている。
【0052】
また、慣性パラメータψと濃度比C/Cとの関係について示すと、図7に示すようになる(図中では濃度比を「C/C」と表示)。慣性パラメータψは粒径xの二乗に比例する変数であり、この慣性パラメータψに伴って変化する同図のグラフから、前向きサンプリングで大きい粒子を選択的に分級し、逆向きサンプリングで小さい粒子を選択的に分級することが可能であることがわかる。しかも、逆向きサンプリングの場合、前向きサンプリングよりもグラフの傾きが急であることから、ある粒径領域に属する粒子を従来の前向きサンプリングよりも特に精度良く分級することが可能である。
【0053】
以上説明したように、本実施形態における気流中粒子の分級方法と粒径分布測定方法では、微細な粒子に対しては等速吸引条件で採取された粒子重量Mから真濃度Cを求め、次に気流方向に対して吸引用ノズル2の向きを反転させ、数回の異なる吸引流速Uで粒子濃度Cを測定している。そして、ここで得られた主流流速Uと吸引流速Uの比U/Uと、その流速比条件での測定濃度Cと真濃度Cの比C/Cから粒径分布を求めることができる。
【0054】
また、本実施形態では、上述のように両向き法のそれぞれで濃度比C/Cを求めているため、数式9において、未知である粒径分布関数f(x)に関して複数の方程式を得ることが可能である。このため、1つの式しか得られなかった前向きサンプリングのみの場合に比べて分布関数f(x)の数学的な解析において精度が向上しており、したがって、より真の分布に近い粒径分布を求めることができる。
【0055】
さらに、広範な粒径分布を有する粒子に対しては、逆向きサンプリング時の濃度比C/Cに加え、前向きサンプリング時の流速比U/Uと濃度比C/Cの直線の傾きから粒径分布を求めることができる。しかも、測定量はガス量、採取粒子の重量および主流流速Uという既に測定法が確立され、かつ測定が容易な因子であるため、簡易に測定を行うことができる。
【0056】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、図1に示したようなカーブ2bによりほぼ直角に曲げられた吸引用ノズル2を気流中に設置するようにしたがこれは一例であり、ノズル断面形状がいずれの位置でもほぼ一定で、その開口端部2aが気流の上流側あるいは下流側を向いた状態とすることができればこのようなものに特に限定されることはない。また、気流中の粒子の採取に粒子捕集用フィルタ8を用いているが、遠心分離による採取装置などを用いるようにしても良い。
【0057】
【発明の効果】
以上の説明より明らかなように、請求項1記載の気流中粒子の分級方法によると、流速比を変化させるだけで吸引粒子の大きさを異ならせ粒子割合を変えることができる。また、粒子をノズル先端の吸引部で分級できることに加え、採取粒子の秤量も容易である。したがって、これまでの粒径分布の計測において必要であった高価で煩雑な操作を伴う分級装置を用いることなく、安価で簡単かつ正確に粒子を分級することができる。しかも、フィルタからなる採取部で粒子を直接分級できるので、採取量の測定が簡単で正確である。
【0058】
また、請求項2記載の気流中粒子の粒径分布測定方法によると、簡単かつ正確な分級方法を利用していることから簡単かつ正確に粒径分布を測定することができることに加え、測定条件、測定装置の操作条件を同一条件にして測定できるので測定の自動化も容易である。さらに、これまで測定が困難であった溶融灰や液相粒子など、サンプリング以降に付着・凝集する粒子、あるいは分級装置内で誤差を生じやすい粒子の粒径分布の計測を行えるようになる。
【0059】
そして、このような粒径分布測定法によれば、測定時の吸引流速Uとその際の主流流速U、採取された粒子の重量Mおよび吸引ガス量Vという測定の容易な因子のみを測定し、それぞれの採取条件から求めた粒子濃度(C=M/V)と流速比(U/U)から粒径分布を求め得るため、常に採取、秤量などの操作を同一装置および同一条件で行うことができる。また、計測諸量も測定が非常に容易である。さらには、計測諸量を、測定法も確立されている吸引ガス量V、流速Uおよび粒子採取量Mに限定していることで、簡単かつ正確な測定が困難であった従来の測定法の問題を解決している。
【0060】
請求項3記載の気流中粒子の粒径分布測定方法によると、前向きサンプリングおよび逆向きサンプリングによる粒子分級過程を経ていることから、数ミクロン以下から数十ミクロンまでの広範な領域の粒径分布を精度良く求めることが可能である。しかも、粒子の真の濃度Cは前向きサンプリング時の流速比U/Uと測定濃度Cの関係から求まるため、等速吸引による粒子の採取を行う必要がない。さらに、主流流速U下における吸引流速Uの変化が与える粒子の採取量への影響が粒子濃度比C/Cと流速比U/Uとの比例直線の傾きとして表わされることから、この傾きを求めることによって粒径分布を計算で求めることができる。
【0061】
また、気流中粒子の真の濃度Cは請求項4記載のように等速吸引条件(U/U=1)の下で吸引することによって計算によらずに求めることができるし、あるいは請求項5記載のように、流速比U/Uと粒子の採取量(粒子重量)Mとの間に相関関係があることを利用してグラフから計算によって求めることもできる。グラフから計算によって求める場合、逆向きサンプリング時においてCを求める必要がなく、また前向きサンプリング時に等速吸引する必要もない。
【図面の簡単な説明】
【図1】本発明を実施する装置の一実施形態を示す原理図である。
【図2】前向きサンプリング時の流速比U/Uと濃度Cの関係を示す図である。
【図3】前向きサンプリング時の流速比U/Uと濃度比C/Cの関係を示す図である。
【図4】流速比U/Uを変化させた場合の慣性パラメータψに対する濃度比C/Cの変化を示した図である。
【図5】逆向きサンプリング法および両向き法による計算結果を真の粒径分布と共に示した図である。
【図6】逆向きサンプリング法および両向き法による計算結果を図5の場合より広く分布設定された真の粒径分布と共に示した図である。
【図7】慣性パラメータψと濃度比C/Cとの関係について示す図である。
【符号の説明】
1 気流中粒子の粒径分布測定装置
2 吸引用ノズル
2a 開口端部
10 主流管
C 粒子濃度
真の粒子濃度
C/C 濃度比
U 吸引流速
主流流速(気流の流速)
/U 流速比[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for classifying particles in an air stream and a method for measuring a particle size distribution. More specifically, the present invention relates to classification or granulation of particles in an air stream to be transported in the field of handling a system that contains and transports particles in an air stream such as a pulverized coal feed pipe, boiler exhaust gas, and a dust collector. The present invention relates to a method for classifying particles in an air stream and a method for measuring a particle size distribution, which are suitable for carrying out a size distribution measurement accurately and simply.
[0002]
[Prior art]
The conventional particle size distribution measurement of the particles in the airflow is performed by measuring the flow velocity of the airflow flowing through the mainstream pipe (hereinafter also referred to as “mainstream flow velocity”) U.0And a particulate matter (hereinafter simply referred to as “particles”) collected under conditions called constant velocity suction with the same suction flow velocity U when a part of this air flow is collected using a suction nozzle for measurement. ) Is classified into several stages according to particle size by a classifier such as a cascade impactor, and each is weighed.
[0003]
[Problems to be solved by the invention]
However, in the technique described above, it is necessary to always satisfy the constant velocity suction condition when collecting particles, and even if the suction flow velocity U is slightly, the main flow velocity U0If it is different from the above, there is a problem that an accurate particle concentration C and consequently a particle size distribution cannot be obtained.
[0004]
In addition, the classification device is difficult to handle because it involves complicated operations, and it is necessary to weigh each of the particles separated and collected in each classification unit, and many problems remain from the viewpoint of rapid measurement. . Furthermore, the mainstream flow velocity U0Is constantly changing, it is practically difficult to accurately follow the suction conditions according to the change, and it is difficult to improve the measurement accuracy.
[0005]
The present invention provides a method for classifying particles in an air stream that can easily and accurately classify particles in an air stream without using a complicated apparatus, and a particle size distribution of particles in the air stream by using this classification method. It is an object of the present invention to provide a method for measuring the particle size distribution of particles in an air stream, which can be measured in a simple manner.
[0006]
[Means for Solving the Problems]
In order to achieve this object, the method for classifying particles in an air stream according to claim 10The particles flowing in the air flow are sucked in the direction opposite to the flow direction by the suction nozzle directed downstream, and the flow velocity U0Flow rate ratio U and suction flow rate U0/ U is changed, and the ratio of particles sucked is the flow rate ratio U0Particles are classified using the change of / U and the change depending on the particle size.
[0007]
When the particles in the airflow are classified or the particle size distribution is measured as described above, the influence of the particles on the flow of the airflow varies depending on the size of the particle size. For example, when the particle size is relatively small, the sampling amount (that is, the particle concentration C) is not easily affected by changes in the flow rate. .
[0008]
Therefore, the mainstream flow velocity U0Flow rate ratio U and suction flow rate U0When / U is changed, there is a difference in the amount sucked by the suction nozzle between the particles that are not easily affected by the change in the flow velocity and the particles that are easily affected, and the difference in the amount of particles results in a true particle concentration C (airflow True concentration of medium particles) C0It will shift from. That is, the flow rate ratio U0By appropriately changing the value of / U, it is possible to vary the size of the particles to be sucked and classify them at the time of suction.
[0009]
Moreover, in this method of classifying particles in the airflow, the suction nozzle is directed downstream of the airflow, and the particles in the airflow are sucked in the opposite direction so as to be reversed from the flow. Smaller ones can also be classified (such particle sampling is referred to herein as “reverse sampling” as appropriate). Therefore, according to the classification method using the reverse sampling, the particles in the region different from the conventional method of classifying the particles in the airflow with the nozzle facing the upstream side of the airflow are sucked while being classified at the time of taking in the particles. Will be able to.
[0010]
  The method for measuring the particle size distribution of particles in the airflow according to claim 20The particles flowing in the air flow are sucked in the direction opposite to the flow direction by the suction nozzle directed downstream, and the air flow velocity U0Flow rate ratio U and suction flow rate U0/ U is changed to change the particle concentration C in the suction air flow by changing the ratio of suction of each particle, and the particle concentration C and the true concentration C of the particles in the air flow are changed.0Concentration ratio C / C0To obtain the flow rate ratio U0Concentration ratio determined by the value of / U C / C0The particle concentration C corresponding to particles of all particle sizes is obtained by using the correlation between the particle size and the particles of particle size x,Furthermore, the assumed particle size distribution f 1 The difference from (x) is obtained, and the particle size distribution f so that the difference is reduced. i By recalculating (x) and repeating until the difference converges,Obtained concentration ratio C / C0Concentration ratio C / C actually obtained by experiment0Corresponding particle size distribution to matchf (x)Is to ask for.
[0011]
In this case, flow rate ratio U0The change in the particle concentration C when / U is shifted includes information on the change in the particle size distribution at the same time because the influence of the change in the suction flow velocity U varies depending on the particle size. And the mainstream flow velocity U0When the suction flow velocity U changes below, it affects the amount of collected particles (suction amount) M, and this influence is governed by the particle size distribution, which is the particle concentration ratio C / C.0And flow velocity ratio U0Expressed as a correlation with / U. Therefore, using this correlation, the particle size distribution can be calculated mathematically.
[0012]
Also, the particles in the collected airflow are affected differently from the flow of the airflow depending on the size of the particle size, and those having a relatively small particle size are less affected by the change in the airflow flow. It is easy to be sucked along the flow of the airflow sucked when sampling is performed in the direction opposite to the flow of. Therefore, in this reverse sampling, particles in a region having a small particle size can be collected mainly, and the classification accuracy is higher than in the case of forward sampling.
[0013]
  The method for measuring the particle size distribution of particles in the airflow according to claim 30The particles in the airflow flowing in the air are sucked in the same direction as the flow direction by the suction nozzle directed upstream, and the flow velocity U of the airflow0Flow rate ratio U and suction flow rate U0/ U is changed, and the flow velocity ratio U of two or more different conditions in air current particles0/ U, and the concentration C of the particles in the suction air flow and the true concentration C in the air flow determined from the amount of the sucked particles.0Concentration ratio C / C0And flow velocity ratio U0/ A forward non-constant sampling process for obtaining a slope of a straight line representing a proportional relationship with U, and suction of particles in a direction opposite to the flow direction with a suction nozzle directed downstream, and an air flow velocity U0Flow rate ratio U and suction flow rate U0/ U is changed, thereby changing the ratio of particles sucked to change the particle concentration C in the suction airflow, and the particle concentration C and the true concentration C of the particles in the airflow.0Concentration ratio C / C0The reverse sampling process to find the flow rate ratio U0Concentration ratio determined by the value of / U C / C0The particle concentration C corresponding to the particle size is obtained by utilizing the correlation between the particle size and the particle size x,Furthermore, the assumed particle size distribution f 1 The difference from (x) is obtained, and the particle size distribution f so that the difference is reduced. i By recalculating (x) and repeating until the difference converges,Obtained concentration ratio C / C0Concentration ratio C / C actually obtained by experiment0Corresponding particle size distribution to matchf (x)Is what you want.
[0014]
In this case, first, the suction nozzle is directed to the upstream side of the air flow, and the main flow velocity U0Particles are sucked under a plurality of different suction flow rate conditions, and the flow rate ratio U at that time0/ U and concentration ratio C / C0The slope of a straight line representing the relationship is obtained (forward nonuniform sampling). In addition, particle concentration C and particle concentration ratio C / C by reverse sampling0Ask for. The slope of the straight line and the concentration ratio C / C at the time of reverse sampling described above0And flow velocity ratio U0The particle size distribution can be determined mathematically from the relationship / U.
[0015]
In the case of both forward and reverse sampling processes as in the present invention, first, in the forward process, the flow rate ratio U0When the / U is deviated from 1, the measured particle concentration C also changes. This change in the particle concentration C is influenced by the change in the suction flow velocity U. Also included. The change in the particle size distribution is, for example, the particle concentration C and the flow rate ratio U as shown in FIG.0Of the correlation with / U or the particle concentration ratio C / C as shown in FIG.0And flow velocity ratio U0Expressed as the slope of the correlation with / U. That is, the mainstream flow velocity U0If the suction flow velocity U changes below, it affects the particle collection amount (suction amount) M. This influence is governed by the particle size distribution, and this is the particle concentration ratio C / C.0And flow velocity ratio U0It is expressed as the slope of a proportional straight line with / U. Therefore, the particle size distribution can be obtained by calculation by obtaining this inclination. In this case, the flow rate ratio U under at least two different conditions0/ Velocity ratio U for each measurement0/ U particle concentration C and particle concentration ratio C / C0, The particle concentration ratio C / C0Can be used to determine the particle size distribution.
[0016]
Furthermore, in the present invention, it is possible to obtain a plurality of expressions representing the particle size distribution by performing backward sampling in addition to such forward sampling. For this reason, it is possible to obtain a formula representing the particle size distribution with higher accuracy, particularly for particles having a wide particle size distribution (in this specification and the drawings, forward sampling in which the suction nozzle faces the upstream side in this way). And a sampling method using reverse sampling is appropriately referred to as “bidirectional method”).
[0017]
According to a fourth aspect of the present invention, in the particle size distribution measurement method for airborne particles according to the second or third aspect, the true concentration C of the particles in the airflow0Is the suction flow velocity U when the particles in the airflow are sucked in the same direction as the flow direction with the suction nozzle directed toward the upstream side of the airflow.0Are obtained by weighing the particles in the airflow obtained in the same manner. In this case, the constant velocity suction condition (flow rate ratio U) is set by the suction nozzle toward the upstream side.0/ U = 1) true particle concentration C in the airflow by suctioning under0Is required.
[0018]
According to a fifth aspect of the present invention, in the particle size distribution measurement method for airborne particles according to the second or third aspect, the true concentration C of the airborne particles0When suctioning particles in the airflow in the same direction as the flow direction with the suction nozzle toward the upstream side of the airflow, at least two different flow velocity ratios U0The particle concentration C is obtained under the conditions of / U, and the particle concentration C and flow rate ratio U0/ U and the flow velocity ratio U0/ U = 1 is obtained from the intersection with the straight line representing 1.
[0019]
Here, flow rate ratio U during measurement0When the relationship between / U and particle concentration C is plotted, a graph having linearity as shown in FIG.0It can be seen that there is a correlation between / U and the amount of particles collected (particle weight) M. Therefore, at least two conditions of flow velocity ratio U0The value of the particle concentration C at / U, and the flow rate ratio U at each measurement0From the straight line in FIG. 2 showing the correlation between / U and particle concentration C, the flow rate ratio U0True particle concentration C representing particle concentration when / U is 10That is, the concentration of particles in the airflow can be obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.
[0021]
FIG. 1 shows an example of a particle size distribution measuring apparatus 1 that implements the air particle classification method and particle size distribution measurement method according to the present invention. The measuring apparatus 1 includes a main flow pipe 10 through which an exhaust gas to be measured flows, a suction nozzle 2 that collects a gas to be measured (exhaust gas) flowing through the main flow pipe 10, a filter device 3 that collects particles, and a drain. The pot 4, the gas meter 5, the valves 6 and 9, the vacuum pump 7, and a velocimeter (not particularly shown) are included.
[0022]
The suction nozzle 2 collects the exhaust gas flowing in the main flow tube 10 and guides it to the filter device 3. The suction nozzle 2 is formed at the center of the main flow tube 10 so that the end 2 a opens toward the flow of the exhaust gas in the main flow tube 10. It arrange | positions and it is rotatably provided so that the opening edge part 2a can face the upstream or downstream of an airflow. In this case, although not shown in detail, the entire portion of the suction nozzle 2 above the filter device 3 may be rotatable, or only a part of the suction nozzle 2 may be rotatable. The means for rotating can be manual as well as those using various actuators such as a motor. The suction nozzle 2 has a movable range of at least 180 ° so that the opening end 2a can face the upstream side and the downstream side. The opening end 2a of the suction nozzle 2 has an inner diameter d.cThe opening end 2a to the filter device 3 are formed in a smooth shape with a substantially constant cross section through a curve 2b on the way. Then, the air flow such as flue exhaust gas to be measured becomes the inner diameter d.cThe main flow tube 10 is transported at a suction flow velocity U.
[0023]
The filter device 3 is a device having therein a particle collecting filter 8 for capturing particles contained in the exhaust gas. The particle collecting filter 8 is installed so as to be able to be taken out in order to weigh the collected particles. The drain pot 4 is a device for collecting exhaust gas, and the gas meter 5 is a device for measuring the amount V of exhaust gas sucked through the suction nozzle 2. The valves 6 and 9 are provided as devices for controlling the suction force of the suction nozzle 2 and for controlling the suction operation by the vacuum pump 7.
[0024]
In addition, the mainstream flow velocity U of the airflow which flows through the mainstream pipe 100For this measurement, a Pitot tube or a hot-wire anemometer, for example, is used although not particularly shown. The particles are collected by sucking the gas at the suction flow velocity U from the opening end 2a of the suction nozzle 2 by the suction force of the vacuum pump 7. All the sucked particles are collected in the filter device 3 including the particle collecting filter 8, and the particle collection amount M is obtained from the difference between the weighed filter weights before and after the suction.
[0025]
On the other hand, the suction gas amount V is measured by the gas meter 5. The suction flow velocity U is determined by the suction gas amount V, the suction time T, and the cross-sectional area S (S = π · d) at the open end 2a of the suction nozzle 2.c 2/ 4) from the relational expression U = V / (T · S). The particle concentration C at that time is obtained from the particle collection amount M and the suction gas amount V by the relational expression C = M / V.
[0026]
In the particle size distribution measuring apparatus 1 configured as described above, the main flow velocity U0The suction flow velocity U is changed with the air flow constant, and the main flow velocity U0If the value is set to a different value, there is a difference in the amount M of particles collected from the exhaust gas having the same flow. In other words, the particles in the collected air flow are affected differently from the flow of the air flow depending on the size of the particle size, and those having a relatively small particle size are affected by the change in the flow rate M (ie, the particle concentration C). Although it is difficult, if it is relatively large, the inertial force becomes large and is easily influenced by changes in the flow velocity, and a difference occurs due to changes in the state of the airflow.
[0027]
Therefore, the mainstream flow velocity U0Flow rate ratio U and suction flow rate U0When / U is changed, there is a difference in the amount sucked by the suction nozzle 2 between the particles that are not easily affected by the change in flow velocity and the particles that are easily affected. For this reason, the flow rate ratio U0By appropriately changing / U, the size of the particles to be sucked is different and is classified and collected at the time of suction. In this specification, the flow rate ratio U is0The sampling of particles performed by appropriately changing / U is appropriately referred to as “non-constant sampling”. The flow rate ratio U can be changed by changing the suction flow rate U.0/ U is changed, and main flow velocity U0The flow rate ratio U can also be changed by changing0/ U can be changed.
[0028]
For example, six different suction flow rates U1~ U6The particles were collected with a C and the particle concentration measured at that time was determined as C.1~ C6The main flow velocity U0Ratio to U0/ U1~ U0/ U6Is C as shown in FIG.1~ C6Is always linear. From this, the flow rate ratio U0When the change in / U and the change in particle concentration C (or collected amount M) are plotted, it can be seen that both have linearity. Therefore, using this relationship, the true particle concentration C0Is the mainstream flow velocity U0Concentration C under constant velocity suction conditions where the ratio of the suction flow rate U is 10Can be easily obtained from the graph of FIG.
[0029]
Here, in the measurement of the particle concentration C of the present embodiment, as shown in FIG.0Although / U is obtained, it is not particularly limited to this. Particle concentration C and flow rate ratio U0/ U to obtain a linear relationship with U0It is theoretically possible to obtain / U data for at least two points. A plot of the above measured values measured at at least two points, preferably a plot of three or more points, is connected by a straight line, and the flow rate ratio U0The value of the particle concentration C at the point where / U = 1 is the value C of the particle concentration in the air stream0It becomes.
[0030]
The above is a case where forward sampling is performed in which the opening end 2a of the suction nozzle 2 is directed to the upstream side of the air flow and particles are sucked in the same direction as the flow direction of the air flow as shown by the solid line in FIG. When reverse sampling is performed with the open end 2a directed downstream as indicated by an imaginary line in the figure, the measured concentration C and true concentration C of the particles are measured.0Ratio C / C0Is particle size x, mainstream flow velocity U0It depends on. That is, as the particle size x increases, the inertia parameter ψ also increases. Accordingly, the particle concentration C measured as shown in FIG.0Keep away from. In this case, the concentration ratio C / C0Is given by Equation 1 for particles of particle size x.
[0031]
[Expression 1]
Figure 0003696436
Here, ψ is an inertia parameter and is expressed by the following equation.
[0032]
[Expression 2]
Figure 0003696436
The inertia parameter ψ and the particle concentration ratio C / C0The relationship is as shown in FIG. 4 as described above. In addition, the flow rate ratio U with the suction nozzle 2 reversed0When / U is changed, the particle concentration ratio C / C0Changes as shown in FIG.
[0033]
Main flow velocity U0If the gas viscosity μ and the composition are constant, Equation 1 is a function of only the particle size x and the suction flow rate U. In this case, since Equation 1 holds for each particle size x, the measured concentration C for the particle group having the particle size distribution f (x) is obtained by weighted averaging Equation 1 with the particle size distribution.
[0034]
[Equation 3]
Figure 0003696436
On the other hand, in forward sampling, flow rate ratio U0As shown in FIG. 3, the influence on the particle collection amount M when / U is different from 1 is as follows.0The particle size x is large and the main flow velocity U0Is faster, the measured particle concentration C is the true particle concentration C0Keep away from. This true particle concentration C0The deviation from is given by the following equation for particles of particle size x.
[0035]
[Expression 4]
Figure 0003696436
As described above, since Equation 4 holds for each particle size x, the measured concentration C for the particle group having the particle size distribution f (x) is obtained by weighted averaging Equation 4 with the particle size distribution. It is done.
[0036]
[Equation 5]
Figure 0003696436
That is, for the particle group, the particle concentration ratio C / C0Is the flow rate ratio U0/ U is a linear function, so the particle concentration ratio C / C obtained by experiment0And flow velocity ratio U0The / U relationship is also a linear function, and is expressed by the following equation.
[0037]
[Formula 6]
Figure 0003696436
When the mathematical formulas 5 and 6 are compared, the following mathematical formula 7 is established.
[0038]
[Expression 7]
Figure 0003696436
Next, the concentration ratio C / C at the time of reverse sampling described above0And concentration ratio C / C during forward sampling0And flow velocity ratio U0The particle size distribution is determined from the slope representing the correlation of / U.
[0039]
If the direction of the suction nozzle 2 is reversed and the reverse sampling of the particles is performed under the condition of n suction flow rates, the following formula 8 is obtained from the formula 3.
[0040]
[Equation 8]
Figure 0003696436
Next, when the main flow direction and the direction of the suction nozzle 2 are set to be the same, A in Expression 7 can be obtained experimentally. This A has a relationship as shown in Formula 7 with the particle size distribution f (x).
[0041]
In addition, since Equation 7 and Equation 8 are expressed in the same format,
[0042]
[Equation 9]
Figure 0003696436
Is obtained. here,
[0043]
[Expression 10]
Figure 0003696436
## EQU11 ##
Figure 0003696436
[0044]
[Expression 12]
Figure 0003696436
[Formula 13]
Figure 0003696436
And ki(X) is a characteristic function. Equation 9 is a reference equation for obtaining the particle size distribution f (x). The particle size distribution f (x) and the measured data giShows the relationship. Here, it is preferable to increase the number of i because the number of equations to be solved increases and the accuracy of the solution is improved. However, when i is larger than 3, the solution is almost close to a true solution in many cases. If at least i is 3, a sufficient solution can be obtained.
[0045]
  Next, in order to obtain the particle size distribution f (x) from Equation 9, a case where the following nonlinear relaxation method is applied will be described. here,As shown below, the resulting concentration ratio C / C 0 Concentration ratio C / C actually obtained by experiment 0 The particle size distribution f (x) corresponding to the above is obtained. That is, first,Equation 9 is divided into m under appropriate integration lower and upper limits. In this case, the particle size range in the j-th division is xj~ Xj + 1, Median diameter x* j, The particle size difference is Δxj= Xj + 1-XjThe integral is expressed by the following approximate expression.
[0046]
[Expression 14]
Figure 0003696436
fi(X) is the particle size distribution evaluated by the i-th equation, and is calculated from the above equation using the relaxation method. When the solution converges, the following Expression 15 is satisfied. On the other hand, the calculated value is giIf not, it is estimated by the following equation 16 and calculated again by equation 14.
[0047]
[Expression 15]
Figure 0003696436
As an initial condition of calculation, an appropriate f1After assuming (x), iterative calculation using the following equation is performed. k represents the number of repetitions.
[0048]
[Expression 16]
Figure 0003696436
Where ri (K)Is expressed by the following equation.
[0049]
[Expression 17]
Figure 0003696436
With regard to this theory, in the method of calculating with i = 1 to n, only classification at the time of reverse sampling is used. For example, if i = 3, three measurements are performed under different suction flow rates. On the other hand, the method of performing calculation with i = 1 to n + 1 has undergone both classification processes of forward sampling and backward sampling, and here, the flow rate ratio U at the time of forward sampling is shown.0/ U and concentration ratio C / C0Since one straight line representing the relationship is obtained, a total of i + 1 (4 if i = 3) is obtained. A method for obtaining the particle size distribution f (x) using all of the i + 1 equations is a bidirectional method, and a method for obtaining the particle size distribution f (x) from only i equations obtained at the time of reverse suction is reversed. This is the orientation sampling method.
[0050]
Here, the examination performed in order to verify the validity of the theory of the above-described embodiment will be described. First, true particle size distribution and mainstream flow velocity U0And the concentration ratio C / C at the time of reverse sampling0And flow velocity ratio U during forward sampling0/ U and concentration ratio C / C0The slope of the straight line was calculated. Next, from these calculation results, the particle size distribution was obtained according to the above-described theory, and the particle size distribution was calculated using the reverse sampling method and the bidirectional method.
[0051]
5 and 6 show these results and the true particle size distribution. In FIG. 5, the two calculation results are in good agreement with the true particle size distribution. On the other hand, in FIG. 6, the true particle size distribution is set wider than that in FIG. 5, and the reverse sampling method shows a difference from the true distribution in a region of several microns or more. However, in the bidirectional method, it is shown that the true distribution can be reproduced very accurately because it is possible to classify particles having a wide particle size distribution in stages.
[0052]
In addition, inertia parameter ψ and concentration ratio C / C0Is shown in FIG. 7 (in the figure, the concentration ratio is expressed as “Ci/ C0"). The inertia parameter ψ is a variable proportional to the square of the particle size x, and from the graph of the figure, which changes with the inertia parameter ψ, large particles are selectively classified by forward sampling and small particles by reverse sampling. It can be seen that selective classification is possible. In addition, in the case of backward sampling, since the slope of the graph is steeper than that of forward sampling, it is possible to classify particles belonging to a certain particle size region with higher accuracy than conventional forward sampling.
[0053]
As described above, in the air particle classification method and the particle size distribution measurement method according to the present embodiment, the true concentration C is obtained from the particle weight M collected under constant velocity suction conditions for fine particles.0Next, the direction of the suction nozzle 2 is reversed with respect to the airflow direction, and the particle concentration C is measured at several different suction flow rates U. And the mainstream flow velocity U obtained here0And suction flow rate U ratio U0/ U and measured concentration C and true concentration C under the flow rate ratio conditions0Ratio C / C0From this, the particle size distribution can be determined.
[0054]
Further, in the present embodiment, as described above, the concentration ratio C / C in each of the bidirectional methods.0Therefore, in Equation 9, it is possible to obtain a plurality of equations for the unknown particle size distribution function f (x). For this reason, the accuracy is improved in the mathematical analysis of the distribution function f (x) compared to the case of only forward sampling in which only one expression is obtained, and therefore, the particle size distribution closer to the true distribution is obtained. Can be sought.
[0055]
Furthermore, for particles with a wide particle size distribution, the concentration ratio C / C during reverse sampling0In addition, the flow rate ratio U during forward sampling0/ U and concentration ratio C / C0The particle size distribution can be determined from the slope of the straight line. Moreover, the measured amount is the amount of gas, the weight of collected particles, and the main flow velocity U.0Since the measurement method is already established and is a factor that can be easily measured, the measurement can be performed easily.
[0056]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in this embodiment, the suction nozzle 2 bent substantially at a right angle by the curve 2b as shown in FIG. 1 is installed in the airflow, but this is an example, and the nozzle cross-sectional shape is at any position. However, it is not particularly limited to this as long as it is substantially constant and the opening end 2a can face the upstream side or the downstream side of the airflow. Further, although the particle collecting filter 8 is used for collecting particles in the airflow, a collecting device by centrifugation or the like may be used.
[0057]
【The invention's effect】
As is clear from the above description, according to the method for classifying particles in the airflow according to claim 1, the size of the attracted particles can be varied and the particle ratio can be changed only by changing the flow rate ratio. In addition to being able to classify the particles at the suction part at the tip of the nozzle, the collected particles can be easily weighed. Therefore, it is possible to classify particles easily and accurately at low cost without using an expensive and complicated classifying apparatus that has been necessary in the measurement of the particle size distribution so far. In addition, since the particles can be directly classified by the sampling part made of a filter, the measurement of the sampling amount is simple and accurate.
[0058]
In addition, according to the method for measuring the particle size distribution of particles in the airflow according to claim 2, since a simple and accurate classification method is used, the particle size distribution can be measured easily and accurately. Since measurement can be performed under the same operating conditions of the measuring apparatus, automation of measurement is easy. Furthermore, it becomes possible to measure the particle size distribution of particles that adhere and aggregate after sampling, such as molten ash and liquid phase particles, which have been difficult to measure until now, or particles that are likely to cause errors in the classifier.
[0059]
And according to such a particle size distribution measuring method, the suction flow velocity U at the time of measurement and the main flow velocity U at that time0Only the easy measurement factors such as the weight M of the collected particles and the suction gas amount V were measured, and the particle concentration (C = M / V) and flow rate ratio (U0Since the particle size distribution can be obtained from / U), operations such as sampling and weighing can always be performed with the same apparatus and under the same conditions. Also, measurement quantities are very easy to measure. Furthermore, the measurement amounts are limited to the suction gas amount V, the flow velocity U, and the particle collection amount M, for which measurement methods are established, so that conventional measurement methods that have been difficult to measure easily and accurately can be used. The problem is solved.
[0060]
According to the method for measuring the particle size distribution of airborne particles according to claim 3, since the particle classification process is performed by forward sampling and reverse sampling, the particle size distribution in a wide range from several microns to several tens of microns is obtained. It is possible to obtain with high accuracy. Moreover, the true concentration C of the particles0Is the flow rate ratio U during forward sampling0Since it is obtained from the relationship between / U and measured concentration C, it is not necessary to collect particles by constant velocity suction. Furthermore, the mainstream flow velocity U0The influence of the change in the suction flow velocity U on the amount of particles collected is the particle concentration ratio C / C0And flow velocity ratio U0Since it is expressed as a slope of a proportional line with / U, the particle size distribution can be obtained by calculation by obtaining this slope.
[0061]
In addition, the true concentration C of airborne particles0Is a constant velocity suction condition (U0/ U = 1) can be obtained without calculation by aspiration under 1), or the flow rate ratio U as in claim 50/ U and the amount of collected particles (particle weight) M can be obtained by calculation from a graph using the correlation. When calculating from the graph, C in reverse sampling0There is no need to obtain a constant velocity, and there is no need to suck at a constant speed during forward sampling.
[Brief description of the drawings]
FIG. 1 is a principle view showing an embodiment of an apparatus for carrying out the present invention.
Fig. 2 Flow rate ratio U during forward sampling0It is a figure which shows the relationship between / U and density | concentration C. FIG.
FIG. 3 Flow velocity ratio U during forward sampling0/ U and concentration ratio C / C0It is a figure which shows the relationship.
[Figure 4] Flow velocity ratio U0Concentration ratio C / C with respect to inertia parameter ψ when / U is changed0FIG.
FIG. 5 is a diagram showing calculation results by a reverse sampling method and a bidirectional method together with a true particle size distribution.
6 is a diagram showing calculation results obtained by a reverse sampling method and a bidirectional method together with a true particle size distribution set wider than the case of FIG. 5. FIG.
FIG. 7: Inertia parameter ψ and concentration ratio C / C0It is a figure shown about the relationship.
[Explanation of symbols]
1 Particle size distribution measuring device for airborne particles
2 Suction nozzle
2a Open end
10 Mainstream pipe
C Particle concentration
C0  True particle concentration
C / C0  Concentration ratio
U Suction flow rate
U0  Main flow velocity (air flow velocity)
U0/ U Flow rate ratio

Claims (5)

流速Uで流れる気流中の粒子を下流側へ向けた吸引用ノズルで流れ方向と逆向きに吸引すると共に、前記流速Uと吸引流速Uの流速比U/Uを変化させ、吸引される粒子の割合がこの流速比U/Uの変化および粒径によって変化することを利用して前記粒子を分級することを特徴とする気流中粒子の分級方法。The particles in the airflow flowing at the flow velocity U 0 are sucked in the direction opposite to the flow direction by the suction nozzle directed to the downstream side, and the flow velocity ratio U 0 / U between the flow velocity U 0 and the suction flow velocity U is changed and sucked. A method for classifying particles in an air stream, wherein the particles are classified by utilizing the change in the flow rate ratio U 0 / U and the change in the particle size. 流速Uで流れる気流中の粒子を下流側へ向けた吸引用ノズルで流れ方向と逆向きに吸引すると共に、前記気流の流速Uと吸引流速Uの流速比U/Uを変化させ、これにより各粒子の吸引される割合を異ならせて吸引気流中の粒子濃度Cを変化させ、該粒子濃度Cと前記気流中粒子の真の濃度Cとの濃度比C/Cを求め、前記流速比U/Uの値によって定まる前記濃度比C/Cと粒径xの粒子との間の相関関係を利用することによりすべての粒径の粒子に対応する粒子濃度Cを求め、さらに、仮定しておいたある粒径分布f (x)との差を求め、該差が小さくなるように粒径分布f (x)を再計算し、前記差が収束するまで繰り返し計算を行うことにより、得られた濃度比C/Cが実際に実験で求めた濃度比C/Cに合致するように対応した粒径分布f(x)を求めることを特徴とする気流中粒子の粒径分布測定方法。The particles in the airflow flowing at the flow velocity U 0 are sucked in the direction opposite to the flow direction by the suction nozzle directed downstream, and the flow velocity ratio U 0 / U of the air flow velocity U 0 and the suction flow velocity U is changed, Thus changing the particle concentration C of the suction air stream with different aspirated percentage is in each particle, determine the concentration ratio C / C 0 of the true concentration C 0 of the particle concentration C and the air flow in the particles, By using the correlation between the concentration ratio C / C 0 determined by the value of the flow rate ratio U 0 / U and the particles of the particle size x, the particle concentration C corresponding to the particles of all the particle sizes is obtained. Further, the difference from the assumed particle size distribution f 1 (x) is obtained, the particle size distribution f i (x) is recalculated so as to reduce the difference, and the calculation is repeated until the difference converges. by performing a concentration concentration ratio C / C 0 obtained was determined by the actual experimental ratio C Particle size distribution measuring method of the air flow in the particles, characterized in that to determine the particle size distribution f (x) corresponding to match the C 0. 流速Uで流れる気流中の粒子を上流側へ向けた吸引用ノズルで流れ方向と同じ向きに吸引すると共に、前記気流の流速Uと吸引流速Uの流速比U/Uを変化させ、前記気流中粒子を異なる2条件以上の流速比U/Uの下で吸引し、この吸引された前記粒子の量から求まる吸引気流中の粒子濃度Cと前記気流中の真の濃度Cとの濃度比C/Cと前記流速比U/Uとの比例関係を表す直線の傾きを求める前向き非等速サンプリング過程と、前記粒子を下流側へ向けた吸引用ノズルで流れ方向と逆向きに吸引すると共に、前記気流の流速Uと吸引流速Uの流速比U/Uを変化させ、これにより吸引される前記粒子の割合を変化させて吸引気流中の粒子濃度Cを変え、該粒子濃度Cと前記気流中粒子の真の濃度Cとの濃度比C/Cを求める逆向きサンプリング過程とから成り、前記流速比U/Uの値によって定まる前記濃度比C/Cと前記粒子の粒径xとの間の相関関係を利用することにより粒径に対応する粒子濃度Cを求め、さらに、仮定しておいたある粒径分布f (x)との差を求め、該差が小さくなるように粒径分布f (x)を再計算し、前記差が収束するまで繰り返し計算を行うことにより、得られた濃度比C/Cが実際に実験で求めた濃度比C/Cに合致するように対応した粒径分布f(x)を求めることを特徴とする気流中粒子の粒径分布測定方法。The particles in the airflow flowing at the flow velocity U 0 are sucked in the same direction as the flow direction by the suction nozzle directed upstream, and the flow velocity ratio U 0 / U between the flow velocity U 0 of the air flow and the suction flow velocity U is changed, The particles in the air stream are sucked under a flow rate ratio U 0 / U of two or more different conditions, and the particle concentration C in the suction air flow and the true concentration C 0 in the air flow determined from the amount of the sucked particles A forward non-constant sampling process for obtaining a slope of a straight line representing a proportional relationship between the concentration ratio C / C 0 and the flow velocity ratio U 0 / U, and the flow direction is reversed by a suction nozzle that directs the particles toward the downstream side. And the flow rate ratio U 0 / U of the flow velocity U 0 of the air flow and the suction flow velocity U is changed, thereby changing the ratio of the particles sucked to change the particle concentration C in the suction air flow, the true concentration C 0 of the particle concentration C and the air flow in the particles Consists opposite to the sampling process of obtaining the degrees ratio C / C 0, utilizes a correlation between particle size x of the said velocity ratio U 0 / U the concentration ratio C / C 0 determined by the value of the particle Thus, the particle concentration C corresponding to the particle size is obtained, and further, the difference from the assumed particle size distribution f 1 (x) is obtained, and the particle size distribution f i (x) so that the difference is reduced. re calculated, by performing the repeated calculations until the difference is converged, resulting concentration ratios particle size distribution corresponding to match the concentration ratio C / C 0 was determined by C / C 0 is actually experimentally A method for measuring a particle size distribution of particles in an air stream, wherein f (x) is obtained. 前記気流中粒子の真の濃度Cは、前記気流の上流側へ向けた前記吸引用ノズルで前記気流中粒子を流れ方向と同じ向きに吸引する際、前記吸引流速Uを前記気流の流速Uと等しくして得られた気流中粒子を秤量して求めることを特徴とする請求項2または3記載の気流中粒子の粒径分布測定方法。The true concentration C 0 of the particles in the airflow is determined by using the suction flow velocity U as the flow velocity U of the airflow when the particles in the airflow are sucked in the same direction as the flow direction by the suction nozzle toward the upstream side of the airflow. 4. The method for measuring the particle size distribution of particles in an air stream according to claim 2 or 3, wherein the particles in the air stream obtained by equaling 0 are weighed. 前記気流中粒子の真の濃度Cは、前記気流の上流側へ向けた前記吸引用ノズルで前記気流中粒子を流れ方向と同じ向きに吸引する際、少なくとも2つの異なる流速比U/Uの条件下で前記粒子濃度Cを求め、この粒子濃度Cと流速比U/Uとの関係を表す直線と流速比U/U=1を表す直線との交点から求めることを特徴とする請求項2または3記載の気流中粒子の粒径分布測定方法。The true concentration C 0 of the particles in the airflow is determined by at least two different flow rate ratios U 0 / U when the particles in the airflow are sucked in the same direction as the flow direction by the suction nozzle directed upstream of the airflow. The particle concentration C is obtained under the following conditions, and is obtained from the intersection of a straight line representing the relationship between the particle concentration C and the flow velocity ratio U 0 / U and a straight line representing the flow velocity ratio U 0 / U = 1. The method for measuring a particle size distribution of particles in an air stream according to claim 2 or 3.
JP14516999A 1999-05-25 1999-05-25 Method for classifying particles in airflow and measuring particle size distribution Expired - Fee Related JP3696436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14516999A JP3696436B2 (en) 1999-05-25 1999-05-25 Method for classifying particles in airflow and measuring particle size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14516999A JP3696436B2 (en) 1999-05-25 1999-05-25 Method for classifying particles in airflow and measuring particle size distribution

Publications (2)

Publication Number Publication Date
JP2000334385A JP2000334385A (en) 2000-12-05
JP3696436B2 true JP3696436B2 (en) 2005-09-21

Family

ID=15379039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14516999A Expired - Fee Related JP3696436B2 (en) 1999-05-25 1999-05-25 Method for classifying particles in airflow and measuring particle size distribution

Country Status (1)

Country Link
JP (1) JP3696436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063082A (en) * 2017-11-29 2019-06-07 한국기계연구원 Apparatus for measuring dust particle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918465A (en) * 2019-12-16 2020-03-27 江苏科盈选煤技术有限公司 Variable-diameter pulse airflow sorting system and sorting method thereof
KR102578337B1 (en) * 2023-04-25 2023-09-15 국방과학연구소 Apparatus for Evaluating Performance of Chemical Protective Overgarment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063082A (en) * 2017-11-29 2019-06-07 한국기계연구원 Apparatus for measuring dust particle

Also Published As

Publication number Publication date
JP2000334385A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
Marple et al. Impactor design
Belyaev et al. Techniques for collection of representative aerosol samples
Fuchs Sampling of aerosols
Durham et al. Evaluation of aerosol aspiration efficiency as a function of Stokes number, velocity ratio and nozzle angle
JP3673854B2 (en) Dust sampling device with variable aperture suction nozzle
US6062092A (en) System for extracting samples from a stream
RU2008102246A (en) Sampler for determining the composition of the current medium and mass flow meter with averaging over mass speed and area
US5090257A (en) Automatic isokinetic aerosol sampling system
US7059205B1 (en) System for extracting samples from a stream
Noll A rotary inertial impactor for sampling giant particles in the atmosphere
KR102564702B1 (en) Fine dust sensor and its method
KR101692943B1 (en) Pollution source tracking sampling system by wind direction and speed control
CN1330958C (en) Device for collecting and monitoring particles of solid source discharged gas
Hering Impactors, cyclones, and other inertial and gravitational collectors
KR101783821B1 (en) Pollution source tracking sampling method by wind direction and speed control
CN104237094A (en) Road surface retention dust load measuring device and measuring method
WO2018053165A1 (en) Passive aerosol diluter mechanism
Mitchell Particle size analyzers: practical procedures and laboratory techniques
JP3696436B2 (en) Method for classifying particles in airflow and measuring particle size distribution
CN110118709A (en) One kind can the online cascade sampling measuring system and method for trap particulate matter
JPH09159598A (en) Measuring device for particle concentration/particle size distribution in gas flow
TILLERY A concentric aerosol spectrometer
Wedding et al. Sampling effectiveness of the inlet to the dichotomous sampler.
LUNDGREN et al. Sampling of tangential flow streams
Cooper et al. A new particle size classifier: variable-slit impactor with photo-counting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees