JP3693581B2 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP3693581B2
JP3693581B2 JP2001059331A JP2001059331A JP3693581B2 JP 3693581 B2 JP3693581 B2 JP 3693581B2 JP 2001059331 A JP2001059331 A JP 2001059331A JP 2001059331 A JP2001059331 A JP 2001059331A JP 3693581 B2 JP3693581 B2 JP 3693581B2
Authority
JP
Japan
Prior art keywords
air
refrigerant
evaporator
heat exchange
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001059331A
Other languages
Japanese (ja)
Other versions
JP2002257376A (en
Inventor
健作 前田
俊朗 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001059331A priority Critical patent/JP3693581B2/en
Publication of JP2002257376A publication Critical patent/JP2002257376A/en
Application granted granted Critical
Publication of JP3693581B2 publication Critical patent/JP3693581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、除湿装置、特に外気を処理して室内に導く除湿装置(外調機)に関するものである。
【0002】
【従来の技術】
従来の除湿装置(外調機)の構成を図14に示す。図14に示すように、従来の除湿装置は、冷媒を圧縮する昇圧機301と、圧縮された冷媒を凝縮し外気OAを加熱する凝縮器302と、凝縮した冷媒を絞り303で減圧し、これを蒸発させて外気OAを露点温度以下に冷却する蒸発器304と、外気OAを空調空間100に供給するための送風機305とを備えている。蒸発器304は外気OAを露点以下に冷却して、外気OA中の水分を除去する。露点以下に冷却された外気OAは凝縮器302で加熱され、空調空間100に供給される。これら昇圧機301、凝縮器302、絞り303及び蒸発器304によって、蒸発器304を流れる外気OAから凝縮器302を流れる外気OAに熱を汲み上げるヒートポンプHPが構成されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の除湿装置においては、ヒートポンプHPにおける蒸発器304の作用温度が氷点下になり、そのため、除湿された水分が伝熱面で氷となって着床し、これが伝熱を阻害して連続運転ができなくなる場合が考えられる。従って、従来の除湿装置においては、絶対湿度で4g/kgDA以下の乾燥した空気を供給できなかった。
【0004】
また、低い露点温度、即ち、低い絶対湿度の空気を得る方法として、デシカントを用いて水分を吸着し除湿する方法が知られている。しかしながら、従来のデシカントを用いた除湿装置では、例えば、盛夏期における20g/kgDAを越えるような高い絶対湿度の外気に対しては、吸着熱が障害となって湿度が下がらず使用することができなかった。また、デシカントを用いた除湿装置では、デシカントを再生する再生空気を加熱するために電気ヒータが用いられ、運転費用がかさむという問題があった。
【0005】
本発明は、このような従来技術の問題点に鑑みてなされたもので、空気の除湿を行ってもヒートポンプの蒸発器の伝熱面に除湿した水分を氷として着床させず、絶対湿度で4g/kgDA以下の乾燥した空気を連続して供給することができる除湿装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このような従来技術における問題点を解決するために、本発明の一態様は、冷媒を昇圧する昇圧機と、上記冷媒を凝縮させて再生空気を加熱する凝縮器と、上記冷媒を蒸発させて外部空気を露点以下の温度まで冷却する蒸発器と、上記凝縮器と上記蒸発器とを接続する冷媒経路中に設けられ、上記凝縮器の凝縮圧力と上記蒸発器の蒸発圧力との中間の圧力で冷媒を蒸発させて外部空気を冷却する第1の熱交換手段と、上記凝縮器と上記蒸発器とを接続する冷媒経路中に設けられ、上記凝縮器の凝縮圧力と上記蒸発器の蒸発圧力との中間の圧力で冷媒を凝縮させて外部空気を加熱する第2の熱交換手段と、上記第2の熱交換手段によって加熱された外部空気を処理空気及び再生空気として、上記処理空気の水分を吸着すると共に、上記再生空気で水分を脱着されて再生されるデシカントと、上記第1の熱交換手段と上記蒸発器と上記第2の熱交換手段とをこの順番で接続する空気経路とを備えたことを特徴とする除湿装置である。
【0007】
このような構成により、空気は、第1の熱交換手段による冷却によって水分の一部が結露し、水分の含有量が減少し得る。蒸発器により冷却される前に、第1の熱交換手段による冷却(予冷)を受け、蒸発器により冷却された後に、第2の熱交換手段による加熱(予加熱)を受けるので、低顕熱比の運転ができる。また、処理空気は水分吸着装置によって水分を吸着されるので、処理空気の湿度が大幅に下がり、乾燥した空気を供給することができる。
【0008】
また、蒸発器での冷却の前に第1の熱交換手段により空気を予冷でき、その予冷の冷熱を、蒸発器で一旦冷却された空気から回収することができ、動作係数の高いヒートポンプを備えた除湿装置を提供することが可能となる。また、エネルギ消費量当たりの除湿能力の高い除湿装置とすることができる。このように、従来デシカントを再生する再生空気を加熱するための電気ヒータにおいて必要とされる熱量よりも少ない加熱量で済む上、ヒートポンプはエネルギ効率が高いので消費電力を少なくすることができる。
【0009】
また、上記第2の熱交換手段によって加熱された空気に、上記処理空気が供給される室内の空気を加えて再生空気とすることもできる。このように除湿された処理空気が供給された室内からの空気を換気として取込み、これを再生空気に加えることによって、除湿装置の能力を向上させることができる。
【0010】
更に、本発明の好ましい一態様においては、上記第1の熱交換手段と上記第2の熱交換手段とは、上記各熱交換手段を流れる空気同士が互いに対向して流れるように構成され、上記冷媒経路は上記第1の熱交換手段と上記第2の熱交換手段内で、上記空気の流れにほぼ直交する第1の面内に少なくとも一対の第1の貫通部と第2の貫通部とを有し、上記第1の面とは異なる上記空気の流れにほぼ直交する第2の面内に少なくとも一対の第1の貫通部と第2の貫通部とを有し、上記第1の面内から上記第2の面内に移動する位置に中間絞りを備えたことを特徴とする。
【0011】
このように構成すると、空気同士の熱交換という観点から見ると、対向流熱交換であるので、高い熱交換効率を達成できる。第1の面内に少なくとも一対の第1の貫通部と第2の貫通部とを有し、一対の冷媒経路となし、第1の面とは異なる再生空気の流れにほぼ直交する第2の面内に少なくとも一対の第1の貫通部と第2の貫通部とを有し、一対の冷媒経路となすので、熱交換器を全体として小型コンパクトに形成することができる。また、第1の面内から第2の面内に移動する箇所に中間絞りを有するので、第2の面内の第1、第2の貫通部の蒸発あるいは凝縮の圧力を、第1の面内の第1、第2の貫通部の蒸発あるいは凝縮の圧力より低い値とすることができるので、各貫通部を流れる空気同士の熱交換を対向流熱交換に近いものとすることができ、熱交換効率を高くすることができる。なお、第1の面と、第2の面の形状は、典型的には矩形の平面である。
【0012】
また、本発明の好ましい一態様においては、上記凝縮器と上記蒸発器との間で複数列に分岐する分岐冷媒経路を備え、上記分岐冷媒経路中に上記第1の熱交換手段及び上記第2の熱交換手段を設けたことを特徴とする。
【0013】
このような構成によって、冷媒の作用温度を段階的に変化させることができるので、熱交換効率を高めることが可能となる。ここで、熱交換効率φは、高温側の流体の熱交換器入り口温度をTP1、出口温度をT、低温側の流体の熱交換器入り口温度をTC1、出口温度をTC2としたとき、高温側の流体の冷却に注目した場合、即ち、熱交換の目的が冷却の場合は、φ=(TP1−TP2)/(TP1−TC1)、低温の流体の加熱に注目した場合、即ち、熱交換の目的が加熱の場合は、φ=(TC2−TC1)/(TP1−TC1)と定義されるものである。
【0014】
【発明の実施の形態】
以下、本発明に係る除湿装置の第1の実施形態について図1乃至図5を参照して詳細に説明する。図1は本発明の第1の実施形態における除湿装置の全体構成を示す図、図2は図1の除湿装置内のフローを模式的に示す図である。本実施形態における除湿装置は、外部から導入された空気OAをその露点温度以下に冷却して水分を結露水にして回収すると共に、デシカントを用いてその空気を除湿するものであり、内部にヒートポンプHP1を含んでいる。除湿装置によって湿度が下げられた空気SAが空調空間100に供給されることによって、空調空間100が低湿度に維持される。
【0015】
除湿装置は、図1に示すように、外部から空気OAを導入するための送風機1と、冷媒を加熱して蒸発させる蒸発器2と、蒸発器2で蒸発してガスになった冷媒を圧縮する昇圧機3と、冷媒を冷却して凝縮する凝縮器4と、エコノマイザとして作用する熱交換器5と、通過する処理空気の水分を吸着すると共に通過する再生空気により再生されるデシカントを充填したデシカントロータ6とを備えている。熱交換器5は、蒸発器2に流入する前後の空気同士の間で、冷媒を介して間接的に熱交換を行うものであり、冷媒を蒸発させて空気を冷却する第1の熱交換部51と、冷媒を凝縮させて空気を加熱する第2の熱交換部52とを備えている。これらの機器はキャビネット10の内部に収容されており、このキャビネット10は、例えば、薄い鋼板で作られた直方体の筐として形成される。
【0016】
キャビネット10の前面最上部には吸気口11が開口しており、この吸気口11を介して外部からの空気OAが除湿装置内に導入される。吸気口11の近傍には、外部から埃が装置内に進入しないようにフィルタ12が設けられている。キャビネット10内には、水平又は鉛直方向に延びる仕切板によって空気が流通する空気経路が形成されており、吸気口11から導入された空気OAは最上段の空気経路13aを通って中段の空気経路13bに流れ、中段の空気経路13bから更に最下段の空気経路13cに流れる。最下段の空気経路13cに流れ込んだ空気は上方向と水平方向に流れる2つの流れに分かれ、上方に流れる空気はデシカントにより除湿処理される処理空気となり、水平方向に流れる空気はデシカントを再生する再生空気となる。
【0017】
上述した中段の空気経路13bには、空気の流れ方向に沿って、熱交換器5の第1の熱交換部51、送風機1、蒸発器2が順番に配置されている。ここで、蒸発器2は、外部から導入された空気をその露点温度以下に冷却し空気中の水分を結露水にして回収するものであり、その下方にはドレンパン14が設置されている。ドレンパン14の下方に位置する最下段の空気経路13cには、ドレンタンク15が配置されており、蒸発器2によって結露された外気OA中の水分は、ドレンパン14によって集められてドレンタンク15内に蓄積される。なお、このドレンパン14は蒸発器2だけでなく、熱交換器5の下方もカバーするように設けるのが好ましい。熱交換器5の第1の熱交換部51においては空気を主として予冷するが、一部の水分はここで結露することがあるので、特に第1の熱交換部51の下方に設けるのが好ましい。
【0018】
最下段の空気経路13cには、空気の流れ方向に沿って、ドレンタンク15、熱交換器5の第2の熱交換部52、昇圧機3が順番に配置されている。この最下段の空気経路13cの昇圧機3近傍においては、上述したように、空気経路が上方向と水平方向に分かれている。このうち水平方向に流れた再生空気は、凝縮器4、デシカントロータ6を順番に通りデシカントを再生した後、キャビネット10の後面最下部に形成された排出口16から排出される。一方、上方向に流れた処理空気は、キャビネット10内の最上部から水平方向に流れて、デシカントロータ6を通過して除湿された後、キャビネット10の側面に形成された供給口17から空調空間100に供給される。
【0019】
デシカントロータ6は、水平方向に延びる回転軸AX回りに回転する厚い円盤状のロータとして形成されている。このロータ中には、気体が通過できるような隙間をもってデシカントが充填されている。例えば、チューブ状の乾燥エレメントをその中心軸が回転軸AXと平行になるように多数束ねてデシカントとして構成するのが好ましい。デシカントロータ6の回転軸AXを水平方向に向けて配置したので、キャビネット10の水平方向の長さを短くコンパクトに製作することができる。
【0020】
デシカントロータ6の半円形状の上側半分は処理空気が流れる空気経路に、半円形状の下側半分は再生空気が流れる空気経路に配置されている。デシカントロータ6の回転軸AXに処理空気と再生空気とが平行にそれぞれ流れ込み、円盤状のロータの厚さ方向に流れ出るように構成されている。一般に処理空気と再生空気とは、回転軸AXに平行に、それぞれ円形のデシカントロータ6のほぼ半分の領域を、対向流形式で流れるように構成されている。
【0021】
また、デシカントロータ6には、駆動機である電動機6aがその回転軸を水平にして配置されており、電動機6aとデシカントロータ6は、チェーン6bを介して結合されている。このような構成によって、電動機6aの回転がデシカントロータ6に伝達され、デシカントロータ6は15〜20h−1の回転速度で回転軸AX回りに回転する。各乾燥エレメントは、デシカントロータ6が回転するに伴って、処理空気及び再生空気と交互に接触するように配置される。
【0022】
冷媒が流通する冷媒経路は、図2に示すように、蒸発器2と昇圧機3とを接続する経路40と、昇圧機3と凝縮器4とを接続する経路41と、凝縮器4と熱交換器5とを接続する経路42と、熱交換器5と蒸発器2とを接続する経路43とから構成されている。また、熱交換器5内において冷媒経路は第1の熱交換部51と第2の熱交換部52とをそれぞれ貫通しており、第1の熱交換部51内には、冷媒を蒸発させることによって第1の熱交換部51を流れる空気OAを冷却する蒸発セクション61が形成され、第2の熱交換部52内には、冷媒を凝縮させることによって第2の熱交換部52を流れる空気Rを加熱する凝縮セクション62が形成されている。また、熱交換器5の第1の熱交換部51の上流側の冷媒経路42には絞り48が配置され、第2の熱交換部52の下流側の冷媒経路43には絞り49が配置されている。これらの絞り48、49として、例えば、オリフィス、キャピラリチューブ、膨張弁などを用いることができる。
【0023】
図3は、図2の除湿装置の熱交換器5内の冷媒経路を示す拡大図である。蒸発セクション61と凝縮セクション62とを含んで構成される冷媒経路は、第1の熱交換部51と第2の熱交換部52とを交互に繰り返し貫通する。即ち、熱交換器5内の冷媒経路は、図3に示すように、凝縮器4側から順番に、蒸発セクション61a、凝縮セクション62a、凝縮セクション62b、蒸発セクション61b、蒸発セクション61c、凝縮セクション62c、凝縮セクション62d、蒸発セクション61d、蒸発セクション61e、凝縮セクション62eを有している。
【0024】
ここで、蒸発器2を通過する前の空気OAを流す第1の熱交換部51と、蒸発器2を通過した後の空気Rを流す第2の熱交換部52とは、別々の直方体空間に収容されている。これらの直方体空間内には、空気の流れに直交する面に複数本の熱交換チューブが冷媒経路として平行に配置されている。第1の熱交換部51と第2の熱交換部52とは、隔壁510と隔壁520とが隣接してそれぞれ設けられており、熱交換チューブはこの2つの隔壁510、520を貫通して設けられている。熱交換器5は、別の形態として1つの直方体の空間を1つの隔壁で分割して、熱交換チューブがこの隔壁を貫通して、第1の熱交換部と第2の熱交換部とを交互に貫通するように構成してもよい。
【0025】
蒸発セクション61bと蒸発セクション61cの端部、蒸発セクション61dと蒸発セクション61eの端部はそれぞれUチューブ(ユーチューブ)63によって接続されている。同様に、凝縮セクション62aと凝縮セクション62bの端部、凝縮セクション62cと凝縮セクション62dの端部もそれぞれUチューブ64によって接続されている。このような構成によって、冷媒経路42において、蒸発セクション61aから凝縮セクション62aに向かって流れた冷媒は、Uチューブ64により凝縮セクション62bに導かれる。凝縮セクション62bに導かれた冷媒は、更に蒸発セクション61bに流入し、Uチューブ63により蒸発セクション61cに導入され、更に凝縮セクション62cに流入する。このように熱交換器5内の冷媒経路は蛇行する細管群により構成され、この細管群は蛇行しながら第1の熱交換部51と第2の熱交換部52内部を通過し、温度の高い空気と温度の低い空気に交互に接触するようになっている。
【0026】
次に、各機器間の冷媒の流れについて図1及び図2を参照して説明する。
昇圧機3により圧縮された冷媒ガスは、昇圧機3の吐出口に接続された冷媒ガス配管41を経由して凝縮器4に導かれる。凝縮器4において、昇圧機3で圧縮された冷媒ガスが、デシカントロータ6に流入する前の再生空気Tで冷却され凝縮し、再生空気Tはこの冷媒によって加熱される。
【0027】
凝縮器4を出た冷媒液は、絞り48で減圧され膨張して一部の冷媒液が蒸発(フラッシュ)する。その液とガスの混合した冷媒は第1の熱交換部51の蒸発セクション61aに至り、ここで冷媒液は蒸発セクション61aのチューブの内壁を濡らすように流れる。冷媒液は蒸発セクション61aを流れる間に外部から導入された空気OAによって加熱されて蒸発し、蒸発器2に流入する前の空気OAが冷却(予冷)される。このとき冷媒自身は加熱され気相を増やす。
【0028】
上述したように、蒸発セクション61aと凝縮セクション62aは一連のチューブにより構成されているので、上記蒸発セクション61aにおいて蒸発した冷媒ガス(及び蒸発しなかった冷媒液)は凝縮セクション62aに流入する。凝縮セクション62aでは、蒸発器2で冷却除湿され、蒸発セクション61aの空気よりも温度の低くなった空気Rが加熱(再熱)され、冷媒自身は熱を奪われ気相冷媒を凝縮させながら、次の凝縮セクション62bに流入する。冷媒は、凝縮セクション62bを流れる間に、低温の空気Rで更に熱を奪われ気相冷媒を凝縮させる。
【0029】
凝縮された冷媒液は、次の蒸発セクション61b及びこれに続く蒸発セクション61cに流入し、上記と同様にして蒸発器2に流入する前の空気OAが冷却(予冷)される。更に凝縮セクション62c及び凝縮セクション62dに冷媒ガスが流入して空気Rが加熱される。このように、冷媒は気相と液相の相変化を繰り返しながら熱交換器内の冷媒経路を流れ、蒸発器2で冷却される前の空気OAと、蒸発器2で冷却されて絶対湿度を低下させた空気Rとの間で間接的に熱交換が行われる。
【0030】
最後の凝縮セクション62eにおいて凝縮した冷媒液は、第2の熱交換部52の下流側に配置された絞り49で減圧され膨張して温度が下がる。そして、冷媒は蒸発器2に至り、この蒸発器2において蒸発する。この冷媒の蒸発熱で第1の熱交換部51を通った空気Qが冷却される。蒸発器2で蒸発してガス化した冷媒は、昇圧機3の吸込側に導かれる。そして、上述のサイクルが繰り返される。
【0031】
次に、本実施形態における除湿装置に含まれるヒートポンプHP1の作用について説明する。図4は図2の除湿装置に含まれるヒートポンプHP1の冷媒モリエ線図である。なお、図4に示す線図においては、冷媒としてHFC134aを用いており、横軸にエンタルピ、縦軸に圧力が取られている。HFC134aに限らず、HFC407CやHFC410Aを冷媒として利用することもでき、これらの冷媒を用いた場合には、作動圧力領域がHFC134aの場合よりも高圧側にシフトする。
【0032】
図4において、点aは図2の蒸発器2で蒸発した冷媒の状態を示しており、このときの冷媒は飽和ガスの状態にある。冷媒の圧力は0.30MPa、温度は1℃、エンタルピは399.2kJ/kgである。点bはこのガスを昇圧機3で吸込圧縮した状態、即ち昇圧機3の吐出口での状態を示しており、このときの冷媒は、圧力が1.89MPaであり、過熱ガスの状態にある。
【0033】
点bの状態にある冷媒ガスは、凝縮器4内で冷却され、点cで示される状態に至る。このときの冷媒は飽和ガスの状態であり、その圧力は1.89MPa、温度は65℃である。冷媒はこの圧力下で更に冷却され凝縮して点dで示される状態に至る。このときの冷媒は飽和液の状態であり、その圧力と温度は点cにおける圧力及び温度と同じである。このときのエンタルピは295.8kJ/kgである。
【0034】
この冷媒液は、絞り48で減圧され、第1の熱交換部51の蒸発セクション61aに流入する。このときの状態は点eで示されており、一部の液が蒸発して液とガスが混合した状態となっている。このときの圧力は、凝縮器4の凝縮圧力と蒸発器2の蒸発圧力との中間圧力であり、本実施形態では、0.30MPaと1.89MPaの間の値となる。
【0035】
蒸発セクション61a内で、上記中間圧力下で冷却液が蒸発して、同圧力で飽和液線と飽和ガス線の中間に位置する点f1の状態となる。この状態では液の一部が蒸発しているが、冷媒液はかなり残っている。そして、点f1で示される状態の冷媒が、凝縮セクション62a及び62bに流入する。凝縮セクション62a及び62bでは、冷媒は第2の熱交換部52を流れる低温の空気Rにより熱を奪われ、点g1の状態に至る。
【0036】
点g1の状態の冷媒は、蒸発セクション61b及び61cに流入し、ここで熱を奪われ液相を増やして点f2の状態に至り、更に、凝縮セクション62c及び62dに流入する。凝縮セクション62c及び62dにおいて、冷媒は液相を増やして点g2の状態に至る。点g2はモリエ線図では飽和液線上に位置しており、このときの冷媒の温度は15℃、エンタルピは220.5kJ/kgである。同様に、更に蒸発セクション61d及び61e、凝縮セクション62eでの蒸発、凝縮を繰り返すが、図4のモリエ線図では、蒸発セクション61d及び61e、凝縮セクション62eを省略して、凝縮セクション62dが絞り49に接続してあるものとして示している。
【0037】
点g2の状態の冷媒液は、絞り49で、温度15℃の飽和圧力である0.30MPaまで減圧されて点hで示される状態に至る。点hの状態における冷媒は、1℃の冷媒液とガスの混合物として蒸発器2に至り、ここで空気Qから熱を奪い、蒸発して点aで示される状態の飽和ガスとなる。この飽和ガスは再び昇圧機3に吸入され、上述したサイクルが繰り返される。
【0038】
このように、熱交換器5内において、冷媒は蒸発セクション61では点eから点f1、あるいは点g1から点f2までといったように蒸発の状態変化を、凝縮セクション62では、点f1から点g1、あるいは点f2から点g2までといったように凝縮の状態変化をしており、蒸発伝熱と凝縮伝熱が行われているため、熱伝達率が非常に高く、また熱交換効率が高い。
【0039】
ここで、昇圧機3、凝縮器4、絞り48、49及び蒸発器2を含む圧縮ヒートポンプHP1として考えると、本発明に係る熱交換器5を設けない場合には、凝縮器4における点dの状態の冷媒を、絞りを介して蒸発器2に戻すため、蒸発器2で利用できるエンタルピ差は399.2−295.8=103.4kJ/kgしかない。しかし、本発明に係る熱交換器5を設けた場合には、399.2−220.5=178.7kJ/kgとなり、同一冷却負荷に対して昇圧機に循環するガス量を、ひいては所要動力を42%(=1−103.4/178.7)も小さくすることができる。即ち、サブクールサイクルと同様な作用を持たせることができる。このように、本発明の除湿装置は、ヒートポンプHP1のエコノマイザ効果により、蒸発器2の入口の冷媒エンタルピが小さくなり、単位流量あたりの冷媒の冷凍効果が高いため、除湿効果、及びエネルギ効率が高くなる。
【0040】
図5は図2の除湿装置における空調サイクルを示す湿り空気線図である。図5において、符号P〜V、OA、EX、SAは、図2においてそれぞれの符号を付した空気の状態に対応している。
外部から導入された空気OAは、図1の最上段の空気経路13aを通り、熱交換器5の第1の熱交換部51に送り込まれ、蒸発セクション61内で蒸発する冷媒によりある程度まで冷却され、絶対湿度一定のまま乾球温度を下げる(空気P)。これは蒸発器2で露点温度以下まで冷却される前の予備的冷却であるので予冷と呼ぶことができる。
【0041】
空気Pは、送風機1に吸い込まれ、更に送風機1から吐き出されて蒸発器2に送り込まれる(空気Q)。蒸発器2では、低温で蒸発する冷媒によって、空気Qがその露点温度以下に冷却され、水分を奪われながら、絶対湿度を5g/kgDAに低下させつつ乾球温度を5℃に下げる(空気R)。なお、絶対湿度の単位中のDAは乾燥空気であることを示す。
【0042】
空気R(絶対湿度5g/kgDA、乾球温度5℃)は、熱交換器5の第2の熱交換部52に流入し、凝縮セクション62内で凝縮する冷媒により、ある程度まで加熱され、絶対湿度一定のまま乾球温度を(5℃と60℃の中間の温度にまで)上げる(空気S)。これは、凝縮器4で加熱される前の予備的加熱であるので予加熱と呼ぶことができる。
【0043】
第2の熱交換部52を出た空気Sは、上述したように処理空気Vと再生空気Tに分かれる。再生空気Tは、凝縮器4に導入され、ここで加熱されて絶対湿度一定のまま更に乾球温度を60℃に上げる(空気U)。再生空気Uは、更にデシカントロータ6へ送り込まれ、ここで乾燥エレメント中のデシカントから水分を奪いこれを再生して、自分自身は絶対湿度を上げると共に、デシカントの水分脱着熱により乾球温度を下げる。デシカントを再生した後の空気EXは排出口16から外部に排出される。
【0044】
一方、処理空気Vはそのままデシカントロータ6に送り込まれる。デシカントロータ6では、乾燥エレメント中のデシカントにより水分が吸着され乾燥され、絶対湿度を2g/kgDAに下げ、乾球温度を上げる(空気SA)。除湿された処理空気SAは供給口17から空調空間100に供給される。
【0045】
ここで、図5の湿り空気線図上に示す空気側のサイクルでは、凝縮器4で再生空気Uを加熱した熱量ΔQが、排熱利用による加熱であり、蒸発器2で空気Qを冷却した熱量Δiが、除湿冷却効果であり、エコノマイザとしての熱交換器による熱回収が、ΔHである。
【0046】
上述したように、熱交換器5では、蒸発セクション61での冷媒の蒸発により外部から導入された空気OAを予冷し、凝縮セクション62での冷媒の凝縮により空気Rを加熱する。そして蒸発セクション61で蒸発した冷媒は、凝縮セクション62で凝縮する。このように同じ冷媒の蒸発と凝縮作用により、蒸発器2で冷却される前後の空気同士の熱交換が間接的に行われる。
【0047】
上述したように、本発明に係る除湿装置では、熱交換器5は予冷・予加熱熱交換器として使用され、熱交換器5の作動流体と、ヒートポンプHP1の作動流体が同じとなり、冷媒チャージの工程の共通化ができるので製造コスト、メンテナンスコストが低い。また、予冷・予加熱熱交換器が一体として製造可能であり、しかもヒートパイプが有する内部のウィックを必要とせず、内部にウィックのない通常の空気・冷媒熱交換器コイルの生産設備で製造できるため、製造コストが安い。
【0048】
更に、ヒートポンプHP1を用いて、外気の冷却除湿とデシカントの再生を同時に行い、しかも、空気の予冷と、除湿後の空気の加熱を、内部の作動媒体を用いて行うため、装置が簡単で、しかもヒートポンプの冷却能力の大部分を空気中の水分を凝縮させるために用いることができるため、除湿能力が高い。
【0049】
空気を冷却除湿する場合、そのまま露点まで冷却すると冷却量が多いため、ヒートポンプの冷却効果のうちかなりの部分をそのために消費し、電力消費量当たりの除湿能力(除湿性能)が低い。そこで、蒸発器2の前後に空気・空気熱交換器5を設けて、空気の予冷とレヒート(予加熱)を行って、顕熱比を小さくし露点までの冷却量を減少させた。
【0050】
更に、本発明に係る除湿装置は、除湿能力が高いことに加えて、露点まで冷却する熱を回収して再生空気の加熱の熱として用いることができるため、少ない電力でデシカントの除湿能力を発揮することができる。よって、従来電気ヒータで必要とした熱量より少ない加熱量で済む上、ヒートポンプHP1はエネルギ効率が高いので、消費電力が少ない。
【0051】
次に、本発明に係る除湿装置の第2の実施形態について図6乃至図8を参照して説明する。図6は、第2の実施形態における除湿装置内のフローを模式的に示す図、図7は図6の除湿装置に含まれるヒートポンプHP2の冷媒モリエ線図である。なお、上述の第1の実施形態における部材又は要素と同一の作用又は機能を有する部材又は要素には同一の符号を付し、特に説明しない部分については第1の実施形態と同様である。
【0052】
本実施形態における熱交換器150においては、第2の熱交換部152の凝縮セクション162aと162bとの間、凝縮セクション162cと162dとの間に、それぞれ中間絞り163、164が設けられている点で上述の第1の実施形態と異なっている。その他の構成は上述の第1の実施形態と同様である。このような中間絞りは、第1の熱交換器151の蒸発セクション側に設けることもできる。
【0053】
図7において点aから点eまでは、図4に示される第1の実施形態の場合と同様であるので説明を省略する。なお、熱交換器150の蒸発セクション161aに流入した点eの状態の冷媒は図4で説明した通り、一部の液が蒸発して液とガスが混合した状態にある。
【0054】
この冷媒は、蒸発セクション161aで蒸発し、図7のモリエ線図上では湿り領域において飽和ガス線に近づいた点f1で示される状態に至る。この状態の冷媒が凝縮セクション162aに入り、ここで凝縮され、点g1aで示される状態に至る。点g1aの状態の冷媒は、中間絞り163を介して減圧され、点g1bで示される状態に至る。即ち、凝縮セクション162aから絞り163を経て凝縮セクション162bに流入する。
【0055】
凝縮セクション162bに流入した冷媒はここで凝縮され、湿り領域ではあるが飽和液線に近い点h1で示される状態に至る。その後、蒸発セクション161bに入りここで凝縮されると共に、Uチューブで反転して蒸発セクション161cに入りここで更に凝縮され、点f2で示される状態に至る。
【0056】
その後、冷媒は、凝縮セクション162c、中間絞り164、凝縮セクション162dを経由して、点g2a、点g2b、点h2で示される状態に至り、更に、蒸発セクション161d、161e、凝縮セクション162eを経由して、点f3、点h3で示される状態に至る。この点h3は、モリエ線図において飽和液線上にあり、温度は11℃、エンタルピは215.0kJ/kgである。
【0057】
点h3の冷媒液は、第1の実施形態の場合と同様に、絞り49で温度1℃の飽和圧力である0.30MPaまで減圧され、点iの状態になり、1℃の冷媒液とガスの混合物として蒸発器2に至り、ここで空気Qから熱を奪い、蒸発してモリエ線図上の点aの状態で示される状態の飽和ガスとなる。この飽和ガスは再び昇圧機3に吸入され、上述したサイクルが繰り返される。
【0058】
ここで、昇圧機3、凝縮器4、絞り48、49、163、164及び蒸発器2を含む圧縮ヒートポンプHP2として考えると、本発明に係る熱交換器150を設けない場合には、凝縮器4における点dの状態の冷媒を、絞りを介して蒸発器2に戻すため、蒸発器2で利用できるエンタルピ差は399.2−295.8=103.4kJ/kgしかない。しかし、本発明に係る熱交換器150を設けた場合には、399.2−215.0=184.2kJ/kgとなり、同一冷却負荷に対して昇圧機に循環するガス量を、ひいては所要動力を44%(=1−103.4/184.2)も小さくすることができる。即ち、サブクールサイクルと同様な作用を持たせることができる。
【0059】
図8は、本実施形態における熱交換器150の構造の一例を示すものである。図8(a)は空気の流れ方向に見た正面図、図8(b)は空気の流れに直角な方向から見た側面図であり、図8(a)は図8(b)のA−A矢視図である。図8(a)において、空気OAは紙面の手前から先方に流れ、空気Rは先方から手前側に流れる。この熱交換器150におけるチューブは、空気の流れに直交する4つの平面内にそれぞれ8列に配列されている。即ち、空気の流れに沿って4行8列に配列されている。図2及び図6においては、便宜上、熱交換チューブが各行1列であるものとして説明したが、典型的にはこのように各行に複数のチューブ列が含まれる。また、このような熱交換器を、空気の流量に対応させて、それらの流れに対して並列に並べてもよいし、直列に並べてもよい。
【0060】
このような熱交換器は安価であり、高価なヒートパイプの代わりに用いると、経済的である。また、ヒートパイプと異なり、作動流体をヒートポンプと同じにすることができるのでメンテナンスに手間がかからない。
【0061】
次に、本発明に係る除湿装置の第3の実施形態について図9乃至図11を参照して説明する。図9は第3の実施形態における除湿装置内のフローを模式的に示す図、図10は図9の除湿装置に含まれるヒートポンプHP3の冷媒モリエ線図である。なお、上述の第1の実施形態における部材又は要素と同一の作用又は機能を有する部材又は要素には同一の符号を付し、特に説明しない部分については第1の実施形態と同様である。
【0062】
本実施形態においては、冷媒経路が、凝縮器4の下流側において複数列(図9においては3列)に分岐しており、分岐冷媒経路44〜46が形成されている点で上述の第1の実施形態と異なっている。この分岐冷媒経路44〜46は蒸発器2の上流側において1本の冷媒経路43に合流している。
【0063】
分岐冷媒経路44〜46は、熱交換器250の第1の熱交換部251と第2の熱交換部252とをそれぞれ交互に繰り返し貫通している。また、各分岐冷媒経路44〜46には、第1の熱交換部251の上流側に絞り253〜255がそれぞれ配置され、第2の熱交換部252の下流側に絞り256〜258がそれぞれ配置されている。これらの絞り253〜258として、例えば、オリフィス、キャピラリチューブ、膨張弁などを用いることができる。
【0064】
図11は、図9の除湿装置の熱交換器250における分岐冷媒経路44〜46を示す拡大図である。分岐冷媒経路44〜46は、第1の熱交換部251と第2の熱交換部252とを貫通する。即ち、分岐冷媒経路44は、図11に示すように、凝縮器4側から順番に、蒸発セクション261a、凝縮セクション262a、凝縮セクション262b、蒸発セクション261b、蒸発セクション261c、凝縮セクション262cを有している。また同様に、分岐冷媒経路44は、蒸発セクション263a、凝縮セクション264a、凝縮セクション264b、蒸発セクション263b、蒸発セクション263c、凝縮セクション264cを有し、分岐冷媒経路46は、蒸発セクション265a、凝縮セクション266a、凝縮セクション266b、蒸発セクション265b、蒸発セクション265c、凝縮セクション266cを有している。
【0065】
図10において点aから点dまでは、図4に示される第1の実施形態の場合と同様であるので説明を省略する。凝縮器4内で冷却されることによって点dで示される状態になった冷媒液は、分岐冷媒経路44〜46に分かれて熱交換器250に流入するが、まず、冷媒経路45を通る冷媒について説明する。冷媒経路45に流入した冷媒液は、絞り254で減圧され、第1の熱交換部251の蒸発セクション263aに流入する。このときの状態は点eで示されており、一部の液が蒸発して液とガスが混合した状態となっている。このときの圧力は、凝縮器4の凝縮圧力と蒸発器2の蒸発圧力との中間圧力であり、本実施形態では、1.89MPaと0.30MPaの間の値となる。
【0066】
蒸発セクション263a内で、上記中間圧力下で冷媒液が蒸発して、同圧力で飽和液線と飽和ガス線の中間に位置する点f1の状態となる。この状態では液の一部が蒸発しているが、冷媒液はかなり残っている。そして、点f1で示される状態の冷媒が、凝縮セクション264a及び264bに流入する。凝縮セクション264a及び264bでは、冷媒は第2の熱交換部252を流れる低温の空気Rにより熱を奪われ、点g1の状態に至る。
【0067】
点g1の状態の冷媒は、蒸発セクション263b及び263cに流入し、ここで熱を奪われ液相を増やして点f2の状態に至り、更に、凝縮セクション264cに流入する。凝縮セクション264cにおいて、冷媒は液相を増やして点g2の状態に至る。点g2はモリエ線図では飽和液線上に位置しており、このときの冷媒の温度は15℃、エンタルピは220.5kJ/kgである。
【0068】
点g2の状態の冷媒液は、絞り257で、温度1℃の飽和圧力である0.30MPaまで減圧されて点hで示される状態に至る。点hの状態における冷媒は、1℃の冷媒液とガスの混合物として蒸発器2に至り、ここで空気Qから熱を奪い、蒸発して点aで示される状態の飽和ガスとなる。この飽和ガスは再び昇圧機3に吸入され、上述したサイクルが繰り返される。
【0069】
同様に、冷媒経路44を通る冷媒は、絞り253、蒸発セクション、凝縮セクション、絞り256を通り、点j、点i1、点k1、点i2、点k2で示される状態を経て点lで示される状態に至る。冷媒経路46を通る冷媒は、絞り255、蒸発セクション、凝縮セクション、絞り258を通り、点m、点n1、点o1、点n2、点o2で示される状態を経て点pで示される状態に至る。
【0070】
このように、熱交換器250内において、冷媒は蒸発セクションでは点eから点f1、あるいは点g1から点f2までといったように蒸発の状態変化を、凝縮セクションでは、点f1から点g1、あるいは点f2から点g2までといったように凝縮の状態変化をしており、蒸発伝熱と凝縮伝熱が行われているため、熱伝達率が非常に高く、また熱交換効率が高い。
【0071】
ここで、昇圧機3、凝縮器4、絞り253〜258及び蒸発器2を含む圧縮ヒートポンプHP3として考えると、本発明に係る熱交換器250を設けた場合には、同一冷却負荷に対して昇圧機に循環するガス量を、ひいては所要動力を第1の実施形態と同様に42%も小さくすることができる。即ち、サブクールサイクルと同様な作用を持たせることができる。このように、本発明の除湿装置は、ヒートポンプHP3のエコノマイザ効果により、蒸発器2の入口の冷媒エンタルピが小さくなり、単位流量あたりの冷媒の冷凍効果が高いため、除湿効果、及びエネルギ効率が高くなる。
【0072】
さてこれまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいものである。例えば、各冷媒経路の第1の熱交換部における蒸発セクションの数、第2の熱交換部における凝縮セクションの数は図示のものに限られるものではない。また、第3の実施形態における分岐冷媒経路の分岐数は図示のものに限られるものではなく、冷媒経路を何列に分岐させてもよい。更に、上述の実施形態においては空調空間を空調する除湿装置を例として説明したが、必ずしも空調空間に限らず、本発明の除湿装置を、他の除湿を必要とする空間に応用することもできる。
【0073】
また、上述した各実施形態において、空調空間100の空気を換気として取込み、第2の熱交換部を出た空気Sにこれを加えて再生空気としてもよい。図12及び図13には、上述の第1の実施形態において、空調空間100の空気を換気として取込んで再生空気として利用する場合の構成例を示す。この場合には、例えば、図12及び図13に示すように、空気経路が上方向と水平方向に分岐する位置の近辺に空調空間100の空気を取り込む換気口18を設けると共に、この換気口18から取り込まれた換気を再生空気に加えて、これを送風機7により凝縮器4に送っている。また、図13に示すように、必要に応じて更に送風機8を設けることとしてもよい。
【0074】
【発明の効果】
上述したように本発明によれば、蒸発器での冷却の前に第1の熱交換手段により空気を予冷でき、その予冷の冷熱を、蒸発器で一旦冷却された空気から回収することができ、動作係数の高いヒートポンプを備えた除湿装置を提供することが可能となる。また、エネルギ消費量当たりの除湿能力の高い除湿装置とすることができる。更に、分岐冷媒経路を設けることによって、冷媒の作用温度を段階的に変化させることができるので、熱交換効率を高めることが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における除湿装置の全体構成を示す図である。
【図2】図1の除湿装置内のフローを模式的に示す図である。
【図3】図2の除湿装置の熱交換器における冷媒経路を示す拡大図である。
【図4】図2の除湿装置に含まれるヒートポンプの冷媒モリエ線図である。
【図5】図2の除湿装置における空調サイクルを示す湿り空気線図である。
【図6】本発明の第2の実施形態における除湿装置内のフローを模式的に示す図である。
【図7】図6の除湿装置に含まれるヒートポンプの冷媒モリエ線図である。
【図8】図6の除湿装置の熱交換器の構造の一例を示す図である。
【図9】本発明の第3の実施形態における除湿装置内のフローを模式的に示す図である。
【図10】図9の除湿装置に含まれるヒートポンプの冷媒モリエ線図である。
【図11】図9の除湿装置の熱交換器における冷媒経路を示す拡大図である。
【図12】本発明の他の実施形態における除湿装置の全体構成を示す図である。
【図13】図12の除湿装置内のフローを模式的に示す図である。
【図14】従来の除湿装置内のフローを模式的に示す図である。
【符号の説明】
1、7、8 送風機
2 蒸発器
3 昇圧機
4 凝縮器
5 熱交換器
6 デシカントロータ
6a 電動機
6b チェーン
10 キャビネット
11 吸気口
12 フィルタ
13a、13b、13c 空気経路
14 ドレンパン
15 ドレンタンク
16 排出口
17 供給口
18 換気口
51 第1の熱交換部
52 第2の熱交換部
61 蒸発セクション
62 凝縮セクション
63、64 Uチューブ
40〜46 経路
48、49、163、164、253〜258 絞り
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifying device, and more particularly to a dehumidifying device (external air conditioner) that processes outside air and guides the air into a room.
[0002]
[Prior art]
FIG. 14 shows the configuration of a conventional dehumidifier (external air conditioner). As shown in FIG. 14, a conventional dehumidifying device includes a booster 301 that compresses a refrigerant, a condenser 302 that condenses the compressed refrigerant and heats the outside air OA, and depressurizes the condensed refrigerant with a throttle 303. Are evaporated to cool the outside air OA to the dew point temperature or lower, and a blower 305 for supplying the outside air OA to the air-conditioned space 100 is provided. The evaporator 304 cools the outside air OA below the dew point and removes moisture in the outside air OA. The outside air OA cooled below the dew point is heated by the condenser 302 and supplied to the conditioned space 100. The booster 301, the condenser 302, the throttle 303 and the evaporator 304 constitute a heat pump HP that pumps heat from the outside air OA flowing through the evaporator 304 to the outside air OA flowing through the condenser 302.
[0003]
[Problems to be solved by the invention]
However, in the conventional dehumidifying device, the operating temperature of the evaporator 304 in the heat pump HP becomes below freezing point, and therefore, the dehumidified moisture is deposited as ice on the heat transfer surface, which inhibits heat transfer and continues. It may be impossible to drive. Therefore, in the conventional dehumidifier, it was not possible to supply dry air having an absolute humidity of 4 g / kgDA or less.
[0004]
As a method for obtaining air having a low dew point temperature, that is, a low absolute humidity, a method of adsorbing moisture using a desiccant and dehumidifying it is known. However, a conventional dehumidifier using a desiccant can be used for outdoor air with a high absolute humidity exceeding 20 g / kgDA in the midsummer, for example, because the heat of adsorption becomes an obstacle and the humidity does not decrease. There wasn't. In addition, in the dehumidifying apparatus using the desiccant, an electric heater is used to heat the regenerated air for regenerating the desiccant, and there is a problem that the operation cost is increased.
[0005]
The present invention has been made in view of such problems of the prior art, and even if air is dehumidified, the dehumidified water is not deposited as ice on the heat transfer surface of the evaporator of the heat pump, and the absolute humidity is maintained. An object of the present invention is to provide a dehumidifier capable of continuously supplying dry air of 4 g / kg DA or less.
[0006]
[Means for Solving the Problems]
In order to solve such problems in the prior art, one aspect of the present invention includes a booster that boosts the refrigerant, a condenser that condenses the refrigerant and heats the regenerated air, and evaporates the refrigerant. An evaporator that cools external air to a temperature below the dew point, and a refrigerant path that connects the condenser and the evaporator, and an intermediate pressure between the condensation pressure of the condenser and the evaporation pressure of the evaporator In the refrigerant path connecting the condenser and the evaporator, and the condensation pressure of the condenser and the evaporation pressure of the evaporator. The second heat exchange means for condensing the refrigerant with an intermediate pressure to heat the external air, and the external air heated by the second heat exchange means as the treatment air and the regeneration air, the moisture of the treatment air And the above regeneration air A dehumidifier comprising: a desiccant to which moisture is desorbed and regenerated; and an air path that connects the first heat exchange means, the evaporator, and the second heat exchange means in this order. It is.
[0007]
With such a configuration, a part of the moisture in the air can be condensed by cooling by the first heat exchange means, and the moisture content can be reduced. Since it is cooled by the first heat exchanging means (precooling) before being cooled by the evaporator, and is cooled by the second heat exchanging means after being cooled by the evaporator (preheating), low sensible heat Ratio operation. In addition, since the moisture is adsorbed by the moisture adsorption device, the humidity of the treatment air is greatly reduced, and dry air can be supplied.
[0008]
In addition, air can be pre-cooled by the first heat exchange means before cooling in the evaporator, and the pre-cooling heat can be recovered from the air once cooled by the evaporator, and a heat pump having a high operating coefficient is provided. It is possible to provide a dehumidifying device. Moreover, it can be set as the dehumidification apparatus with the high dehumidification capability per energy consumption. As described above, the heating amount is smaller than that required in the electric heater for heating the regeneration air for regenerating the conventional desiccant, and the heat pump has high energy efficiency, so that the power consumption can be reduced.
[0009]
Further, the air heated by the second heat exchanging means may be added with indoor air to which the processing air is supplied to form regenerated air. The capacity of the dehumidifying device can be improved by taking in air from the room supplied with the treated air thus dehumidified as ventilation and adding it to the regenerated air.
[0010]
Furthermore, in a preferred aspect of the present invention, the first heat exchanging means and the second heat exchanging means are configured such that air flowing through the respective heat exchanging means flows opposite to each other, and In the first heat exchange means and the second heat exchange means, the refrigerant path includes at least a pair of first and second penetration portions in a first plane substantially orthogonal to the air flow. And having at least a pair of a first penetrating portion and a second penetrating portion in a second plane substantially orthogonal to the air flow different from the first plane, and the first plane An intermediate stop is provided at a position that moves from the inside to the second plane.
[0011]
If comprised in this way, from the viewpoint of heat exchange between air, since it is counter flow heat exchange, high heat exchange efficiency can be achieved. The second surface has at least a pair of first and second penetrating portions in the first surface, forms a pair of refrigerant paths, and is substantially orthogonal to the flow of regeneration air different from the first surface. Since it has at least a pair of 1st penetration parts and a 2nd penetration part in a field and serves as a pair of refrigerant paths, a heat exchanger can be formed small and compact as a whole. In addition, since the intermediate diaphragm is provided at a position that moves from the first plane to the second plane, the evaporation or condensation pressure of the first and second through portions in the second plane is set to the first plane. Since it can be a value lower than the pressure of evaporation or condensation of the first and second penetrations in the inside, the heat exchange between the air flowing through each penetration can be close to the countercurrent heat exchange, Heat exchange efficiency can be increased. Note that the shapes of the first surface and the second surface are typically rectangular planes.
[0012]
In a preferred aspect of the present invention, a branch refrigerant path that branches into a plurality of rows between the condenser and the evaporator is provided, and the first heat exchange means and the second heat exchanger are provided in the branch refrigerant path. The heat exchange means is provided.
[0013]
With such a configuration, the working temperature of the refrigerant can be changed stepwise, so that the heat exchange efficiency can be increased. Here, when the heat exchanger inlet temperature of the high temperature side fluid is TP1, the outlet temperature is T, the heat exchanger inlet temperature of the low temperature side fluid is TC1, and the outlet temperature is TC2, the heat exchange efficiency φ is When focusing on the cooling of the fluid, that is, when the purpose of the heat exchange is cooling, φ = (TP1−TP2) / (TP1−TC1), when focusing on the heating of the low temperature fluid, that is, the heat exchange When the purpose is heating, it is defined as φ = (TC2−TC1) / (TP1−TC1).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a dehumidifier according to the present invention will be described in detail with reference to FIGS. 1 to 5. FIG. 1 is a diagram showing an overall configuration of a dehumidifying device according to a first embodiment of the present invention, and FIG. 2 is a diagram schematically showing a flow in the dehumidifying device of FIG. The dehumidifying device in the present embodiment cools the air OA introduced from the outside below its dew point temperature and collects the moisture as condensed water, and dehumidifies the air using a desiccant. HP1 is included. The air SA whose humidity has been lowered by the dehumidifier is supplied to the air-conditioned space 100, whereby the air-conditioned space 100 is maintained at a low humidity.
[0015]
As shown in FIG. 1, the dehumidifying device compresses the blower 1 for introducing the air OA from the outside, the evaporator 2 for heating and evaporating the refrigerant, and the refrigerant evaporating into the gas by the evaporator 2. The pressure booster 3 that cools the refrigerant, the condenser 4 that cools and condenses the refrigerant, the heat exchanger 5 that acts as an economizer, and the desiccant that adsorbs the moisture of the processing air that passes through it and is regenerated by the regeneration air that passes through it. And a desiccant rotor 6. The heat exchanger 5 exchanges heat indirectly between the air before and after flowing into the evaporator 2 via a refrigerant, and cools the air by evaporating the refrigerant. 51 and a second heat exchange unit 52 that condenses the refrigerant and heats the air. These devices are accommodated in a cabinet 10, and the cabinet 10 is formed as a rectangular parallelepiped casing made of, for example, a thin steel plate.
[0016]
An air inlet 11 is opened at the uppermost front portion of the cabinet 10, and air OA from the outside is introduced into the dehumidifier through the air inlet 11. A filter 12 is provided in the vicinity of the air inlet 11 so that dust does not enter the apparatus from the outside. An air path through which air flows is formed in the cabinet 10 by a partition plate extending in the horizontal or vertical direction, and the air OA introduced from the intake port 11 passes through the uppermost air path 13a and is a middle air path. 13b, and flows from the middle air path 13b to the lowermost air path 13c. The air that has flowed into the lowermost air path 13c is divided into two flows that flow upward and horizontally. The air that flows upward is treated air that is dehumidified by the desiccant, and the air that flows horizontally regenerates the desiccant. It becomes air.
[0017]
In the middle air path 13b described above, the first heat exchanging part 51, the blower 1, and the evaporator 2 of the heat exchanger 5 are arranged in this order along the air flow direction. Here, the evaporator 2 cools the air introduced from the outside below its dew point temperature and recovers the moisture in the air as condensed water, and a drain pan 14 is installed below it. A drain tank 15 is disposed in the lowermost air path 13 c located below the drain pan 14, and moisture in the outside air OA condensed by the evaporator 2 is collected by the drain pan 14 into the drain tank 15. Accumulated. The drain pan 14 is preferably provided so as to cover not only the evaporator 2 but also the lower part of the heat exchanger 5. In the first heat exchanging part 51 of the heat exchanger 5, air is mainly precooled. However, since some moisture may condense here, it is particularly preferable to be provided below the first heat exchanging part 51. .
[0018]
In the lowermost air path 13c, the drain tank 15, the second heat exchange unit 52 of the heat exchanger 5, and the booster 3 are sequentially arranged along the air flow direction. In the vicinity of the booster 3 in the lowermost air path 13c, as described above, the air path is divided into an upward direction and a horizontal direction. Of these, the regenerated air that has flowed in the horizontal direction passes through the condenser 4 and the desiccant rotor 6 in order to regenerate the desiccant, and is then discharged from a discharge port 16 formed at the lowermost rear surface of the cabinet 10. On the other hand, the processing air that has flowed upward flows in the horizontal direction from the top of the cabinet 10, passes through the desiccant rotor 6, and is dehumidified, and then is supplied from the supply port 17 formed on the side surface of the cabinet 10 to the conditioned space. 100.
[0019]
The desiccant rotor 6 is formed as a thick disk-shaped rotor that rotates about a rotation axis AX extending in the horizontal direction. The rotor is filled with a desiccant with a gap through which gas can pass. For example, it is preferable to configure a desiccant by bundling a large number of tube-shaped drying elements so that the central axis thereof is parallel to the rotation axis AX. Since the rotation axis AX of the desiccant rotor 6 is arranged in the horizontal direction, the horizontal length of the cabinet 10 can be made short and compact.
[0020]
The semicircular upper half of the desiccant rotor 6 is disposed in the air path through which the processing air flows, and the semicircular lower half is disposed in the air path through which the regeneration air flows. The processing air and the regeneration air flow in parallel to the rotation axis AX of the desiccant rotor 6 and flow out in the thickness direction of the disk-shaped rotor. In general, the processing air and the regeneration air are configured to flow in a counterflow manner in almost half of the circular desiccant rotor 6 in parallel with the rotation axis AX.
[0021]
The desiccant rotor 6 is provided with a motor 6a, which is a drive machine, with its rotating shaft horizontal, and the motor 6a and the desiccant rotor 6 are coupled via a chain 6b. With such a configuration, the rotation of the electric motor 6a is transmitted to the desiccant rotor 6, and the desiccant rotor 6 is moved to 15 to 20h. -1 It rotates around the rotation axis AX at a rotation speed of. Each drying element is arranged so as to alternately contact the processing air and the regeneration air as the desiccant rotor 6 rotates.
[0022]
As shown in FIG. 2, the refrigerant path through which the refrigerant circulates is a path 40 connecting the evaporator 2 and the booster 3, a path 41 connecting the booster 3 and the condenser 4, the condenser 4 and the heat. A path 42 connecting the exchanger 5 and a path 43 connecting the heat exchanger 5 and the evaporator 2 are configured. In the heat exchanger 5, the refrigerant path passes through the first heat exchange unit 51 and the second heat exchange unit 52, and the refrigerant is evaporated in the first heat exchange unit 51. The evaporation section 61 for cooling the air OA flowing through the first heat exchanging part 51 is formed by the air R, and the air R flowing through the second heat exchanging part 52 by condensing the refrigerant in the second heat exchanging part 52. Is formed. In addition, a throttle 48 is disposed in the refrigerant path 42 upstream of the first heat exchange unit 51 of the heat exchanger 5, and a throttle 49 is disposed in the refrigerant path 43 downstream of the second heat exchange unit 52. ing. As these restrictors 48 and 49, for example, an orifice, a capillary tube, an expansion valve, or the like can be used.
[0023]
FIG. 3 is an enlarged view showing a refrigerant path in the heat exchanger 5 of the dehumidifying apparatus of FIG. The refrigerant path including the evaporation section 61 and the condensation section 62 passes through the first heat exchange unit 51 and the second heat exchange unit 52 alternately and repeatedly. That is, as shown in FIG. 3, the refrigerant path in the heat exchanger 5 is in order from the condenser 4 side in the order of the evaporation section 61a, the condensation section 62a, the condensation section 62b, the evaporation section 61b, the evaporation section 61c, and the condensation section 62c. , A condensing section 62d, an evaporating section 61d, an evaporating section 61e, and a condensing section 62e.
[0024]
Here, the first heat exchanging part 51 that flows the air OA before passing through the evaporator 2 and the second heat exchanging part 52 that flows the air R after passing through the evaporator 2 are separate rectangular parallelepiped spaces. Is housed in. In these rectangular parallelepiped spaces, a plurality of heat exchange tubes are arranged in parallel as refrigerant paths on a plane orthogonal to the air flow. In the first heat exchange unit 51 and the second heat exchange unit 52, a partition wall 510 and a partition wall 520 are provided adjacent to each other, and a heat exchange tube is provided through the two partition walls 510 and 520. It has been. As another form, the heat exchanger 5 divides one rectangular parallelepiped space into one partition, and a heat exchange tube passes through the partition to connect the first heat exchange unit and the second heat exchange unit. You may comprise so that it may penetrate alternately.
[0025]
The ends of the evaporation section 61b and the evaporation section 61c, and the ends of the evaporation section 61d and the evaporation section 61e are connected by a U tube 63, respectively. Similarly, the end portions of the condensing section 62a and the condensing section 62b and the end portions of the condensing section 62c and the condensing section 62d are also connected by the U tube 64, respectively. With such a configuration, the refrigerant that has flowed from the evaporation section 61 a toward the condensation section 62 a in the refrigerant path 42 is guided to the condensation section 62 b by the U tube 64. The refrigerant guided to the condensing section 62b further flows into the evaporating section 61b, is introduced into the evaporating section 61c by the U tube 63, and further flows into the condensing section 62c. Thus, the refrigerant path in the heat exchanger 5 is constituted by a meandering narrow tube group, and the narrow tube group passes through the first heat exchanging part 51 and the second heat exchanging part 52 while meandering, and has a high temperature. It comes into contact with air and air of low temperature alternately.
[0026]
Next, the flow of the refrigerant between the devices will be described with reference to FIGS. 1 and 2.
The refrigerant gas compressed by the booster 3 is guided to the condenser 4 via the refrigerant gas pipe 41 connected to the discharge port of the booster 3. In the condenser 4, the refrigerant gas compressed by the booster 3 is cooled and condensed by the regeneration air T before flowing into the desiccant rotor 6, and the regeneration air T is heated by this refrigerant.
[0027]
The refrigerant liquid exiting the condenser 4 is decompressed and expanded by the throttle 48, and a part of the refrigerant liquid is evaporated (flashed). The refrigerant in which the liquid and gas are mixed reaches the evaporation section 61a of the first heat exchange section 51, where the refrigerant liquid flows so as to wet the inner wall of the tube of the evaporation section 61a. The refrigerant liquid is heated and evaporated by the air OA introduced from the outside while flowing through the evaporation section 61a, and the air OA before flowing into the evaporator 2 is cooled (precooled). At this time, the refrigerant itself is heated to increase the gas phase.
[0028]
As described above, since the evaporating section 61a and the condensing section 62a are constituted by a series of tubes, the refrigerant gas evaporated in the evaporating section 61a (and the refrigerant liquid that has not evaporated) flows into the condensing section 62a. In the condensing section 62a, the air R cooled and dehumidified by the evaporator 2 is heated (reheated) at a temperature lower than the air in the evaporating section 61a. It flows into the next condensing section 62b. While the refrigerant flows through the condensing section 62b, the refrigerant is further deprived of heat by the low-temperature air R to condense the gas-phase refrigerant.
[0029]
The condensed refrigerant liquid flows into the next evaporation section 61b and the subsequent evaporation section 61c, and the air OA before flowing into the evaporator 2 is cooled (precooled) in the same manner as described above. Further, the refrigerant gas flows into the condensing section 62c and the condensing section 62d, and the air R is heated. Thus, the refrigerant flows through the refrigerant path in the heat exchanger while repeating the phase change between the gas phase and the liquid phase, and the air OA before being cooled by the evaporator 2 and the absolute humidity by being cooled by the evaporator 2. Heat exchange is indirectly performed with the lowered air R.
[0030]
The refrigerant liquid condensed in the final condensing section 62e is depressurized and expanded by the throttle 49 disposed on the downstream side of the second heat exchanging section 52, and the temperature decreases. Then, the refrigerant reaches the evaporator 2 and evaporates in the evaporator 2. The air Q that has passed through the first heat exchanging portion 51 is cooled by the heat of evaporation of the refrigerant. The refrigerant evaporated and gasified in the evaporator 2 is guided to the suction side of the booster 3. Then, the above cycle is repeated.
[0031]
Next, the operation of the heat pump HP1 included in the dehumidifier according to this embodiment will be described. 4 is a refrigerant Mollier diagram of the heat pump HP1 included in the dehumidifier of FIG. In the diagram shown in FIG. 4, HFC134a is used as the refrigerant, and the horizontal axis represents enthalpy and the vertical axis represents pressure. Not only HFC134a but also HFC407C and HFC410A can be used as refrigerants, and when these refrigerants are used, the operating pressure region shifts to a higher pressure side than in the case of HFC134a.
[0032]
In FIG. 4, a point a indicates the state of the refrigerant evaporated in the evaporator 2 of FIG. 2, and the refrigerant at this time is in a saturated gas state. The pressure of the refrigerant is 0.30 MPa, the temperature is 1 ° C., and the enthalpy is 399.2 kJ / kg. Point b shows the state in which this gas is sucked and compressed by the booster 3, that is, the state at the discharge port of the booster 3, and the refrigerant at this time has a pressure of 1.89 MPa and is in a superheated gas state. .
[0033]
The refrigerant gas in the state of point b is cooled in the condenser 4 and reaches the state indicated by point c. The refrigerant at this time is in a saturated gas state, the pressure is 1.89 MPa, and the temperature is 65 ° C. The refrigerant is further cooled and condensed under this pressure to reach the state indicated by point d. The refrigerant at this time is in a saturated liquid state, and its pressure and temperature are the same as the pressure and temperature at point c. The enthalpy at this time is 295.8 kJ / kg.
[0034]
The refrigerant liquid is depressurized by the throttle 48 and flows into the evaporation section 61 a of the first heat exchange unit 51. The state at this time is indicated by a point e, in which a part of the liquid is evaporated and the liquid and the gas are mixed. The pressure at this time is an intermediate pressure between the condensing pressure of the condenser 4 and the evaporating pressure of the evaporator 2, and is a value between 0.30 MPa and 1.89 MPa in this embodiment.
[0035]
In the evaporating section 61a, the cooling liquid evaporates under the above intermediate pressure, and a state of a point f1 located between the saturated liquid line and the saturated gas line is obtained at the same pressure. In this state, a part of the liquid is evaporated, but a considerable amount of the refrigerant liquid remains. And the refrigerant | coolant of the state shown by the point f1 flows in into the condensation sections 62a and 62b. In the condensing sections 62a and 62b, the refrigerant is deprived of heat by the low-temperature air R flowing through the second heat exchanging section 52 and reaches the state of the point g1.
[0036]
The refrigerant in the state of point g1 flows into the evaporation sections 61b and 61c, where heat is taken away and the liquid phase is increased to reach the state of point f2, and further flows into the condensation sections 62c and 62d. In the condensing sections 62c and 62d, the refrigerant increases the liquid phase and reaches the state of the point g2. The point g2 is located on the saturated liquid line in the Mollier diagram. At this time, the temperature of the refrigerant is 15 ° C., and the enthalpy is 220.5 kJ / kg. Similarly, evaporation and condensation in the evaporation sections 61d and 61e and the condensation section 62e are repeated, but in the Mollier diagram of FIG. 4, the evaporation sections 61d and 61e and the condensation section 62e are omitted, and the condensation section 62d is throttled 49. Is shown as being connected.
[0037]
The refrigerant liquid in the state of the point g2 is depressurized to 0.30 MPa, which is a saturation pressure at a temperature of 15 ° C., by the throttle 49, and reaches the state indicated by the point h. The refrigerant in the state of the point h reaches the evaporator 2 as a mixture of refrigerant liquid and gas at 1 ° C., where heat is taken from the air Q and is evaporated to become a saturated gas shown in the point a. This saturated gas is again sucked into the booster 3, and the above-described cycle is repeated.
[0038]
Thus, in the heat exchanger 5, the refrigerant changes in the evaporation state such as from the point e to the point f1 or from the point g1 to the point f2 in the evaporation section 61, and from the point f1 to the point g1, in the condensation section 62. Or since the state of condensation is changed from point f2 to point g2 and evaporative heat transfer and condensation heat transfer are performed, the heat transfer rate is very high and the heat exchange efficiency is high.
[0039]
Here, when considering as the compression heat pump HP1 including the booster 3, the condenser 4, the throttles 48 and 49, and the evaporator 2, when the heat exchanger 5 according to the present invention is not provided, the point d in the condenser 4 is Since the refrigerant in the state is returned to the evaporator 2 through the throttle, the enthalpy difference usable in the evaporator 2 is only 399.2−295.8 = 103.4 kJ / kg. However, when the heat exchanger 5 according to the present invention is provided, 399.2-220.5 = 178.7 kJ / kg, and the amount of gas circulating to the booster with respect to the same cooling load, and thus the required power Can be reduced by 42% (= 1-103.4 / 178.7). That is, it is possible to have the same action as the subcool cycle. Thus, the dehumidifying device of the present invention has a high dehumidifying effect and energy efficiency because the refrigerant enthalpy at the inlet of the evaporator 2 is reduced due to the economizer effect of the heat pump HP1 and the refrigerant refrigeration effect per unit flow rate is high. Become.
[0040]
FIG. 5 is a moist air diagram showing an air conditioning cycle in the dehumidifier of FIG. In FIG. 5, symbols P to V, OA, EX, and SA correspond to the air states denoted by the respective symbols in FIG. 2.
The air OA introduced from the outside passes through the uppermost air path 13a of FIG. 1 and is sent to the first heat exchanging portion 51 of the heat exchanger 5 and is cooled to some extent by the refrigerant evaporating in the evaporation section 61. Reduce the dry bulb temperature while keeping the absolute humidity constant (air P). Since this is preliminary cooling before the evaporator 2 cools to the dew point temperature or lower, it can be called precooling.
[0041]
The air P is sucked into the blower 1 and is further discharged from the blower 1 and sent into the evaporator 2 (air Q). In the evaporator 2, the air Q is cooled below its dew point temperature by the refrigerant evaporating at a low temperature, and the dry bulb temperature is lowered to 5 ° C. while reducing the absolute humidity to 5 g / kg DA while depriving moisture (air R ). Note that DA in the unit of absolute humidity indicates dry air.
[0042]
The air R (absolute humidity 5 g / kgDA, dry bulb temperature 5 ° C.) flows into the second heat exchange section 52 of the heat exchanger 5 and is heated to some extent by the refrigerant condensed in the condensing section 62. Raise the dry bulb temperature (to an intermediate temperature between 5 ° C. and 60 ° C.) while keeping constant (air S). Since this is preliminary heating before being heated by the condenser 4, it can be called preheating.
[0043]
The air S exiting the second heat exchange unit 52 is divided into the processing air V and the regeneration air T as described above. The regeneration air T is introduced into the condenser 4 where it is heated and the dry bulb temperature is further raised to 60 ° C. while keeping the absolute humidity constant (air U). The regenerated air U is further fed into the desiccant rotor 6, where it takes moisture from the desiccant in the drying element and regenerates it, raising its own absolute humidity, and lowering the dry bulb temperature by the desiccant heat of moisture desorption. . The air EX after the regeneration of the desiccant is discharged to the outside from the discharge port 16.
[0044]
On the other hand, the processing air V is sent to the desiccant rotor 6 as it is. In the desiccant rotor 6, moisture is adsorbed and dried by the desiccant in the drying element, the absolute humidity is lowered to 2 g / kgDA, and the dry bulb temperature is raised (air SA). The dehumidified processing air SA is supplied to the conditioned space 100 from the supply port 17.
[0045]
Here, in the air-side cycle shown on the wet air diagram of FIG. 5, the amount of heat ΔQ obtained by heating the regeneration air U by the condenser 4 is heating by using exhaust heat, and the air Q is cooled by the evaporator 2. The amount of heat Δi is a dehumidifying cooling effect, and heat recovery by a heat exchanger as an economizer is ΔH.
[0046]
As described above, in the heat exchanger 5, the air OA introduced from the outside by the evaporation of the refrigerant in the evaporation section 61 is pre-cooled, and the air R is heated by the condensation of the refrigerant in the condensing section 62. The refrigerant evaporated in the evaporation section 61 is condensed in the condensation section 62. Thus, heat exchange between the air before and after being cooled by the evaporator 2 is indirectly performed by the evaporation and condensation action of the same refrigerant.
[0047]
As described above, in the dehumidifying apparatus according to the present invention, the heat exchanger 5 is used as a precooling / preheating heat exchanger, the working fluid of the heat exchanger 5 and the working fluid of the heat pump HP1 are the same, and the refrigerant charge Since the process can be standardized, manufacturing costs and maintenance costs are low. In addition, the precooling / preheating heat exchanger can be manufactured as one body, and the internal wick of the heat pipe is not required, and it can be manufactured with the normal air / refrigerant heat exchanger coil production facility without the wick inside. Therefore, the manufacturing cost is low.
[0048]
Furthermore, since the heat pump HP1 is used to simultaneously cool and dehumidify the outside air and regenerate the desiccant, and to precool the air and heat the air after dehumidification using the internal working medium, the apparatus is simple. Moreover, since most of the cooling capacity of the heat pump can be used to condense moisture in the air, the dehumidifying capacity is high.
[0049]
When the air is cooled and dehumidified, if the air is cooled to the dew point as it is, the amount of cooling is large. Therefore, a considerable part of the cooling effect of the heat pump is consumed for this purpose, and the dehumidifying capacity (dehumidifying performance) per power consumption is low. Therefore, an air / air heat exchanger 5 is provided before and after the evaporator 2 to perform precooling and reheating (preheating) of the air to reduce the sensible heat ratio and reduce the cooling amount to the dew point.
[0050]
Furthermore, the dehumidifying apparatus according to the present invention can exhibit the desiccant's dehumidifying ability with a small amount of electric power because it collects the heat that is cooled to the dew point and can be used as the heat for heating the regenerated air in addition to having a high dehumidifying ability. can do. Therefore, the amount of heat required is less than the amount of heat required for the conventional electric heater, and the heat pump HP1 has high energy efficiency and therefore consumes less power.
[0051]
Next, a second embodiment of the dehumidifying device according to the present invention will be described with reference to FIGS. FIG. 6 is a diagram schematically showing a flow in the dehumidifying device in the second embodiment, and FIG. 7 is a refrigerant Mollier diagram of the heat pump HP2 included in the dehumidifying device of FIG. In addition, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function as the member or element in the above-mentioned 1st Embodiment, and the part which is not demonstrated in particular is the same as that of 1st Embodiment.
[0052]
In the heat exchanger 150 in the present embodiment, intermediate throttles 163 and 164 are provided between the condensation sections 162a and 162b and between the condensation sections 162c and 162d of the second heat exchange unit 152, respectively. This is different from the first embodiment described above. Other configurations are the same as those in the first embodiment. Such an intermediate throttle can also be provided on the evaporation section side of the first heat exchanger 151.
[0053]
In FIG. 7, points a to e are the same as those in the first embodiment shown in FIG. Note that the refrigerant in the state of the point e flowing into the evaporation section 161a of the heat exchanger 150 is in a state where a part of the liquid is evaporated and the liquid and the gas are mixed as described with reference to FIG.
[0054]
The refrigerant evaporates in the evaporating section 161a and reaches a state indicated by a point f1 that approaches the saturated gas line in the wet region on the Mollier diagram of FIG. The refrigerant in this state enters the condensing section 162a, where it is condensed and reaches the state indicated by the point g1a. The refrigerant in the state at the point g1a is depressurized through the intermediate throttle 163 and reaches the state indicated by the point g1b. That is, the refrigerant flows from the condensing section 162a through the restrictor 163 into the condensing section 162b.
[0055]
The refrigerant flowing into the condensing section 162b is condensed here, and reaches a state indicated by a point h1 that is in the wet region but close to the saturated liquid line. Thereafter, it enters the evaporation section 161b and is condensed here, and is inverted by the U tube and enters the evaporation section 161c where it is further condensed and reaches a state indicated by a point f2.
[0056]
Thereafter, the refrigerant passes through the condensing section 162c, the intermediate throttle 164, and the condensing section 162d, and reaches the state indicated by the points g2a, g2b, and h2, and further passes through the evaporation sections 161d and 161e and the condensing section 162e. Thus, the state indicated by the points f3 and h3 is reached. This point h3 is on the saturated liquid line in the Mollier diagram, the temperature is 11 ° C., and the enthalpy is 215.0 kJ / kg.
[0057]
Similarly to the case of the first embodiment, the refrigerant liquid at the point h3 is depressurized to 0.30 MPa, which is a saturation pressure at a temperature of 1 ° C., by the restrictor 49, becomes a point i state, and the refrigerant liquid and gas at 1 ° C. To the evaporator 2 where heat is taken from the air Q and evaporated to become a saturated gas in a state indicated by a point a on the Mollier diagram. This saturated gas is again sucked into the booster 3, and the above-described cycle is repeated.
[0058]
Here, when considering as the compression heat pump HP2 including the booster 3, the condenser 4, the throttles 48, 49, 163, 164 and the evaporator 2, the condenser 4 is provided when the heat exchanger 150 according to the present invention is not provided. Since the refrigerant in the state of the point d is returned to the evaporator 2 through the throttle, the enthalpy difference usable in the evaporator 2 is only 399.2−295.8 = 103.4 kJ / kg. However, when the heat exchanger 150 according to the present invention is provided, 399.2-215.0 = 184.2 kJ / kg, and the amount of gas circulated to the booster for the same cooling load, and thus the required power Can be reduced by 44% (= 1-103.4 / 184.2). That is, it is possible to have the same action as the subcool cycle.
[0059]
FIG. 8 shows an example of the structure of the heat exchanger 150 in the present embodiment. 8A is a front view seen in the air flow direction, FIG. 8B is a side view seen from a direction perpendicular to the air flow, and FIG. 8A is A in FIG. 8B. FIG. In FIG. 8A, the air OA flows forward from the front side of the page, and the air R flows from the front side to the front side. The tubes in the heat exchanger 150 are each arranged in 8 rows in four planes orthogonal to the air flow. That is, they are arranged in 4 rows and 8 columns along the air flow. In FIG. 2 and FIG. 6, for convenience, the heat exchange tubes are described as having one row and one column, but typically, each row includes a plurality of tube columns. Moreover, such a heat exchanger may be arranged in parallel with respect to those flows according to the flow rate of air, or may be arranged in series.
[0060]
Such a heat exchanger is inexpensive and economical when used in place of an expensive heat pipe. Also, unlike the heat pipe, the working fluid can be the same as that of the heat pump, so that maintenance is not required.
[0061]
Next, a third embodiment of the dehumidifying device according to the present invention will be described with reference to FIGS. 9 to 11. FIG. 9 is a diagram schematically showing a flow in the dehumidifying device in the third embodiment, and FIG. 10 is a refrigerant Mollier diagram of the heat pump HP3 included in the dehumidifying device of FIG. In addition, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function as the member or element in the above-mentioned 1st Embodiment, and the part which is not demonstrated in particular is the same as that of 1st Embodiment.
[0062]
In the present embodiment, the refrigerant path is branched into a plurality of rows (three rows in FIG. 9) on the downstream side of the condenser 4, and the above-described first refrigerant passages 44 to 46 are formed. This is different from the embodiment. The branched refrigerant paths 44 to 46 merge into one refrigerant path 43 on the upstream side of the evaporator 2.
[0063]
The branch refrigerant paths 44 to 46 pass through the first heat exchange unit 251 and the second heat exchange unit 252 of the heat exchanger 250 alternately and repeatedly. Further, in each of the branch refrigerant paths 44 to 46, throttles 253 to 255 are respectively arranged on the upstream side of the first heat exchange unit 251, and throttles 256 to 258 are respectively arranged on the downstream side of the second heat exchange unit 252. Has been. As these restrictors 253 to 258, for example, an orifice, a capillary tube, an expansion valve, or the like can be used.
[0064]
FIG. 11 is an enlarged view showing the branch refrigerant paths 44 to 46 in the heat exchanger 250 of the dehumidifying device of FIG. 9. The branch refrigerant paths 44 to 46 pass through the first heat exchange unit 251 and the second heat exchange unit 252. That is, as shown in FIG. 11, the branch refrigerant path 44 includes, in order from the condenser 4 side, an evaporation section 261a, a condensation section 262a, a condensation section 262b, an evaporation section 261b, an evaporation section 261c, and a condensation section 262c. Yes. Similarly, the branch refrigerant path 44 includes an evaporation section 263a, a condensation section 264a, a condensation section 264b, an evaporation section 263b, an evaporation section 263c, and a condensation section 264c, and the branch refrigerant path 46 includes an evaporation section 265a and a condensation section 266a. , A condensing section 266b, an evaporating section 265b, an evaporating section 265c, and a condensing section 266c.
[0065]
In FIG. 10, points a to d are the same as those in the first embodiment shown in FIG. The refrigerant liquid that is in the state indicated by the point d by being cooled in the condenser 4 is divided into the branched refrigerant paths 44 to 46 and flows into the heat exchanger 250. First, the refrigerant that passes through the refrigerant path 45 explain. The refrigerant liquid flowing into the refrigerant path 45 is depressurized by the throttle 254 and flows into the evaporation section 263a of the first heat exchange unit 251. The state at this time is indicated by a point e, in which a part of the liquid is evaporated and the liquid and the gas are mixed. The pressure at this time is an intermediate pressure between the condensing pressure of the condenser 4 and the evaporating pressure of the evaporator 2, and is a value between 1.89 MPa and 0.30 MPa in this embodiment.
[0066]
In the evaporating section 263a, the refrigerant liquid evaporates under the intermediate pressure, and a state of a point f1 located between the saturated liquid line and the saturated gas line is obtained at the same pressure. In this state, a part of the liquid is evaporated, but a considerable amount of the refrigerant liquid remains. And the refrigerant | coolant of the state shown by the point f1 flows in into the condensation sections 264a and 264b. In the condensing sections 264a and 264b, the refrigerant is deprived of heat by the low-temperature air R flowing through the second heat exchanging section 252, and reaches the state of the point g1.
[0067]
The refrigerant in the state of the point g1 flows into the evaporation sections 263b and 263c, where heat is taken away to increase the liquid phase to the state of the point f2, and further flows into the condensing section 264c. In the condensing section 264c, the refrigerant increases the liquid phase and reaches the state of the point g2. The point g2 is located on the saturated liquid line in the Mollier diagram. At this time, the temperature of the refrigerant is 15 ° C., and the enthalpy is 220.5 kJ / kg.
[0068]
The refrigerant liquid in the state of the point g2 is depressurized to 0.30 MPa, which is the saturation pressure at a temperature of 1 ° C., by the restriction 257, and reaches the state indicated by the point h. The refrigerant in the state of the point h reaches the evaporator 2 as a mixture of refrigerant liquid and gas at 1 ° C., where heat is taken from the air Q and is evaporated to become a saturated gas shown in the point a. This saturated gas is again sucked into the booster 3, and the above-described cycle is repeated.
[0069]
Similarly, the refrigerant passing through the refrigerant path 44 passes through the restrictor 253, the evaporation section, the condensing section, and the restrictor 256, and is indicated by the point l through the state indicated by the point j, the point i1, the point k1, the point i2, and the point k2. To the state. The refrigerant passing through the refrigerant path 46 passes through the restriction 255, the evaporation section, the condensation section, and the restriction 258, and reaches the state indicated by the point p through the state indicated by the point m, the point n1, the point o1, the point n2, and the point o2. .
[0070]
As described above, in the heat exchanger 250, the refrigerant changes in the evaporation state such as from the point e to the point f1 or from the point g1 to the point f2 in the evaporation section, and from the point f1 to the point g1 in the condensation section. Since the state of condensation is changed from f2 to point g2, evaporative heat transfer and condensation heat transfer are performed, the heat transfer rate is very high and the heat exchange efficiency is high.
[0071]
Here, when considered as a compression heat pump HP3 including the booster 3, the condenser 4, the throttles 253 to 258, and the evaporator 2, when the heat exchanger 250 according to the present invention is provided, the pressure is increased with respect to the same cooling load. As in the first embodiment, the amount of gas circulating to the machine and thus the required power can be reduced by 42%. That is, it is possible to have the same action as the subcool cycle. Thus, the dehumidifying device of the present invention has a high dehumidifying effect and energy efficiency because the refrigerant enthalpy at the inlet of the evaporator 2 is reduced due to the economizer effect of the heat pump HP3 and the refrigerant refrigeration effect per unit flow rate is high. Become.
[0072]
Although one embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea. For example, the number of evaporation sections in the first heat exchange section and the number of condensation sections in the second heat exchange section of each refrigerant path are not limited to those shown in the figure. Further, the number of branching refrigerant paths in the third embodiment is not limited to the illustrated one, and the refrigerant paths may be branched in any number of rows. Furthermore, in the above-described embodiment, the dehumidifying device that air-conditions the air-conditioned space has been described as an example. .
[0073]
Further, in each of the above-described embodiments, the air in the air-conditioned space 100 may be taken in as ventilation, and this may be added to the air S that has exited the second heat exchange unit to generate regenerated air. FIGS. 12 and 13 show a configuration example in the case where the air in the conditioned space 100 is taken in as ventilation and used as regenerated air in the first embodiment described above. In this case, for example, as shown in FIGS. 12 and 13, a ventilation port 18 that takes in air in the air-conditioned space 100 is provided near the position where the air path branches in the upward and horizontal directions. Ventilation taken in is added to the regenerated air and sent to the condenser 4 by the blower 7. Moreover, as shown in FIG. 13, it is good also as providing the air blower 8 as needed.
[0074]
【The invention's effect】
As described above, according to the present invention, air can be pre-cooled by the first heat exchanging means before cooling in the evaporator, and the pre-cooling heat can be recovered from the air once cooled in the evaporator. It is possible to provide a dehumidifying device including a heat pump having a high operation coefficient. Moreover, it can be set as the dehumidification apparatus with the high dehumidification capability per energy consumption. Furthermore, by providing the branch refrigerant path, the operating temperature of the refrigerant can be changed in stages, so that the heat exchange efficiency can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a dehumidifying device according to a first embodiment of the present invention.
FIG. 2 is a diagram schematically showing a flow in the dehumidifying device of FIG. 1;
FIG. 3 is an enlarged view showing a refrigerant path in the heat exchanger of the dehumidifying device of FIG. 2;
4 is a refrigerant Mollier diagram of a heat pump included in the dehumidifier of FIG. 2. FIG.
5 is a moist air diagram showing an air conditioning cycle in the dehumidifying device of FIG. 2;
FIG. 6 is a diagram schematically showing a flow in a dehumidifying device according to a second embodiment of the present invention.
7 is a refrigerant Mollier diagram of a heat pump included in the dehumidifier of FIG. 6. FIG.
8 is a diagram showing an example of the structure of a heat exchanger of the dehumidifying device in FIG. 6. FIG.
FIG. 9 is a diagram schematically showing a flow in a dehumidifier according to a third embodiment of the present invention.
10 is a refrigerant Mollier diagram of a heat pump included in the dehumidifier of FIG.
11 is an enlarged view showing a refrigerant path in the heat exchanger of the dehumidifier of FIG.
FIG. 12 is a diagram showing an overall configuration of a dehumidifying device according to another embodiment of the present invention.
13 is a diagram schematically showing a flow in the dehumidifying device of FIG. 12. FIG.
FIG. 14 is a diagram schematically showing a flow in a conventional dehumidifier.
[Explanation of symbols]
1, 7, 8 Blower
2 Evaporator
3 Booster
4 Condenser
5 Heat exchanger
6 Desiccant rotor
6a Electric motor
6b chain
10 cabinets
11 Inlet
12 Filter
13a, 13b, 13c Air path
14 Drain pan
15 Drain tank
16 Discharge port
17 Supply port
18 Ventilation opening
51 1st heat exchange part
52 2nd heat exchange part
61 Evaporation section
62 Condensation section
63, 64 U tube
40-46 route
48, 49, 163, 164, 253-258 Aperture

Claims (4)

冷媒を昇圧する昇圧機と、
前記冷媒を凝縮させて再生空気を加熱する凝縮器と、
前記冷媒を蒸発させて外部空気を露点以下の温度まで冷却する蒸発器と、
前記凝縮器と前記蒸発器とを接続する冷媒経路中に設けられ、前記凝縮器の凝縮圧力と前記蒸発器の蒸発圧力との中間の圧力で冷媒を蒸発させて外部空気を冷却する第1の熱交換手段と、
前記凝縮器と前記蒸発器とを接続する冷媒経路中に設けられ、前記凝縮器の凝縮圧力と前記蒸発器の蒸発圧力との中間の圧力で冷媒を凝縮させて外部空気を加熱する第2の熱交換手段と、
前記第2の熱交換手段によって加熱された外部空気を処理空気及び再生空気として、前記処理空気の水分を吸着すると共に、前記再生空気で水分を脱着されて再生されるデシカントと、
前記第1の熱交換手段と前記蒸発器と前記第2の熱交換手段とをこの順番で接続する空気経路とを備えたことを特徴とする除湿装置。
A booster for boosting the refrigerant;
A condenser for condensing the refrigerant and heating the regenerated air;
An evaporator that evaporates the refrigerant and cools external air to a temperature below the dew point;
Provided in a refrigerant path connecting the condenser and the evaporator, and evaporates the refrigerant at a pressure intermediate between the condensation pressure of the condenser and the evaporation pressure of the evaporator to cool external air. Heat exchange means;
Provided in a refrigerant path connecting the condenser and the evaporator, and heats the external air by condensing the refrigerant with a pressure intermediate between the condensation pressure of the condenser and the evaporation pressure of the evaporator. Heat exchange means;
A desiccant that uses external air heated by the second heat exchange means as treated air and regenerated air, adsorbs moisture from the treated air, and is regenerated by desorbing moisture from the regenerated air;
A dehumidifying device comprising an air path connecting the first heat exchange means, the evaporator, and the second heat exchange means in this order.
前記第2の熱交換手段によって加熱された外部空気に、前記処理空気が供給される室内の空気を加えて再生空気とすることを特徴とする請求項1に記載の除湿装置。The dehumidifying device according to claim 1, wherein the outside air heated by the second heat exchanging means is added with indoor air to which the processing air is supplied to form regenerated air. 前記第1の熱交換手段と前記第2の熱交換手段とは、前記各熱交換手段を流れる空気同士が互いに対向して流れるように構成され、
前記冷媒経路は前記第1の熱交換手段と前記第2の熱交換手段内で、前記空気の流れにほぼ直交する第1の面内に少なくとも一対の第1の貫通部と第2の貫通部とを有し、前記第1の面とは異なる前記空気の流れにほぼ直交する第2の面内に少なくとも一対の第1の貫通部と第2の貫通部とを有し、
前記第1の面内から前記第2の面内に移動する位置に中間絞りを備えたことを特徴とする請求項1又は2に記載の除湿装置。
The first heat exchanging means and the second heat exchanging means are configured such that air flowing through the heat exchanging means flows opposite to each other.
In the first heat exchange means and the second heat exchange means, the refrigerant path has at least a pair of first and second through portions in a first plane substantially orthogonal to the air flow. And having at least a pair of a first penetrating portion and a second penetrating portion in a second surface substantially orthogonal to the air flow different from the first surface,
The dehumidifying device according to claim 1 or 2, further comprising an intermediate diaphragm at a position that moves from the first surface to the second surface.
前記凝縮器と前記蒸発器との間で複数列に分岐する分岐冷媒経路を備え、
前記分岐冷媒経路中に前記第1の熱交換手段及び前記第2の熱交換手段を設けたことを特徴とする請求項1又は2に記載の除湿装置。
A branched refrigerant path that branches into a plurality of rows between the condenser and the evaporator;
The dehumidifying device according to claim 1 or 2, wherein the first heat exchange means and the second heat exchange means are provided in the branch refrigerant path.
JP2001059331A 2001-03-02 2001-03-02 Dehumidifier Expired - Lifetime JP3693581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059331A JP3693581B2 (en) 2001-03-02 2001-03-02 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059331A JP3693581B2 (en) 2001-03-02 2001-03-02 Dehumidifier

Publications (2)

Publication Number Publication Date
JP2002257376A JP2002257376A (en) 2002-09-11
JP3693581B2 true JP3693581B2 (en) 2005-09-07

Family

ID=18918905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059331A Expired - Lifetime JP3693581B2 (en) 2001-03-02 2001-03-02 Dehumidifier

Country Status (1)

Country Link
JP (1) JP3693581B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268370B2 (en) 2003-06-05 2007-09-11 Matsushita Electric Industrial Co., Ltd. Phosphor, semiconductor light emitting device, and fabrication method thereof
JP7352773B2 (en) * 2019-09-17 2023-09-29 パナソニックIpマネジメント株式会社 Heat exchange type ventilation device with dehumidification function
CN112066473A (en) * 2020-09-14 2020-12-11 北京航空航天大学 Supercharged dehumidification system
CN114396665B (en) * 2021-12-21 2023-02-28 珠海格力电器股份有限公司 Dehumidification system, control method and control device of dehumidification system
CN114521795A (en) * 2022-02-08 2022-05-24 普沃思环保科技无锡有限公司 Storage chamber with dehumidification drying function
CN114719593B (en) * 2022-04-08 2023-07-18 浙江极炎能源科技有限公司 Heat pump drying system for step cooling and step evaporation

Also Published As

Publication number Publication date
JP2002257376A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US6644059B2 (en) Dehumidifying apparatus
JP2968231B2 (en) Air conditioning system
US6199392B1 (en) Air conditioning system
US6199389B1 (en) Air Conditioning system and method for operating the same
CN104955548A (en) Dehumidifier
US6813894B2 (en) Heat pump and dehumidifier
JP3693582B2 (en) Dry storage device and method for drying stored product
JP3693581B2 (en) Dehumidifier
US6370900B1 (en) Dehumidifying air-conditioning apparatus and dehumidifying air-conditioning system
JP3765732B2 (en) Heat pump and dehumidifying air conditioner
JP2000257907A (en) Dehumidifying apparatus
JP2980603B1 (en) Dehumidifying air conditioner and dehumidifying method
JP2001215030A (en) Dehumidifying apparatus
JP3942323B2 (en) Heat pump and dehumidifying device equipped with heat pump
JP2948776B2 (en) Air conditioning system
EP1367333B1 (en) Heat pump and dehumidifier
JP3765932B2 (en) Dehumidification air conditioner and dehumidification air conditioning system
JP2000346396A (en) Method and device for dehumidification
JP2001074275A (en) Dehumidifying device
JP2968230B2 (en) Air conditioning system
JP2000337657A (en) Dehumidifying device and dehumidifying method
JP2000249366A (en) Heat pump, dehumidifier and dehumidifying method employing it
JP3874624B2 (en) Heat pump and dehumidifying air conditioner
JP2000088286A (en) Dehumidification air-conditioner
JP2001208374A (en) Dehumidifying system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3693581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term