JP3695262B2 - High-strength thin steel sheet with excellent stretch formability - Google Patents

High-strength thin steel sheet with excellent stretch formability Download PDF

Info

Publication number
JP3695262B2
JP3695262B2 JP31559499A JP31559499A JP3695262B2 JP 3695262 B2 JP3695262 B2 JP 3695262B2 JP 31559499 A JP31559499 A JP 31559499A JP 31559499 A JP31559499 A JP 31559499A JP 3695262 B2 JP3695262 B2 JP 3695262B2
Authority
JP
Japan
Prior art keywords
steel sheet
thin steel
strength
strength thin
excellent stretch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31559499A
Other languages
Japanese (ja)
Other versions
JP2001131691A (en
Inventor
勝己 中島
毅 藤田
雄司 山崎
賢一 三塚
広義 坂井
俊幸 廣瀬
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP31559499A priority Critical patent/JP3695262B2/en
Publication of JP2001131691A publication Critical patent/JP2001131691A/en
Application granted granted Critical
Publication of JP3695262B2 publication Critical patent/JP3695262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、張出し主体の成形が行われるフード、フェンダー、サイドパネルなどの自動車外板パネルに使用される高強度薄鋼板、特に引張強さが390MPa以上500MPa未満で張出し成形性に優れた高強度薄鋼板に関する。
【0002】
【従来の技術】
近年、自動車業界では、安全性向上を目的とした鋼板の高強度化、部品の一体化による部品点数削減、プレス工程の省略などが積極的に推進されており、自動車ボディ用鋼板に対しては、極めて高いプレス成形性を有する高強度薄鋼板が求められている。
【0003】
従来より、冷延鋼板のプレス成形性に関しては、主として深絞り性と張出し性の観点から検討されている。深絞り性に関しては、r値を高めることに主眼が置かれ、例えば特開平5-78784号公報には、Ti添加極低炭素鋼板にMn、Crを積極的に添加するとともにSiやP量を制御することにより、引張強さが343〜490MPaで良好なr値と伸びの得られることが、また、特開平8-92656号公報には、Ar3変態点〜500℃で熱間潤滑圧延された熱延鋼板を再結晶処理後冷間圧延・焼鈍を行うことにより、3.0以上の高いr値を有する極低炭素鋼板の得られることが開示されている。
【0004】
一方、張出し性に関しては、例えば「薄鋼板のプレス加工」(実教出版)には、全伸びや10%と20%の2点から求めた高ひずみ域のn値を高めることが重要であると記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の特開平5-78784号公報や特開平8-92656号公報に記載された深絞り性に優れた鋼板を張出し主体の成形が行われるサイドパネルなどに適用すると、平面ひずみ張出し成形の行われるパンチ肩部でひずみ伝播不足により破断が生じる場合がある。こうした張出し成形における破断に関しては、材料の高強度化とともに、従来の軟質材と同様な全伸びやn値では評価できなくなっており、適切な対策が取れないのが実情である。
【0006】
また、上記特許公報に記載の鋼板には、Crが多量に添加されたり、熱延鋼板で焼鈍が行われたりするので、コスト的にも問題がある。
【0007】
本発明はこのような課題を解決するためになされたもので、安価に製造が可能で、張出し成形性に優れた高強度薄鋼板を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題は、wt% で、 C 0.0040 0.015% Si 0.05% 以下、 Mn 0.7 3.0% P 0.04 0.15% S 0.02% 以下、 sol.Al 0.01 0.1% N 0.004% 以下、 Nb 0.01 0.2% 、残部が実質的に Fe および不可避的不純物からなり、単軸引張試験における公称ひずみ1%と10%の2点から算出されたn値が下記の式(1)を満足する張出し成形性に優れた高強度薄鋼板により解決される。
n値≧-0.00029×TS(MPa)+0.313 …(1)、
ただし、TSは引張り強さを表す。
【0009】
本発明者らは、張出し主体の成形が行われるフロントフェンダーを例に取り、成形性を支配する因子を検討した結果、以下のような知見を得た。
【0010】
図2に、図1に示した実部品スケールのフロントフェンダーモデル成形品の側壁部近傍の相当ひずみ分布を示す。
【0011】
側壁部のパンチ肩やダイ肩近傍の発生ひずみ量が大きく、パンチ底部の発生ひずみ量は0.1以下で小さいことがわかる。
【0012】
したがって、パンチ底に接触する鋼板に発生するひずみ量を広範囲にわたってわずかでも増加してやれば、側壁部のパンチ肩やダイ肩近傍へのひずみ集中を緩和でき、この部分における破断を防止できることになる。そのためには、公称ひずみ1%と10%の2点から算出されるn値が上記の式(1)を満足するようにすればよいことを初めて見出した。
【0014】
以下に、各元素量の限定理由を説明する。
【0015】
C: 炭化物を形成し、素材強度およびパネル成形時の低ひずみ域での加工硬化に影響をおよぼして、強度上昇と成形性を向上させる。0.0040wt%未満ではその効果が得られず、0.015wt%を超えると、強度および低ひずみ域での高いn値は得られるが延性低下を引き起こすので、0.0040〜0.015wt%とする。析出物の形態および分散状態を適正に制御し、より優れた成形性およびより好ましい総合特性を引き出すには、C添加量を0.0050〜0.0080wt%、さらに望ましくは0.0050〜0.0074wt%の範囲に規定することが好ましい。
【0016】
Si: 0.05wt%を超えて添加すると化成処理性や溶融亜鉛めっきの密着性を劣化させるので、0.05wt%以下とする。
【0017】
Mn: 鋼中のSをMnSとして析出させスラブの熱間割れを防止したり、めっき密着性を劣化させることなく鋼を強化する上で有効な元素である。SをMnSとして析出させ、強度を確保するには0.7wt%以上必要であるが、3.0wt%を超えて添加すると成形性の劣化を招くので、0.7〜3.0wt%とする。
【0018】
P: 鋼の強化に有効な元素であり、強度確保のために0.04wt%以上必要であるが、0.15wt%を超えて添加すると亜鉛めっきの合金化処理性の劣化を引き起こすので、0.04〜0.15wt%とする。
【0019】
S: MnSとして鋼中に存在するが、0.02wt%を超えて含まれると延性低下を招くので、0.02wt%以下とする。
【0020】
sol.Al: 鋼中のNをAlNとして析出させ固溶Nを残さないために、0.01wt%以上必要であり、0.1wt%を超えて添加すると固溶Alにより延性低下を招くので、0.01〜0.1wt%とする。
【0021】
N: 上記sol.Al量の下限値においても、すべてのNをAlNとして析出させるには、0.004wt%以下にする必要がある。
【0022】
Nb:本発明で最も重要な元素であり、NbCの形成による固溶Cの低減および適正量の固溶Nbにより低ひずみ域でのn値を向上させ、上記式(1)が確実に満足されるようになる。0.01wt%未満ではその効果が得られず、0.2wt%を超えると降伏強度が上昇し低ひずみ域でのn値の低下や延性低下を招くので、0.01〜0.2wt%とする。低ひずみ域におけるn値をより向上させるには、Nb>0.035wt%とすることが望ましく、さらに成形性および総合性能を改善するには、Nb≧0.080wt%とすることが望ましい。また、コストを考慮した場合、Nb≦0.140wt%とすることが望ましい。
【0023】
Nbにより低ひずみ域でn値が向上する理由は必ずしも明確ではないが、電子顕微鏡を用いて緻密な組織観察を実施したところ、以下の知見を得た。Nb、C量が適切に制御された場合、結晶粒内に多量のNbCが析出し、粒界近傍に析出物が非常に少ない、いわゆる析出物枯渇帯(PFZ)が形成されており、このPFZは析出物が非常に少ないため粒内に比べ強度が低く、低い応力レベルで塑性変形できるので、低ひずみ域で高いn値が得られると推察される。さらに、鋭意検討を進めた結果、本発明においてこのような望ましい析出形態を得るには、Nb/C(原子当量比)を1.7〜2.5の範囲に規制することが好ましいことを見出した。
【0024】
なお、、本発明の高強度薄鋼板では、Nb添加により結晶粒が細粒化されるので、溶接性や耐二次加工脆性も改善される。
【0025】
このように、本発明の高強度薄鋼板は、Crなどの特殊元素が多量には添加されておらず、また、後述するように通常のプロセスで製造できるので、安価である。
【0026】
本発明の効果は、上記した元素量の限定により達成されるが、さらに、品質改善および耐二次加工脆性の向上のために、Ti、Bを、Ti≦0.05wt%、B≦0.002wt%の範囲内で添加することが可能である。
【0027】
Ti:炭窒化物を形成し、熱延板の組織を微細化することにより、成形性を改善する。しかしながら、0.05wt%を超えて添加した場合、析出物が粗大化し、十分な効果が得られない。より望ましくは、特に溶融亜鉛めっきの表面性状の観点から、上限を0.02wt%未満とし、必要な細粒化効果を得るために、下限を0.005wt%とするのが好ましい。
【0028】
B:結晶粒界を強化し、耐二次加工脆性を改善するために添加するが、0.002wt%を超えて添加した場合、成形性が大幅に低下するので、上限を0.002wt%とする。本発明鋼は、結晶粒が微細化されており、極めて優れた耐二次加工脆性を示すので、望ましくは、成形性の低下を極力抑えるために、B添加量を0.0001〜0.001wt%の範囲に規制するのが好ましい。
【0029】
本発明である高強度薄鋼板は、そのままで使用することができるが、表面に電気亜鉛めっきや溶融亜鉛めっきなどの亜鉛系めっきを施しても、同様な効果が得られる。亜鉛系めっきとしては、純亜鉛めっき、合金化亜鉛めっき、亜鉛-Ni合金めっきなどを挙げることができ、めっき後に有機皮膜処理を施してもよい。
【0030】
本発明である高強度薄鋼板の製造方法としては、本発明の元素範囲に調整された鋼を溶製後、連続鋳造によりスラブとなし、このスラブを再加熱後あるいは直接熱間圧延して熱延鋼板とし、酸洗後冷間圧延して焼鈍する通常の冷延鋼板の製造プロセスを適用できる。
【0031】
このとき、熱間圧延条件としては、表面品質や材質の均一性の観点からAr3変態点以上960℃以下で仕上圧延し、酸洗時の脱スケール性や材質の安定性の観点から680℃以下の温度で巻取ることが好ましい。また、冷間圧延後連続焼鈍(CALやCGL)する場合は600℃以上の温度で、箱焼鈍(BAF)させる場合は540℃以上の温度で巻取ることが好ましい。なお、薄物製造時の熱延仕上温度確保などの目的のために、熱間圧延中にバーヒーターにより粗バーを加熱することもできる。
【0032】
冷間圧延の圧下率は良好な深絞り性を得るために50%以上が好ましく、焼鈍温度は、連続焼鈍の場合は780〜880℃の温度域が、箱焼鈍の場合は680〜750℃の温度域が好ましい。
【0033】
【実施例】
表1に示す鋼番1〜10の鋼を溶製後、連続鋳造によりスラブを製造した。このスラブを1200℃に加熱後、仕上温度880〜940℃、巻取温度540〜560℃(箱焼鈍向け)、600〜660℃(連続焼鈍、連続焼鈍・亜鉛めっき向け)で熱間圧延を行い熱延鋼板とし、酸洗後50〜85%の冷間圧延を施した後、連続焼鈍(焼鈍温度800〜840℃)、箱焼鈍(焼鈍温度680〜720℃)また、連続焼鈍・溶融亜鉛めっき(焼鈍温度800〜840℃)のいずれかを実施した。連続焼鈍・溶融亜鉛めっきでは,焼鈍後460℃で溶融亜鉛めっき処理を行ない、直ちにインライン合金化処理炉で500℃でめっき層の合金化処理を行なった。焼鈍または焼鈍・溶融亜鉛めっき後の鋼板には圧下率0.7%の調質圧延を行なった。これらの鋼板に対し、機械特性およびフロントフェンダーのプレス成形を行い破断限界クッション力を調査した。
【0034】
結果を表2に示す。
【0035】
本発明の鋼板は、破断限界クッション力が65TON以上と高く、優れた張出し性を示した。比較材のNo.9、No.10は、10-20%ひずみ域のn値が0.23以上と高いにもかかわらず1-10%のn値が小さいため、50TON以下の低いクッション力条件で破断が発生した。
【0036】
本発明の鋼板では、いずれの水準においても、縦割れ遷移温度が-65℃以下となっており、非常に良好な耐二次加工脆性を示した。また、本発明の鋼板は、結晶粒が微細化しており、強加工部においても肌荒れなどの問題は全く生じなかった。さらに、溶融亜鉛めっき後の表面品質や溶接部の加工性・疲労特性等にも優れていることが確認された。
【0037】
図3に、表2中のNo.3材(本発明例)とNo.10材(比較例)をクッション力40TONの条件で図1のフロントフェンダモデルに成形した場合の、破断危険部近傍のひずみ分布を示す。
【0038】
No.3材では、パンチ底部での発生ひずみ量が大きく、側壁部のひずみ発生量が抑制されており、破断に対して有利となっている。
【0039】
【表1】

Figure 0003695262
【0040】
【表2】
Figure 0003695262
【0041】
【発明の効果】
本発明は以上説明したように構成されているので、安価に製造が可能で、張出し成形性に優れた高強度薄鋼板を提供できる。
【0042】
また、本発明の高強度薄鋼板は、耐二次加工脆性,表面性状、溶接性などにも優れ、大変良好な総合性能を有する。
【図面の簡単な説明】
【図1】実部品スケールのフロントフェンダーモデル成形品を示す図である。
【図2】図1に示した成形品の側壁部近傍の相当ひずみ分布を示す図である。
【図3】 No.3材とNo.10材をフロントフェンダモデルに成形後の側壁部近傍の相当ひずみ分布を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a high-strength thin steel sheet used for automotive outer panels such as hoods, fenders, side panels, etc., which are mainly formed by overhang, particularly high strength excellent in stretch formability when the tensile strength is 390 MPa or more and less than 500 MPa. It relates to thin steel sheets.
[0002]
[Prior art]
In recent years, the automobile industry has been actively promoting the strengthening of steel sheets for the purpose of improving safety, reducing the number of parts by integrating parts, and omitting the pressing process. There is a need for high-strength thin steel sheets having extremely high press formability.
[0003]
Conventionally, the press formability of cold-rolled steel sheets has been studied mainly from the viewpoints of deep drawability and stretchability. With regard to deep drawability, the main focus is on increasing the r value.For example, in Japanese Patent Laid-Open No. 5-78784, Mn and Cr are actively added to a Ti-added ultra-low carbon steel sheet and the amount of Si and P is increased. By controlling, it is possible to obtain a good r value and elongation at a tensile strength of 343 to 490 MPa, and in JP-A-8-92656, hot lubricated rolling was performed at an Ar3 transformation point of ~ 500 ° C. It is disclosed that an ultra-low carbon steel sheet having a high r value of 3.0 or more can be obtained by performing cold rolling / annealing after recrystallization treatment of a hot-rolled steel sheet.
[0004]
On the other hand, with regard to the stretchability, it is important to increase the n value in the high strain range determined from the total elongation and two points of 10% and 20%, for example, for `` pressing thin steel sheets '' (Jikkyo Publishing). It is described.
[0005]
[Problems to be solved by the invention]
However, when applied to a side panel etc. in which the steel sheet excellent in deep drawability described in the above-mentioned Japanese Patent Application Laid-Open No. 5-78784 and Japanese Patent Application Laid-Open No. 8-92656 is applied to the main body of the extension, the flat strain extension molding is performed. Breakage may occur due to insufficient strain propagation at the punch shoulder. Regarding breakage in such stretch forming, as the strength of the material increases, it becomes impossible to evaluate with the same total elongation and n value as conventional soft materials, and it is a fact that appropriate measures cannot be taken.
[0006]
Moreover, since a large amount of Cr is added to the steel sheet described in the above patent publication or annealing is performed with a hot-rolled steel sheet, there is a problem in terms of cost.
[0007]
The present invention has been made to solve such problems, and an object of the present invention is to provide a high-strength thin steel sheet that can be manufactured at low cost and has excellent stretch formability.
[0008]
[Means for Solving the Problems]
The above issues are wt% , C : 0.0040 to 0.015% , Si : 0.05% or less, Mn : 0.7 to 3.0% , P : 0.04 to 0.15% , S : 0.02% or less, sol.Al : 0.01 to 0.1% , n: 0.004% or less, Nb: 0.01 ~ 0.2%, the balance being substantially Fe and inevitable impurities, n value calculated from the nominal strain 1% and 2 points 10% in a tensile uniaxial test below This is solved by a high-strength thin steel sheet excellent in stretch formability that satisfies formula (1).
n value ≧ -0.00029 × TS (MPa) +0.313 (1),
TS represents the tensile strength.
[0009]
The inventors of the present invention have studied the factors governing formability by taking, as an example, a front fender that is formed mainly by overhang, and obtained the following findings.
[0010]
FIG. 2 shows an equivalent strain distribution in the vicinity of the side wall portion of the actual part scale front fender model molded article shown in FIG.
[0011]
It can be seen that the amount of strain generated near the punch shoulder and die shoulder on the side wall is large, and the amount of strain generated at the bottom of the punch is small at 0.1 or less.
[0012]
Therefore, if the amount of strain generated in the steel sheet in contact with the punch bottom is slightly increased over a wide range, strain concentration near the punch shoulder or die shoulder in the side wall portion can be alleviated, and breakage at this portion can be prevented. For this purpose, it was found for the first time that the n value calculated from the two points of nominal strain of 1% and 10% should satisfy the above formula (1).
[0014]
Below, the reason for limitation of each element amount is demonstrated.
[0015]
C: Carbide is formed, and the strength and formability are improved by affecting the strength of the material and work hardening in the low strain range during panel molding. If it is less than 0.0040 wt%, the effect cannot be obtained, and if it exceeds 0.015 wt%, a high n value in the strength and low strain range can be obtained, but ductility is reduced, so 0.0040 to 0.015 wt%. In order to appropriately control the form and dispersion state of the precipitates, and to obtain better formability and more preferable overall properties, the C addition amount is specified in the range of 0.0050 to 0.0080 wt%, more preferably 0.0050 to 0.0074 wt%. It is preferable to do.
[0016]
Si: Addition in excess of 0.05 wt% degrades chemical conversion properties and adhesiveness of hot dip galvanizing, so 0.05 wt% or less.
[0017]
Mn: It is an element effective for strengthening steel without precipitating S in the steel as MnS to prevent hot cracking of the slab or deteriorating plating adhesion. In order to precipitate S as MnS and to ensure strength, 0.7 wt% or more is necessary. However, if added over 3.0 wt%, the formability is deteriorated, so 0.7 to 3.0 wt%.
[0018]
P: It is an element effective for strengthening steel, and 0.04wt% or more is necessary to secure the strength.However, adding more than 0.15wt% causes deterioration of the alloying processability of galvanization, so 0.04 ~ 0.15 wt%.
[0019]
S: Although present in steel as MnS, if it exceeds 0.02 wt%, ductility will be reduced, so 0.02 wt% or less.
[0020]
sol.Al: In order to precipitate N in the steel as AlN and leave no solid solution N, 0.01 wt% or more is necessary, and adding more than 0.1 wt% causes a decrease in ductility due to solid solution Al. 0.1wt%.
[0021]
N: Even in the above lower limit of the sol.Al amount, in order to precipitate all N as AlN, it is necessary to be 0.004 wt% or less.
[0022]
Nb: The most important element in the present invention, the solid solution C is reduced by the formation of NbC, and the n value in the low strain region is improved by an appropriate amount of solid solution Nb, and the above formula (1) is surely satisfied. Become so. If the content is less than 0.01 wt%, the effect cannot be obtained. If the content exceeds 0.2 wt%, the yield strength increases and the n value decreases and the ductility decreases in the low strain region, so 0.01 to 0.2 wt%. In order to further improve the n value in the low strain region, Nb> 0.035 wt% is desirable, and in order to further improve the moldability and overall performance, it is desirable to satisfy Nb ≧ 0.080 wt%. In consideration of cost, Nb ≦ 0.140 wt% is desirable.
[0023]
The reason why the N value is improved in the low strain region by Nb is not necessarily clear, but the following findings were obtained when a precise microstructure observation was performed using an electron microscope. When the amounts of Nb and C are appropriately controlled, a large amount of NbC precipitates in the crystal grains, and so-called precipitate depletion zone (PFZ) is formed in the vicinity of the grain boundary, and this PFZ Since there are very few precipitates, the strength is lower than in the grains, and plastic deformation can be performed at a low stress level. Furthermore, as a result of intensive studies, it has been found that in order to obtain such a desirable precipitation form in the present invention, it is preferable to regulate Nb / C (atomic equivalent ratio) in the range of 1.7 to 2.5.
[0024]
In the high-strength thin steel sheet of the present invention, the crystal grains are refined by adding Nb, so that weldability and secondary work brittleness resistance are also improved.
[0025]
Thus, the high-strength thin steel sheet of the present invention is inexpensive because it does not contain a large amount of special elements such as Cr and can be manufactured by a normal process as described later.
[0026]
The effect of the present invention is achieved by limiting the amount of elements described above. Further, in order to improve quality and improve secondary work brittleness resistance, Ti and B are changed to Ti ≦ 0.05 wt%, B ≦ 0.002 wt%. It is possible to add within the range.
[0027]
Ti: Formability is improved by forming carbonitride and refining the structure of hot-rolled sheet. However, if added over 0.05 wt%, the precipitates become coarse and a sufficient effect cannot be obtained. More desirably, from the viewpoint of the surface properties of hot dip galvanizing, the upper limit is preferably less than 0.02 wt%, and the lower limit is preferably 0.005 wt% in order to obtain the necessary finer effect.
[0028]
B: Added to reinforce grain boundaries and improve secondary work brittleness resistance, but if added over 0.002 wt%, formability is greatly reduced, so the upper limit is made 0.002 wt%. The steel of the present invention has finely divided crystal grains and exhibits extremely excellent secondary work brittleness resistance. Therefore, in order to suppress the decrease in formability as much as possible, the B addition amount is in the range of 0.0001 to 0.001 wt%. It is preferable to regulate to.
[0029]
The high-strength thin steel sheet according to the present invention can be used as it is, but the same effect can be obtained even if the surface is subjected to zinc-based plating such as electrogalvanizing or hot-dip galvanizing. Examples of the zinc-based plating include pure zinc plating, alloyed zinc plating, and zinc-Ni alloy plating. An organic film treatment may be performed after plating.
[0030]
As a method for producing a high-strength thin steel sheet according to the present invention, a steel adjusted to the element range according to the present invention is melted and then formed into a slab by continuous casting, and this slab is heated after reheating or directly hot rolling. A normal cold-rolled steel sheet manufacturing process in which a rolled steel sheet is used and then cold-rolled and annealed after pickling can be applied.
[0031]
At this time, the hot rolling conditions are finish rolling at an Ar3 transformation point or higher and 960 ° C or lower from the viewpoint of surface quality and material uniformity, and 680 ° C or lower from the viewpoint of descalability during pickling and material stability. It is preferable to take up at the temperature. In addition, it is preferable to wind at a temperature of 600 ° C. or higher when performing continuous annealing (CAL or CGL) after cold rolling, and at a temperature of 540 ° C. or higher when performing box annealing (BAF). In addition, for the purpose of ensuring the hot rolling finishing temperature at the time of manufacturing a thin object, the coarse bar can be heated by a bar heater during hot rolling.
[0032]
The rolling reduction of cold rolling is preferably 50% or more in order to obtain good deep drawability, and the annealing temperature is 780 to 880 ° C for continuous annealing, and 680 to 750 ° C for box annealing. A temperature range is preferred.
[0033]
【Example】
After melting steel Nos. 1 to 10 shown in Table 1, slabs were produced by continuous casting. After this slab is heated to 1200 ° C, it is hot rolled at a finishing temperature of 880 to 940 ° C, a coiling temperature of 540 to 560 ° C (for box annealing), and 600 to 660 ° C (for continuous annealing, continuous annealing and galvanizing). Hot-rolled steel sheet, 50% to 85% cold rolled after pickling, continuous annealing (annealing temperature 800-840 ° C), box annealing (annealing temperature 680-720 ° C), continuous annealing / hot dip galvanization Any of (annealing temperature 800-840 degreeC) was implemented. In continuous annealing and hot dip galvanizing, hot dip galvanizing was performed at 460 ° C after annealing, and the plating layer was immediately alloyed at 500 ° C in an in-line alloying furnace. The steel sheet after annealing or annealing / hot dip galvanizing was subjected to temper rolling with a reduction rate of 0.7%. These steel sheets were subjected to mechanical properties and front fender press forming to investigate the breaking limit cushion force.
[0034]
The results are shown in Table 2.
[0035]
The steel sheet of the present invention had a high breaking limit cushion force of 65 TON or more, and exhibited excellent overhanging properties. No. 9 and No. 10 of the comparative materials break at low cushioning force conditions of 50 TON or less because the n value of 1-10% is small despite the high n value of 0.23 or more in the 10-20% strain region There has occurred.
[0036]
In the steel plate of the present invention, the longitudinal crack transition temperature was −65 ° C. or lower at any level, indicating very good secondary work brittleness resistance. In addition, the steel sheet of the present invention has fine crystal grains, and no problems such as rough skin occur even in the hard-worked part. Furthermore, it was confirmed that the surface quality after hot dip galvanizing and the workability and fatigue characteristics of the welded portion were also excellent.
[0037]
Fig. 3 shows the vicinity of the fracture risk area when No. 3 material (invention example) and No. 10 material (comparative example) in Table 2 are molded into the front fender model of Fig. 1 under the condition of a cushioning force of 40 TON. The strain distribution is shown.
[0038]
In No.3 material, the amount of strain generated at the bottom of the punch is large, and the amount of strain generated at the side wall is suppressed, which is advantageous for fracture.
[0039]
[Table 1]
Figure 0003695262
[0040]
[Table 2]
Figure 0003695262
[0041]
【The invention's effect】
Since the present invention is configured as described above, it is possible to provide a high-strength thin steel sheet that can be manufactured at low cost and has excellent stretch formability.
[0042]
Moreover, the high-strength thin steel sheet of the present invention is excellent in secondary work brittleness resistance, surface properties, weldability, etc., and has very good overall performance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a front fender model molded article of an actual part scale.
FIG. 2 is a diagram showing an equivalent strain distribution in the vicinity of a side wall portion of the molded product shown in FIG.
FIG. 3 is a diagram showing an equivalent strain distribution in the vicinity of the side wall after forming No. 3 material and No. 10 material into a front fender model.

Claims (4)

wt% wt% で、so, CC : 0.00400.0040 ~ 0.015%0.015% , SiSi : 0.05%0.05% 以下、Less than, MnMn : 0.70.7 ~ 3.0%3.0% , PP : 0.040.04 ~ 0.15%0.15% , SS : 0.02%0.02% 以下、Less than, sol.Al sol.Al : 0.010.01 ~ 0.1%0.1% , NN : 0.004%0.004% 以下、Less than, NbNb : 0.010.01 ~ 0.2%0.2% 、残部が実質的に, The rest is practically FeFe および不可避的不純物からなり、単軸引張試験における公称ひずみAnd nominal strain in uniaxial tensile test 1%1% When 10%Ten% of 22 点から算出されたCalculated from points nn 値が下記の式The value is the following formula (1)(1) を満足する張出し成形性に優れた高強度薄鋼板;High-strength thin steel sheet with excellent stretch formability that satisfies
nn 値≧Value ≥ -0.00029-0.00029 ×× TS(MPa)+0.313 TS (MPa) +0.313 (1)(1)
ただし、However, TSTS は引張り強さを表す。Represents the tensile strength.
さらに、further, TiTi The 0.05wt%0.05wt% 以下含有している請求項Claims containing 11 に記載の張出し成形性に優れた高強度薄鋼板。High-strength thin steel sheet with excellent stretch formability as described in 1. さらに、further, BB The 0.002wt%0.002wt% 以下含有している請求項Claims containing 11 または請求項Or claims 22 に記載の張出し成形性に優れた高強度薄鋼板。High-strength thin steel sheet with excellent stretch formability as described in 1. 表面に亜鉛系めっき皮膜を有する請求項Claims having a zinc-based plating film on the surface 11 から請求項Claims from 3Three のいずれかEither 11 項に記載の張出し成形性に優れた高強度薄鋼板。A high-strength thin steel sheet having excellent stretch formability as described in the item.
JP31559499A 1999-11-05 1999-11-05 High-strength thin steel sheet with excellent stretch formability Expired - Fee Related JP3695262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31559499A JP3695262B2 (en) 1999-11-05 1999-11-05 High-strength thin steel sheet with excellent stretch formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31559499A JP3695262B2 (en) 1999-11-05 1999-11-05 High-strength thin steel sheet with excellent stretch formability

Publications (2)

Publication Number Publication Date
JP2001131691A JP2001131691A (en) 2001-05-15
JP3695262B2 true JP3695262B2 (en) 2005-09-14

Family

ID=18067242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31559499A Expired - Fee Related JP3695262B2 (en) 1999-11-05 1999-11-05 High-strength thin steel sheet with excellent stretch formability

Country Status (1)

Country Link
JP (1) JP3695262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040069B2 (en) * 2005-05-23 2012-10-03 住友金属工業株式会社 High tensile cold-rolled steel sheet and method for producing the same
JP5041096B2 (en) * 2011-11-24 2012-10-03 住友金属工業株式会社 High tensile cold-rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2001131691A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US8449698B2 (en) Dual phase steel sheet and method of manufacturing the same
CN111448332B (en) High-strength steel sheet having excellent workability and method for producing same
US9297052B2 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
US20130213529A1 (en) High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same
CN111511951A (en) High-strength steel sheet having excellent collision characteristics and formability, and method for producing same
JP2006307327A (en) High ductility and high strength alloyed hot-dip galvanized steel sheet having excellent surface property and brittle resistance to secondary processing and method for producing same
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
US9777350B2 (en) High strength interstitial free low density steel and method for producing said steel
CN113195772A (en) High-strength cold-rolled steel sheet having excellent bending workability and method for producing same
JP4924203B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP4687260B2 (en) Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
CN117957335A (en) Cold-rolled flat steel product and method for producing same
JP3695262B2 (en) High-strength thin steel sheet with excellent stretch formability
CN113195773B (en) High-strength cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet excellent in edge formability, and method for producing same
CN116490630A (en) High-strength plated steel sheet excellent in formability and surface quality, and method for producing same
CN116507753A (en) Ultra-high strength steel sheet having excellent ductility and method for manufacturing same
WO2021124864A1 (en) Steel sheet and plated steel sheet
CN113227427A (en) High-strength steel sheet having excellent ductility and workability, and method for producing same
JP2002003993A (en) High strength steel sheet and high strength galvanized steel sheet
JP2002003994A (en) High strength steel sheet and high strength galvanized steel sheet
JP3700500B2 (en) High-strength cold-rolled steel sheet with excellent stretch formability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees