JP3696373B2 - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP3696373B2
JP3696373B2 JP14772297A JP14772297A JP3696373B2 JP 3696373 B2 JP3696373 B2 JP 3696373B2 JP 14772297 A JP14772297 A JP 14772297A JP 14772297 A JP14772297 A JP 14772297A JP 3696373 B2 JP3696373 B2 JP 3696373B2
Authority
JP
Japan
Prior art keywords
transmission
rotation member
rotating shaft
rotating
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14772297A
Other languages
Japanese (ja)
Other versions
JPH10339362A (en
Inventor
善昭 塚田
一彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14772297A priority Critical patent/JP3696373B2/en
Publication of JPH10339362A publication Critical patent/JPH10339362A/en
Application granted granted Critical
Publication of JP3696373B2 publication Critical patent/JP3696373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、変速回転部材の摩擦伝達面に伝達回転部材を接触させ、その接触部を変速回転部材の母線に沿って移動させることにより、変速回転部材及び伝達回転部材間の動力伝達及び変速を行う無段変速機に関する。
【0002】
【従来の技術】
かかる無段変速機は、例えば特公昭47−447号公報に記載されているように既に知られている。従来、この種の無段変速機の変速回転部材は、中心軸の回りに該中心線と交差する直線を回転させた回転体(円錐)から構成されており、従ってその回転体の母線は直線であった。
【0003】
【発明が解決しようとする課題】
ところで、かかる無段変速機の変速回転部材の摩耗等に対する耐久性を高めるには、変速回転部材と伝達回転部材との接触部の面圧を減少させることが考えられるが、このようにすると前記接触部にスリップが発生して伝達可能トルクが減少する問題がある。
【0004】
本発明は前述の事情に鑑みてなされたもので、無段変速機の伝達可能トルクを確保しながら変速回転部材の接触部の摩耗等に対する耐久性を向上させることを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明は、第1回転軸と、第1回転軸に支持された伝達回転部材と、第1回転軸に対して傾斜して配置された第2回転軸と、第2回転軸に回転自在に支持され、該第2回転軸の軸線に対して傾斜した母線を該軸線回りに回転させて形成した摩擦伝達面を有する変速回転部材とを備えてなり、変速回転部材の摩擦伝達面に伝達回転部材を接触させるとともに、その接触部を相互間の相対位置関係を保ちつつ前記母線に沿って移動させることにより、伝達回転部材及び変速回転部材間の動力伝達と変速とを行う無段変速機において、前記母線を曲線としたことを特徴とする。
【0006】
上記構成によれば、変速回転部材と伝達回転部材との接触部の接触面積を任意に変化させることができるので、伝達可能トルクを減少させることなく、接触部の面圧を任意に調整して摩耗等に対する耐久性を高めることができる。
【0007】
また請求項2に記載された発明は、第1回転軸と、第1回転軸に支持された駆動回転部材と、駆動回転部材と一定の距離を保つように第1回転軸に支持された従動回転部材と、第1回転軸に対して傾斜して配置された第2回転軸と、第2回転軸に回転自在に支持され、該第2回転軸の軸線に対して傾斜し且つ互いに傾斜方向を反対にした第1、第2母線を該軸線回りに回転させて形成した第1、第2摩擦伝達面を有する変速回転部材とを備えてなり、変速回転部材の中心線を挟んで反対側で第1、第2摩擦伝達面に駆動回転部材及び従動回転部材をそれぞれ接触させるとともに、それら接触部をそれぞれ前記第1、第2母線に沿って移動させることにより、駆動回転部材及び従動回転部材間の動力伝達と変速とを行う無段変速機において、前記第1、第2母線を同一曲率半径を有する円弧曲線とし、且つ一方の母線を変速回転部材の半径方向外向きに湾曲させ他方の母線を変速回転部材の半径方向内向きに湾曲させたことを特徴とする。
【0008】
上記構成によれば、変速回転部材と駆動回転部材及び従動回転部材との第1、第2接触部の面積を任意に変化させることができるので、伝達可能トルクを減少させることなく、それら接触部の面圧を任意に調整して摩耗等に対する耐久性を高めることができる。また変速回転部材を駆動回転部材及び従動回転部材に対して相対移動させることにより第1、第2接触部の位置を移動させて変速を行うとき、第1、第2接触部間の距離を一定に保持することができる。
【0009】
また請求項3に記載された発明は、請求項2の構成に加えて、第1回転軸に近い側の母線を半径方向内向きに湾曲させ、遠い側の母線を半径方向外向きに湾曲させたことを特徴とする。
【0010】
上記構成によれば、第1回転軸に近いために伝達荷重が大きくなる側の摩擦伝達面の母線を変速回転部材の半径方向内向きに湾曲させて接触部の面積を増加させ、第1回転軸に遠いために伝達荷重が小さくなる側の摩擦伝達面の母線を変速回転部材の半径方向外向きに湾曲させて接触部の面積を減少させることができるので、第1、第2接触部の摩耗等が不均一になるのを防止して変速回転部材全体としての耐久性を高めることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0012】
図1〜図6は本発明の一実施例を示すもので、図1は車両用パワーユニットの縦断面図、図2は図1の要部拡大図、図3は図2の要部拡大図(LOWレシオ)、図4は図2の要部拡大図(TOPレシオ)、図5は図2の5−5線断面図、図6は図2の6−6線断面図である。
【0013】
図1に示すように、このパワーユニットPは自動二輪車に搭載されるものであって、エンジンE及び無段変速機Tを収納するケーシング1を備える。ケーシング1は、センターケーシング2と、センターケーシング2の左側面に結合される左ケーシング3と、センターケーシング2の右側面に結合される右ケーシング4とに3分割される。センターケーシング2及び左ケーシング3に一対のボールベアリング5,5を介して支持されたクランクシャフト6は、同じくセンターケーシング2及び左ケーシング3に支持されたシリンダブロック7に摺動自在に嵌合するピストン8にコネクティングロッド9を介して連接される。
【0014】
クランクシャフト6の左端には発電機10が設けられており、この発電機10は左ケーシング3の左側面に結合された発電機カバー11により覆われる。右ケーシング4の内部に延出するクランクシャフト6の右端外周にドライブギヤ12が相対回転自在に支持されており、このドライブギヤ12は自動遠心クラッチ13によってクランクシャフト6に結合可能である。
【0015】
図2を併せて参照すると明らかなように、無段変速機Tの変速機主軸21(本発明の第1回転軸)には前記ドライブギヤ12に噛合するドリブンギヤ25が固定される。ドリブンギヤ25は変速機主軸21にスプライン結合された内側ギヤ半体26と、この内側ギヤ半体26に複数個のゴムダンパー28…を介して僅かに相対回転し得るように結合されて前記ドライブギヤ12に噛合する外側ギヤ半体27とから構成される。ドライブギヤ12からドリブンギヤ25を経て変速機主軸21に伝達されるエンジントルクが変動したとき、前記ゴムダンパー28…の変形によりショックの発生が軽減される。
【0016】
変速機主軸21の外周には、半径方向外側を向く摩擦接触面を備えた駆動回転部材29(本発明の伝達回転部材)がスプライン結合されるとともに、半径方向内側を向く摩擦接触面を備えた従動回転部材30(本発明の伝達回転部材)がニードルベアリング22を介して相対回転自在に支持される。概略円錐状に形成されたキャリア第1半体31が変速機主軸21の外周にニードルベアリング23を介して相対回転可能且つ軸方向摺動可能に支持され、このキャリア第1半体31に概略カップ状のキャリア第2半体32が結合される。
【0017】
図5を併せて参照すると明らかなように、両キャリア半体31,32をケーシング1に対して回り止めするトルクカム機構33は、キャリア第2半体32の外周に半径方向に植設したピン34と、このピン34に回転自在に支持したローラ36と、右ケーシング4の内壁面にボルト24,24で固定したガイドブロック35とから構成されており、このガイドブロック35に形成したガイド溝351 に前記ローラ36が係合する。ガイド溝351 の方向は変速機主軸21の軸線Lに対して角度αだけ傾斜している。
【0018】
図3及び図4から明らかなように、キャリア第1半体31に形成された複数の窓孔311 …を横切るように複数の支持軸37…(本発明の第2回転軸)が架設されており、各支持軸37にニードルベアリング38,38を介して変速回転部材39が回転自在且つ軸方向摺動自在に支持される。支持軸37…は変速機主軸21の軸線Lを中心線とする円錐母線上に配置されている。各変速回転部材39は大径部において接続された概略円錐状の第1摩擦伝達面40及び第2摩擦伝達面41を有しており、第1摩擦伝達面40は駆動回転部材29に第1接触部P1 において当接するとともに、第2摩擦伝達面41は従動回転部材30に第2接触部P2 において当接する。
【0019】
第1摩擦伝達面40及び第2摩擦伝達面41は厳密な意味での円錐ではなく、支持軸37の軸線を中心線とする第1摩擦伝達面40の母線は、変速回転部材39の半径方向内向きに湾曲した円弧曲線から構成され、支持軸37の軸線を中心線とする第2摩擦伝達面41の母線は、変速回転部材39の半径方向外向きに湾曲した円弧曲線から構成されており、両摩擦伝達面40,41の母線の曲率半径は一致している。従って、第1接触部P1 を含む第1摩擦伝達面40の母線を平行移動すると、第2接触部P2 を含む第2摩擦伝達面41の母線に重ね合わせることができる。
【0020】
図2に示すように、キャリア第2半体32の内部に、変速機主軸21の回転数に応じて両キャリア半体31,32を軸方向に摺動させて無段変速機Tの変速比を変更する遠心機構51が設けられる。遠心機構51は、変速機主軸21に固定された固定カム部材52と、変速機主軸21に軸方向摺動自在に支持されて前記固定カム部材52と一体に回転する可動カム部材53と、固定カム部材52のカム面521 及び可動カム部材53のカム面531 間に配置された複数の遠心ウエイト54…とから構成される。可動カム部材53とキャリア第2半体32とをボールベアリング55で結合することにより、両者は相対回転を許容された状態で軸方向に一体に移動する。
【0021】
変速機主軸21の右端近傍はセンターケーシング2に固定したカバー部材50にボールベアリング56を介して支持されており、そのカバー部材50とキャリア第2半体32との間に縮設したスプリング57の弾発力で、キャリア第1半体31及びキャリア第2半体32は左方向に付勢される。従って、変速機主軸21の回転数が増加すると遠心力で遠心ウエイト54…が半径方向外側に移動して両カム面521 ,531 を押圧するため、可動カム部材53がスプリング57の弾発力に抗して右方向に移動し、この可動カム部材53にボールベアリング55を介して接続されたキャリア第2半体32がキャリア第1半体31と共に右方向に移動する。
【0022】
図1及び図2から明らかなように、変速機主軸21の外周にボールベアリング58を介して相対回転自在に支持された出力ギヤ59の右端と、前記従動回転部材30の左端との間に調圧カム機構60が設けられる。図6から明らかなように、調圧カム機構60は、出力ギヤ59の右端に形成した複数の凹部591 …と従動回転部材30の左端に形成した複数の凹部301 …との間にボール61…を挟持したものであり、出力ギヤ59と従動回転部材30とに間には従動回転部材30を右方向に付勢する予荷重を与えるように皿バネ62が介装される。従動回転部材30にトルクが作用して出力ギヤ59との間に相対回転が生じると、調圧カム機構60により従動回転部材30が出力ギヤ59から離反する方向(右方向)に付勢される。
【0023】
第3減速ギヤ63が、左ケーシング3との間に配置したボールベアリング64、変速機主軸21との間に配置したニードルベアリング65及び出力ギヤ59との間に配置したボールベアリング66によって回転自在に支持される。左ケーシング3及び中央ケーシング2にボールベアリング67及びニードルベアリング68を介して減速軸69が支持されており、減速軸69に設けた第1減速ギヤ70及び第2減速ギヤ71がそれぞれ前記出力ギヤ59及び第3減速ギヤ63に噛合する。左ケーシング3から外部に突出する第3減速ギヤ63の軸部先端に、無端チェーン72を巻き掛けた駆動スプロケット73が設けられる。従って、変速機主軸21の回転は出力ギヤ59、第1減速ギヤ70、第2減速ギヤ71、第3減速ギヤ63、駆動スプロケット73及び無端チェーン72を介して駆動輪に伝達される。
【0024】
次に、前述の構成を備えた本発明の実施例の作用について説明する。
【0025】
図3及び図4に示すように、変速比が何れの状態でも変速機主軸21の軸線Lから測った駆動回転部材29の第1接触部P1 の距離Aは一定値となり、支持軸37から測った駆動回転部材29の第1接触部P1 の距離Bは可変値(BL ,BT )となる。また、支持軸37から測った従動回転部材30の第2接触部P2 の距離Cは可変値(CL ,CT )となり、変速機主軸21の軸線Lから測った従動回転部材30の第2接触部P2 の距離Dは一定値となる。
【0026】
駆動回転部材29の回転数をNDRとし、従動回転部材30の回転数をNDNとして変速比RをR=NDR/NDNで定義すると、変速比Rは、
R=NDR/NDN=(B/A)×(D/C)
により与えられる。
【0027】
さて、図3に示すように、エンジンEの低速回転時にはドライブギヤ12により駆動されるドリブンギヤ25の回転数が低いため、遠心機構51の遠心ウエイト54…に作用する遠心力も小さくなり、両キャリア半体31,32はスプリング57の弾発力で左方向に移動する。キャリア第1半体31が左方向に移動すると、駆動回転部材29の第1接触部P1 が第1摩擦伝達面40の大径部側に移動して距離Bは最大値BL に増加するとともに、従動回転部材30の第2接触部P2 が第2摩擦伝達面41の小径部側に移動して距離Cが最小値CL に減少する。
【0028】
このとき、前記距離A,Dは一定値であるため、距離Bが最大値BL に増加し、距離Cが最小値CL に減少すると、前記変速比Rが大きくなってLOWレシオに変速される。
【0029】
一方、図4に示すように、エンジンEの高速回転時にはドライブギヤ12により駆動されるドリブンギヤ25の回転数が高いため、遠心機構51の遠心ウエイト54…に作用する遠心力も大きくなり、両キャリア半体31,32は遠心力で半径方向外側に移動する遠心ウエイト54…の作用でスプリング57の弾発力に抗して右方向に移動する。キャリア第1半体31が右方向に移動すると、駆動回転部材29の第1接触部P1 が第1摩擦伝達面40の小径部側に移動して距離Bが最小値BT に減少するとともに、従動回転部材30の第2接触部P2 が第2摩擦伝達面41の大径部側に移動して距離Cが最大値CT に増加する。
【0030】
このとき、前記距離A,Dは一定値であるため、距離Bが最小値BT に減少し、距離Cが最大値CT に増加すると、前記変速比Rが小さくなってTOPレシオに変速される。
【0031】
而して、エンジンEの回転数に応じて無段変速機Tの変速比をLOWとTOPとの間で無段階に変化させることができる。しかも前記変速比制御は遠心機構51により自動的に行われるため、ケーシング1の外部から手動により変速操作を行う変速制御装置を設ける場合や、電子的な変速制御装置を設ける場合に比べて、構造の簡略化によるコストの削減と無段変速機Tの小型化とを図ることができる。
【0032】
上述のようにして駆動回転部材29の回転は変速回転部材39…を介して従動回転部材30に所定の変速比Rで伝達され、更に従動回転部材30の回転は調圧カム機構60を介して出力ギヤ59に伝達される。このとき、従動回転部材30に作用するトルクで出力ギヤ59との間に相対回転が生じると、調圧カム機構60により従動回転部材30が出力ギヤ59から離反する方向に付勢される。この付勢力は皿バネ62による付勢力と協働して、駆動回転部材29の第1接触部P1 を第1摩擦伝達面40に圧接する面圧と、従動回転部材30の第2接触部P2 を第2摩擦伝達面41に圧接する面圧とを発生させる。
【0033】
図3及び図4から明らかなように、第1接触部P1 において第1摩擦伝達面40の母線は上向きに湾曲し、それに接触する駆動回転部材29は上向きに湾曲しているため、前記第1接触部P1 の接触面積が増加する。一方、第2接触部P2 において第2摩擦伝達面41の母線は上向きに湾曲し、それに接触する従動回転部材30は下向きに湾曲しているため、前記第2接触部P2 の接触面積が減少する。第1接触部P1 及び第2接触部P2 が伝達するトルクは一定であるため、軸線Lからの距離Aが小さい第1接触部P1 の伝達荷重は大きくなり、軸線Lからの距離Dが大きい第2接触部P2 の伝達荷重は小さくなる。
【0034】
而して、伝達荷重が大きい第1接触部P1 の接触面積が増加し、伝達荷重が小さい第2接触部P2 の接触面積が減少するため、第1、第2接触部P1 ,P2 の摩耗等の程度が均一化されて変速回転部材39全体としての耐久性が向上する。
このように、第1、第2摩擦伝達面40,41の母線を曲線で構成することにより第1、第2接触部P1 ,P2 の接触面積、つまり接触面圧を任意に設定し、第1、第2接触部P1 ,P2 の摩耗等の状態を調整することができる。
【0035】
また、第1接触部P1 を含む第1摩擦伝達面40の母線を平行移動すると、第2接触部P2 を含む第2摩擦伝達面41の母線に重ね合わせることができる。つまり、軸線Lから測った第2接触部P2 までの距離Dと第1接触部P1 までの距離Aとの差D−Aは変速比に係わらず一定になる。
【0036】
ところで、無段変速機Tが変速を行っているとき、キャリア第2半体32は駆動回転部材29の伝達トルク反力によって変速機主軸21回りに回転しようとするが、その伝達トルク反力はキャリア第2半体32に支持したトルクカム機構33のローラ36がガイドブロック35に形成したガイド溝351 に係合することにより受け止められ、両キャリア半体31,32は回転することなく軸方向に摺動することができる。
【0037】
さて、車両の走行中に急加速しようとしてエンジントルクを急増させた場合、前記エンジントルクの急増に伴ってキャリア第2半体32に作用する伝達トルク反力も増大する。その結果、図5に示すように、ローラ36が傾斜したガイド溝351 の壁面に荷重Fで圧接され、その荷重Fのガイド溝351 方向の成分F1 によってキャリア第2半体32は図2の左側(LOWレシオ側)に付勢される。
即ち、トルクカム機構33の作用によって変速比が自動的にLOWレシオ側に変化するため、所謂キックダウン効果が発揮されて車両を効果的に加速することができる。
【0038】
しかも前記キックダウン時の変速比制御は、特別の変速制御装置を設けることなく、トルクカム機構33がエンジントルクの変化に応じて自動的に行うため、構造の簡略化によるコストの削減と無段変速機Tの小型化とを達成することができる。またトルクカム機構33のガイド溝351 の形状を変化させるだけで、変速比の変化特性を容易に調整することができる。
【0039】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0040】
例えば、実施例では変速回転部材39に駆動回転部材29及び従動回転部材30を接触させる形式の無段変速機を例示したが、請求項1に記載された発明は、変速回転部材に単一の伝達回転部材を接触させ、該変速回転部材及び伝達回転部材間で動力伝達を行う形式の無段変速機に対しても適用することができる。また請求項1に記載された発明では、変速回転部材の母線は円弧曲線に限定されず、それ以外の曲線であっても良い。
【0041】
【発明の効果】
以上のように請求項1に記載された発明によれば、第1回転軸と、第1回転軸に支持された伝達回転部材と、第1回転軸に対して傾斜して配置された第2回転軸と、第2回転軸に回転自在に支持され、該第2回転軸の軸線に対して傾斜した母線を該軸線回りに回転させて形成した摩擦伝達面を有する変速回転部材とを備えてなり、変速回転部材の摩擦伝達面に伝達回転部材を接触させるとともに、その接触部を相互間の相対位置関係を保ちつつ前記母線に沿って移動させることにより、伝達回転部材及び変速回転部材間の動力伝達と変速とを行う無段変速機において、前記母線を曲線としたので、変速回転部材と伝達回転部材との接触部の面積を任意に調整して、伝達可能トルクを減少させることなく摩耗等に対する耐久性を高めることができる。
【0042】
また請求項2に記載された発明によれば、第1、第2母線を同一曲率半径を有する円弧曲線とし、且つ一方の母線を変速回転部材の半径方向外向きに湾曲させ他方の母線を変速回転部材の半径方向内向きに湾曲させたので、第1、第2接触部の接触面積を任意に調整して、伝達可能トルクを減少させることなく摩耗等に対する耐久性を高めることができ、しかも第1、第2接触部間の距離を一定に保つことができる。
【0043】
また請求項3に記載された発明によれば、第1回転軸に近い側の母線を変速回転部材の半径方向内向きに湾曲させ、遠い側の母線を変速回転部材の半径方向外向きに湾曲させたので、第1回転軸に近いために伝達荷重が大きくなる側の第1接触部の面積を増加させるとともに、第1回転軸に遠いために伝達荷重が小さくなる第2接触部の面積を減少させ、第1、第2接触部の摩耗等が不均一になるのを防止して変速回転部材全体としての耐久性を高めることができる。
【図面の簡単な説明】
【図1】車両用パワーユニットの縦断面図
【図2】図1の要部拡大図
【図3】図2の要部拡大図(LOWレシオ)
【図4】図2の要部拡大図(TOPレシオ)
【図5】図2の5−5線断面図
【図6】図2の6−6線断面図
【符号の説明】
21 変速機主軸(第1回転軸)
29 駆動回転部材(伝達回転部材)
30 従動回転部材(伝達回転部材)
37 支持軸(第2回転軸)
39 変速回転部材
40 第1摩擦伝達面(摩擦伝達面)
41 第2摩擦伝達面(摩擦伝達面)
1 第1接触部(接触部)
2 第2接触部(接触部)
[0001]
BACKGROUND OF THE INVENTION
According to the present invention, the transmission rotating member is brought into contact with the friction transmission surface of the transmission rotating member, and the contact portion is moved along the generatrix of the transmission rotating member, so that power transmission and transmission between the transmission rotating member and the transmission rotating member can be performed. The present invention relates to a continuously variable transmission.
[0002]
[Prior art]
Such a continuously variable transmission is already known as described in, for example, Japanese Patent Publication No. 47-447. Conventionally, a variable speed rotation member of this type of continuously variable transmission is composed of a rotating body (cone) that rotates a straight line that intersects the center line around a central axis, and therefore the bus line of the rotating body is a straight line. Met.
[0003]
[Problems to be solved by the invention]
By the way, in order to increase the durability against wear or the like of the transmission rotation member of the continuously variable transmission, it is conceivable to reduce the surface pressure of the contact portion between the transmission rotation member and the transmission rotation member. There is a problem that slip is generated at the contact portion and the transmittable torque is reduced.
[0004]
The present invention has been made in view of the above-described circumstances, and an object thereof is to improve durability against wear or the like of a contact portion of a transmission rotating member while ensuring a transmittable torque of a continuously variable transmission.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 is arranged to be inclined with respect to the first rotating shaft, the transmission rotating member supported by the first rotating shaft, and the first rotating shaft. A second rotary shaft, and a variable speed rotary member that is rotatably supported by the second rotary shaft and has a friction transmission surface formed by rotating a generating line inclined with respect to the axis of the second rotary shaft around the axis. The transmission rotation member and the transmission rotation member are provided by bringing the transmission rotation member into contact with the friction transmission surface of the transmission rotation member and moving the contact portion along the bus while maintaining the relative positional relationship between them. In the continuously variable transmission that performs power transmission and speed change, the bus is a curved line.
[0006]
According to the above configuration, the contact area of the contact portion between the transmission rotation member and the transmission rotation member can be arbitrarily changed, so that the surface pressure of the contact portion can be arbitrarily adjusted without reducing the transmittable torque. The durability against wear and the like can be increased.
[0007]
According to a second aspect of the present invention, there is provided a first rotary shaft, a drive rotary member supported by the first rotary shaft, and a driven follower supported by the first rotary shaft so as to maintain a certain distance from the drive rotary member. A rotating member, a second rotating shaft disposed to be inclined with respect to the first rotating shaft, and a second rotating shaft that is rotatably supported by the rotating member, and is inclined with respect to the axis of the second rotating shaft and is inclined with respect to each other. And a transmission rotation member having first and second friction transmission surfaces formed by rotating the first and second busbars having the opposite sides around the axis, and the opposite side across the center line of the transmission rotation member The drive rotation member and the driven rotation member are brought into contact with the first and second friction transmission surfaces, respectively, and the contact portions are moved along the first and second bus lines, respectively. In a continuously variable transmission that transmits power and shifts between The first and second buses are arc-shaped curves having the same radius of curvature, and one of the buses is curved outward in the radial direction of the speed change rotation member, and the other bus is bent inward in the radial direction of the speed change rotation member. Features.
[0008]
According to the above configuration, since the areas of the first and second contact portions of the transmission rotation member, the drive rotation member, and the driven rotation member can be arbitrarily changed, these contact portions can be obtained without reducing the transmittable torque. The surface pressure can be arbitrarily adjusted to increase the durability against wear and the like. In addition, when the speed change rotation member is moved relative to the drive rotation member and the driven rotation member to shift the positions of the first and second contact portions, the distance between the first and second contact portions is constant. Can be held in.
[0009]
According to a third aspect of the present invention, in addition to the configuration of the second aspect, the bus bar on the side close to the first rotating shaft is bent inward in the radial direction, and the bus bar on the far side is bent outward in the radial direction. It is characterized by that.
[0010]
According to the above configuration, the area of the contact portion is increased by curving the generatrix of the frictional transmission surface on the side where the transmission load becomes large because it is close to the first rotation axis, inwardly in the radial direction of the transmission rotation member, and the first rotation The area of the contact portion can be reduced by curving the generatrix of the frictional transmission surface on the side where the transmission load is small because it is far from the shaft, so that the area of the contact portion can be reduced. It is possible to prevent wear and the like from becoming uneven, and to improve the durability of the entire transmission rotation member.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0012]
1 to 6 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a power unit for a vehicle, FIG. 2 is an enlarged view of a main part of FIG. 1, and FIG. 3 is an enlarged view of a main part of FIG. 4 is an enlarged view of the main part (TOP ratio) of FIG. 2, FIG. 5 is a sectional view taken along line 5-5 in FIG. 2, and FIG. 6 is a sectional view taken along line 6-6 in FIG.
[0013]
As shown in FIG. 1, the power unit P is mounted on a motorcycle and includes a casing 1 that houses an engine E and a continuously variable transmission T. The casing 1 is divided into three parts: a center casing 2, a left casing 3 coupled to the left side surface of the center casing 2, and a right casing 4 coupled to the right side surface of the center casing 2. A crankshaft 6 supported on the center casing 2 and the left casing 3 via a pair of ball bearings 5, 5 is slidably fitted to a cylinder block 7 supported on the center casing 2 and the left casing 3. 8 is connected via a connecting rod 9.
[0014]
A generator 10 is provided at the left end of the crankshaft 6, and the generator 10 is covered with a generator cover 11 coupled to the left side surface of the left casing 3. A drive gear 12 is supported on the outer periphery of the right end of the crankshaft 6 extending inside the right casing 4 so as to be relatively rotatable. The drive gear 12 can be coupled to the crankshaft 6 by an automatic centrifugal clutch 13.
[0015]
As is clear from FIG. 2, a driven gear 25 that meshes with the drive gear 12 is fixed to the transmission main shaft 21 of the continuously variable transmission T (the first rotating shaft of the present invention). The driven gear 25 is connected to the transmission main shaft 21 by spline coupling with the inner gear half 26 and the inner gear half 26 via a plurality of rubber dampers 28 so as to be slightly rotatable relative to each other. 12 and an outer gear half body 27 that meshes with the outer gear 12. When the engine torque transmitted from the drive gear 12 through the driven gear 25 to the transmission main shaft 21 fluctuates, the occurrence of shock is reduced by the deformation of the rubber dampers 28.
[0016]
A drive rotating member 29 (transmission rotating member of the present invention) having a friction contact surface facing radially outward is splined to the outer periphery of the transmission main shaft 21 and has a friction contact surface facing radially inside. A driven rotary member 30 (transmission rotary member of the present invention) is supported via a needle bearing 22 so as to be relatively rotatable. A carrier first half 31 formed in a substantially conical shape is supported on the outer periphery of the transmission main shaft 21 via a needle bearing 23 so as to be relatively rotatable and slidable in the axial direction. A carrier-like second half 32 is joined.
[0017]
As is clear from FIG. 5, the torque cam mechanism 33 that prevents the carrier halves 31 and 32 from rotating with respect to the casing 1 has a pin 34 that is implanted radially on the outer periphery of the carrier second half 32. A roller 36 rotatably supported by the pin 34, and a guide block 35 fixed to the inner wall surface of the right casing 4 by bolts 24, 24. A guide groove 35 1 formed in the guide block 35 The roller 36 engages. Direction of the guide groove 35 1 is inclined by an angle α with respect to the axis L of the main transmission shaft 21.
[0018]
3 and As is apparent from FIG. 4, a plurality of support shafts 37 ... across the plurality of window holes 31 1 ... formed in the first half 31 carrier (second rotational shaft of the present invention) is bridged A variable speed rotation member 39 is supported on each support shaft 37 via needle bearings 38, 38 so as to be rotatable and slidable in the axial direction. The support shafts 37 are arranged on a conical generatrix whose center line is the axis L of the transmission main shaft 21. Each shift rotation member 39 has a first conical cone-shaped frictional transmission surface 40 and a second frictional transmission surface 41 connected at the large diameter portion, and the first frictional transmission surface 40 is connected to the drive rotation member 29 by a first. While contacting at the contact portion P 1 , the second friction transmission surface 41 contacts the driven rotation member 30 at the second contact portion P 2 .
[0019]
The first friction transmission surface 40 and the second friction transmission surface 41 are not strictly cones, but the generatrix of the first friction transmission surface 40 centering on the axis of the support shaft 37 is in the radial direction of the speed change rotation member 39. It is composed of an inwardly curved arc curve, and the generatrix of the second friction transmission surface 41 centering on the axis of the support shaft 37 is composed of an arc curve curved outward in the radial direction of the speed change rotation member 39. The curvature radii of the buses of the friction transmission surfaces 40 and 41 are the same. Accordingly, when the generatrix of the first friction transmission surface 40 including the first contact portion P 1 is translated, it can be superimposed on the generatrix of the second friction transmission surface 41 including the second contact portion P 2 .
[0020]
As shown in FIG. 2, both the carrier halves 31 and 32 are slid in the axial direction in the carrier second half 32 in accordance with the rotational speed of the transmission main shaft 21 to change the gear ratio of the continuously variable transmission T. A centrifugal mechanism 51 is provided for changing the above. The centrifugal mechanism 51 includes a fixed cam member 52 fixed to the transmission main shaft 21, a movable cam member 53 supported by the transmission main shaft 21 so as to be slidable in the axial direction, and rotating integrally with the fixed cam member 52, and a fixed cam member 52. composed of a plurality of centrifugal weights 54 ... and which is disposed between the cam surfaces 53 1 of the cam surfaces 52 1 and the movable cam member 53 of the cam member 52. By connecting the movable cam member 53 and the carrier second half 32 with the ball bearing 55, both move integrally in the axial direction in a state where relative rotation is allowed.
[0021]
The vicinity of the right end of the transmission main shaft 21 is supported by a cover member 50 fixed to the center casing 2 via a ball bearing 56, and a spring 57 is provided between the cover member 50 and the carrier second half 32. The carrier first half 31 and the carrier second half 32 are biased leftward by the elastic force. Therefore, when the rotational speed of the transmission main shaft 21 increases, the centrifugal weights 54... Move radially outward by the centrifugal force and press both cam surfaces 52 1 , 53 1. The carrier second half 32 connected to the movable cam member 53 via a ball bearing 55 moves together with the carrier first half 31 to the right.
[0022]
As is apparent from FIGS. 1 and 2, adjustment is made between the right end of the output gear 59 supported on the outer periphery of the transmission main shaft 21 via a ball bearing 58 and the left end of the driven rotation member 30. A pressure cam mechanism 60 is provided. As is apparent from FIG. 6, the pressure adjusting cam mechanism 60 has a ball between a plurality of recesses 59 1 formed at the right end of the output gear 59 and a plurality of recesses 30 1 formed at the left end of the driven rotation member 30. 61 is sandwiched, and a disc spring 62 is interposed between the output gear 59 and the driven rotating member 30 so as to apply a preload for urging the driven rotating member 30 in the right direction. When torque is applied to the driven rotating member 30 to cause relative rotation with the output gear 59, the pressure adjusting cam mechanism 60 biases the driven rotating member 30 in the direction away from the output gear 59 (right direction). .
[0023]
The third reduction gear 63 is rotatable by a ball bearing 64 disposed between the left casing 3, a needle bearing 65 disposed between the transmission main shaft 21 and a ball bearing 66 disposed between the output gear 59. Supported. A reduction shaft 69 is supported on the left casing 3 and the central casing 2 via a ball bearing 67 and a needle bearing 68, and a first reduction gear 70 and a second reduction gear 71 provided on the reduction shaft 69 are respectively connected to the output gear 59. And meshes with the third reduction gear 63. A drive sprocket 73 around which an endless chain 72 is wound is provided at the tip of the shaft portion of the third reduction gear 63 projecting outward from the left casing 3. Accordingly, the rotation of the transmission main shaft 21 is transmitted to the drive wheels via the output gear 59, the first reduction gear 70, the second reduction gear 71, the third reduction gear 63, the drive sprocket 73, and the endless chain 72.
[0024]
Next, the operation of the embodiment of the present invention having the above-described configuration will be described.
[0025]
As shown in FIGS. 3 and 4, the distance A of the first contact portion P 1 of the drive rotating member 29 measured from the axis L of the transmission main shaft 21 is a constant value regardless of the gear ratio, The measured distance B of the first contact portion P 1 of the drive rotation member 29 is a variable value (B L , B T ). Further, the distance C of the second contact portion P 2 of the driven rotation member 30 measured from the support shaft 37 becomes a variable value (C L , C T ), and the first rotation of the driven rotation member 30 measured from the axis L of the transmission main shaft 21. The distance D between the two contact portions P 2 is a constant value.
[0026]
When the rotational speed of the driving rotation member 29 and N DR, the gear ratio R defined by R = N DR / N DN rotational speed of the driven rotary member 30 as N DN, the transmission gear ratio R is
R = N DR / N DN = (B / A) × (D / C)
Given by.
[0027]
As shown in FIG. 3, since the rotational speed of the driven gear 25 driven by the drive gear 12 is low when the engine E rotates at a low speed, the centrifugal force acting on the centrifugal weights 54 of the centrifugal mechanism 51 becomes small, and both carrier half The bodies 31, 32 move to the left by the spring force of the spring 57. When the carrier first half 31 moves to the left, the first contact portion P 1 of the drive rotation member 29 moves to the large diameter portion side of the first friction transmission surface 40 and the distance B increases to the maximum value BL . together, the distance the second contact portion P 2 of the driven rotary member 30 is moved to the small diameter portion side of the second friction transmission surface 41 C is reduced to a minimum value C L.
[0028]
At this time, since the distances A and D are constant values, when the distance B increases to the maximum value B L and the distance C decreases to the minimum value C L , the gear ratio R increases and the gear ratio is shifted to the LOW ratio. The
[0029]
On the other hand, as shown in FIG. 4, since the rotational speed of the driven gear 25 driven by the drive gear 12 is high when the engine E rotates at high speed, the centrifugal force acting on the centrifugal weights 54 of the centrifugal mechanism 51 also increases, and both carrier half The bodies 31 and 32 move to the right against the elastic force of the spring 57 by the action of the centrifugal weights 54. When the first half 31 carriers move in the right direction, the first contact portion P 1 of the driving rotary member 29 with distance moved to the small diameter portion side of the first friction transmission surface 40 B is reduced to the minimum value B T , the distance C second contact portion P 2 of the driven rotary member 30 is moved to the large diameter portion side of the second friction transmission surface 41 is increased to the maximum value C T.
[0030]
At this time, since the distances A and D are constant values, when the distance B decreases to the minimum value B T and the distance C increases to the maximum value C T , the speed ratio R decreases and the gear ratio is shifted to the TOP ratio. The
[0031]
Thus, the gear ratio of the continuously variable transmission T can be changed steplessly between LOW and TOP in accordance with the rotational speed of the engine E. In addition, since the gear ratio control is automatically performed by the centrifugal mechanism 51, the structure is compared with the case where a shift control device for manually performing a shift operation from the outside of the casing 1 is provided or when an electronic shift control device is provided. Thus, the cost can be reduced and the continuously variable transmission T can be reduced in size.
[0032]
As described above, the rotation of the drive rotation member 29 is transmitted to the driven rotation member 30 via the speed change rotation member 39 at a predetermined speed ratio R, and the rotation of the driven rotation member 30 is further transmitted via the pressure adjusting cam mechanism 60. It is transmitted to the output gear 59. At this time, when relative rotation occurs between the output gear 59 and the torque acting on the driven rotation member 30, the driven rotation member 30 is biased in a direction away from the output gear 59 by the pressure adjusting cam mechanism 60. This urging force cooperates with the urging force by the disc spring 62, and the surface pressure that presses the first contact portion P 1 of the drive rotation member 29 against the first friction transmission surface 40 and the second contact portion of the driven rotation member 30. A surface pressure that presses P 2 against the second frictional transmission surface 41 is generated.
[0033]
As apparent from FIGS. 3 and 4, the bus line of the first friction transmission surface 40 is curved upward in the first contact portion P 1 , and the driving rotating member 29 that is in contact with it is curved upward. 1 the contact area of the contact portion P 1 increases. On the other hand, in the second contact portion P 2 , the generatrix of the second friction transmission surface 41 is curved upward, and the driven rotating member 30 that is in contact with it is curved downward, so that the contact area of the second contact portion P 2 is Decrease. Since the torque transmitted by the first contact portion P 1 and the second contact portion P 2 is constant, the transmission load of the first contact portion P 1 having a small distance A from the axis L becomes large, and the distance D from the axis L The transmission load of the second contact portion P 2 having a large is small.
[0034]
Thus, since the contact area of the first contact portion P 1 having a large transmission load increases and the contact area of the second contact portion P 2 having a small transmission load decreases, the first and second contact portions P 1 , P 1 The degree of wear or the like of 2 is made uniform, and the durability of the entire transmission rotating member 39 is improved.
In this way, by configuring the generatrix of the first and second friction transmission surfaces 40 and 41 with curves, the contact areas of the first and second contact portions P 1 and P 2 , that is, the contact surface pressure are arbitrarily set, The state of wear or the like of the first and second contact portions P 1 and P 2 can be adjusted.
[0035]
Further, when the generatrix of the first friction transmission surface 40 including the first contact portion P 1 is translated, it can be superimposed on the generatrix of the second friction transmission surface 41 including the second contact portion P 2 . That is, the difference D−A between the distance D to the second contact portion P 2 measured from the axis L and the distance A to the first contact portion P 1 is constant regardless of the gear ratio.
[0036]
By the way, when the continuously variable transmission T is shifting, the carrier second half body 32 tries to rotate around the transmission main shaft 21 by the transmission torque reaction force of the drive rotating member 29. The transmission torque reaction force is roller 36 of the torque cam mechanism 33 which is supported on the carrier second half 32 is received by engaging the guide groove 35 1 formed in the guide block 35, both the carriers halves 31 and 32 in the axial direction without rotating Can slide.
[0037]
Now, when the engine torque is suddenly increased in an attempt to accelerate rapidly while the vehicle is running, the transmitted torque reaction force acting on the carrier second half 32 increases with the rapid increase of the engine torque. As a result, as shown in FIG. 5, the roller 36 is brought into pressure contact with the inclined wall surface of the guide groove 35 1 with the load F, and the carrier second half 32 is shown in the figure by the component F 1 of the load F in the guide groove 35 1 direction. 2 is biased to the left side (LOW ratio side).
In other words, the gear ratio is automatically changed to the LOW ratio side by the action of the torque cam mechanism 33, so that a so-called kick-down effect is exhibited and the vehicle can be effectively accelerated.
[0038]
In addition, the gear ratio control at the time of kick-down is automatically performed according to the change of the engine torque without providing a special speed change control device. The size reduction of the machine T can be achieved. Further, only by changing the guide grooves 35 1 in the shape of the torque cam mechanism 33, the variation characteristics of the gear ratio can be easily adjusted.
[0039]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0040]
For example, in the embodiment, the continuously variable transmission of the type in which the drive rotation member 29 and the driven rotation member 30 are brought into contact with the transmission rotation member 39 is exemplified, but the invention described in claim 1 is a single transmission transmission member. The present invention can also be applied to a continuously variable transmission of a type in which a transmission rotating member is brought into contact and power transmission is performed between the transmission rotating member and the transmission rotating member. In the invention described in claim 1, the generatrix of the speed change rotation member is not limited to the arc curve, and may be a curve other than that.
[0041]
【The invention's effect】
As described above, according to the first aspect of the present invention, the first rotating shaft, the transmission rotating member supported by the first rotating shaft, and the second arranged inclined with respect to the first rotating shaft. A rotation shaft, and a variable speed rotation member having a friction transmission surface that is rotatably supported by the second rotation shaft and is formed by rotating a generatrix inclined with respect to the axis of the second rotation shaft about the axis. Thus, the transmission rotating member is brought into contact with the friction transmission surface of the transmission rotating member, and the contact portion is moved along the generatrix while maintaining the relative positional relationship between the transmission rotating member and the transmission rotating member. In a continuously variable transmission that performs power transmission and speed change, the bus line is curved, so that the area of the contact portion between the speed change rotation member and the transmission rotation member can be arbitrarily adjusted to reduce wear without reducing the transmittable torque. To increase the durability against That.
[0042]
According to the second aspect of the present invention, the first and second bus bars are arc-shaped curves having the same radius of curvature, and one bus bar is curved outward in the radial direction of the speed change rotating member, and the other bus bar is shifted. Since the rotating member is curved inward in the radial direction, the contact area of the first and second contact portions can be arbitrarily adjusted, and durability against wear and the like can be improved without reducing the transmittable torque, The distance between the first and second contact portions can be kept constant.
[0043]
According to the third aspect of the present invention, the bus bar on the side close to the first rotating shaft is bent inward in the radial direction of the speed change rotating member, and the bus bar on the far side is bent outward in the radial direction of the speed change rotating member. As a result, the area of the first contact portion on the side where the transmission load increases because it is close to the first rotation axis is increased, and the area of the second contact portion where the transmission load decreases because it is far from the first rotation axis. It is possible to reduce the wear of the first and second contact portions and prevent the unevenness of the first and second contact portions, thereby improving the durability of the entire transmission rotating member.
[Brief description of the drawings]
1 is a longitudinal sectional view of a power unit for a vehicle. FIG. 2 is an enlarged view of a main part of FIG. 1. FIG. 3 is an enlarged view of a main part of FIG.
4 is an enlarged view of the main part of FIG. 2 (TOP ratio).
5 is a cross-sectional view taken along line 5-5 in FIG. 2. FIG. 6 is a cross-sectional view taken along line 6-6 in FIG.
21 Transmission main shaft (first rotary shaft)
29 Drive Rotating Member (Transmission Rotating Member)
30 driven rotating member (transmission rotating member)
37 Support shaft (second rotation shaft)
39 Variable speed rotation member 40 First friction transmission surface (friction transmission surface)
41 Second friction transmission surface (friction transmission surface)
P 1 first contact part (contact part)
P 2 second contact part (contact part)

Claims (3)

第1回転軸(21)と、
第1回転軸(21)に支持された伝達回転部材(29,30)と、
第1回転軸(21)に対して傾斜して配置された第2回転軸(37)と、
第2回転軸(37)に回転自在に支持され、該第2回転軸(37)の軸線に対して傾斜した母線を該軸線回りに回転させて形成した摩擦伝達面(40,41)を有する変速回転部材(39)と、
を備えてなり、
変速回転部材(39)の摩擦伝達面(40,41)に伝達回転部材(29,30)を接触させるとともに、その接触部(P1 ,P2 )を相互間の相対位置関係を保ちつつ前記母線に沿って移動させることにより、伝達回転部材(29,30)及び変速回転部材(39)間の動力伝達と変速とを行う無段変速機において、
前記母線を曲線としたことを特徴とする無段変速機。
A first rotating shaft (21);
A transmission rotating member (29, 30) supported by the first rotating shaft (21);
A second rotating shaft (37) arranged to be inclined with respect to the first rotating shaft (21);
It has a friction transmission surface (40, 41) that is rotatably supported by the second rotating shaft (37) and is formed by rotating a generating line inclined with respect to the axis of the second rotating shaft (37) around the axis. A variable speed rotation member (39);
With
The transmission rotation member (29, 30) is brought into contact with the friction transmission surface (40, 41) of the transmission rotation member (39), and the contact portions (P 1 , P 2 ) are maintained in a relative positional relationship with each other. In a continuously variable transmission that performs power transmission and transmission between the transmission rotation member (29, 30) and the transmission rotation member (39) by moving along the bus,
A continuously variable transmission characterized in that the bus is a curved line.
第1回転軸(21)と、
第1回転軸(21)に支持された駆動回転部材(29)と、
駆動回転部材(29)と一定の距離を保つように第1回転軸(21)に支持された従動回転部材(30)と、
第1回転軸(21)に対して傾斜して配置された第2回転軸(37)と、
第2回転軸(37)に回転自在に支持され、該第2回転軸(37)の軸線に対して傾斜し且つ互いに傾斜方向を反対にした第1、第2母線を該軸線回りに回転させて形成した第1、第2摩擦伝達面(40,41)を有する変速回転部材(39)と、
を備えてなり、
変速回転部材(39)の中心線を挟んで反対側で第1、第2摩擦伝達面(40,41)に駆動回転部材(29)及び従動回転部材(30)をそれぞれ接触させるとともに、それら接触部(P1 ,P2 )をそれぞれ前記第1、第2母線に沿って移動させることにより、駆動回転部材(29)及び従動回転部材(30)間の動力伝達と変速とを行う無段変速機において、
前記第1、第2母線を同一曲率半径を有する円弧曲線とし、且つ一方の母線を変速回転部材(39)の半径方向外向きに湾曲させ他方の母線を変速回転部材(39)の半径方向内向きに湾曲させたことを特徴とする無段変速機。
A first rotating shaft (21);
A drive rotating member (29) supported by the first rotating shaft (21);
A driven rotary member (30) supported by the first rotary shaft (21) so as to maintain a certain distance from the drive rotary member (29);
A second rotating shaft (37) arranged to be inclined with respect to the first rotating shaft (21);
The first and second buses supported by the second rotating shaft (37) so as to be rotatable, tilted with respect to the axis of the second rotating shaft (37) and opposite to each other in the tilting direction are rotated about the axis. A variable speed rotation member (39) having first and second friction transmission surfaces (40, 41) formed by
With
The drive rotation member (29) and the driven rotation member (30) are brought into contact with the first and second friction transmission surfaces (40, 41) on the opposite side across the center line of the transmission rotation member (39), and these contacts are made. Continuously variable transmission for shifting power and shifting between the drive rotating member (29) and the driven rotating member (30) by moving the parts (P 1 , P 2 ) along the first and second buses, respectively. In the machine
The first and second buses are arc-shaped curves having the same radius of curvature, and one of the buses is curved outward in the radial direction of the speed change rotating member (39), and the other bus is in the radial direction of the speed change rotary member (39). A continuously variable transmission that is curved in a direction.
第1回転軸(21)に近い側の母線を変速回転部材(39)の半径方向内向きに湾曲させ、遠い側の母線を変速回転部材(39)の半径方向外向きに湾曲させたことを特徴とする、請求項2に記載の無段変速機。The bus near the first rotation shaft (21) is curved inward in the radial direction of the speed change rotation member (39), and the far side bus is bent outward in the radial direction of the speed change rotation member (39). The continuously variable transmission according to claim 2, wherein the continuously variable transmission is characterized.
JP14772297A 1997-06-05 1997-06-05 Continuously variable transmission Expired - Fee Related JP3696373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14772297A JP3696373B2 (en) 1997-06-05 1997-06-05 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14772297A JP3696373B2 (en) 1997-06-05 1997-06-05 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH10339362A JPH10339362A (en) 1998-12-22
JP3696373B2 true JP3696373B2 (en) 2005-09-14

Family

ID=15436708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14772297A Expired - Fee Related JP3696373B2 (en) 1997-06-05 1997-06-05 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3696373B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853963B2 (en) * 1998-03-20 2006-12-06 本田技研工業株式会社 Power unit

Also Published As

Publication number Publication date
JPH10339362A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
EP0967413B1 (en) Toroidal continuously variable transmission
US5299988A (en) Continuously variable traction roller transmission
EP0851149B1 (en) A planetary gear mechanism
KR0185772B1 (en) Continuously variable transmission
EP1155248B1 (en) Bearing support for infinitely-variable-ratio transmission output discs
GB2268236A (en) Toroidal race type CVT with output and cylindrical shafts mounted at central casing partition
JP3914307B2 (en) Continuously variable winding transmission
US7252608B2 (en) Automatic transmission having at least two conical disk sets
JP3744153B2 (en) Continuously variable transmission
JP3696373B2 (en) Continuously variable transmission
JP3656363B2 (en) Loading cam device for toroidal type continuously variable transmission
JP4085457B2 (en) Continuously variable transmission
JP3870594B2 (en) Toroidal continuously variable transmission
JP3651929B2 (en) Toroidal continuously variable transmission
JP4425469B2 (en) Thrust bearing device for gears
JP2004263857A (en) Traction drive type continuously variable transmission
JP4809526B2 (en) Belt type continuously variable transmission
JP3458495B2 (en) Toroidal type continuously variable transmission
CN217554123U (en) Speed change mechanism and motorcycle with same
JPH08326859A (en) V-belt type continuously variable transmission
JP3503370B2 (en) Toroidal type continuously variable transmission
US20230184312A1 (en) Variable pitch pulley
JP3395467B2 (en) Toroidal type continuously variable transmission
JP4701522B2 (en) Toroidal continuously variable transmission
JP4519707B2 (en) Traction drive continuously variable transmission

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees