JP3693465B2 - Leading cutter for backfilling pipe of shield machine - Google Patents

Leading cutter for backfilling pipe of shield machine Download PDF

Info

Publication number
JP3693465B2
JP3693465B2 JP14074097A JP14074097A JP3693465B2 JP 3693465 B2 JP3693465 B2 JP 3693465B2 JP 14074097 A JP14074097 A JP 14074097A JP 14074097 A JP14074097 A JP 14074097A JP 3693465 B2 JP3693465 B2 JP 3693465B2
Authority
JP
Japan
Prior art keywords
cutting
cutter
groove
agent injection
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14074097A
Other languages
Japanese (ja)
Other versions
JPH10331593A (en
Inventor
茂木 阿部
慎吾 高橋
真二 蕪木
雄次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Kumagai Gumi Co Ltd
Original Assignee
Hitachi Zosen Corp
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Kumagai Gumi Co Ltd filed Critical Hitachi Zosen Corp
Priority to JP14074097A priority Critical patent/JP3693465B2/en
Publication of JPH10331593A publication Critical patent/JPH10331593A/en
Application granted granted Critical
Publication of JP3693465B2 publication Critical patent/JP3693465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トンネルを掘削するとともにシールド掘進機の後部で組み立てられた覆工体と、地山との間に裏込め剤を注入する裏込剤注入管がシールド本体の外面に突設されたシールド掘進機において、硬質地盤や岩盤、発進孔や中間孔、到達孔の壁体の掘削通過時に、裏込剤注入管の破損を防止するための裏込剤注入管用先行カッターに関する。
【0002】
【従来の技術】
従来、この種のシールド掘進機の一例として図5〜図8に示すものがある。これは、前部にカッターヘッド1を回転可能に設けたシールド本体2の外周面後部に、周方向に沿って所定間隔をおいて複数の裏込剤注入管3が突設されたものであって(図6参照)、前記カッターヘッド1を回転駆動することにより切羽4を掘削してトンネル5を掘削すると同時に、シールド本体2内から裏込剤注入管3内を通ってこの裏込剤注入管3の後端開口部3aからモルタルなどの裏込剤を後方に噴出させ、その噴出した裏込剤をシールド本体2の後方に組み立てられる一次覆工体であるセグメント6とトンネル5の内周面との間の間隙に充填するようになっている。
【0003】
図7及び図8にも示すように、前記裏込剤注入管3はシールド本体2の外周面より外方に突出されているため、シールド本体2の外周面の裏込剤注入管3より前方適所に複数の固定ビット7が突設され、前記シールド本体2の前進に伴ってその複数の固定ビット7によりトンネル5の内面を切削して、裏込剤注入管3が損傷されないように構成されている。
【0004】
【発明が解決しようとする課題】
上記従来の構成では、固定ビット7の切削能力が低いため、例えば硬質岩盤やトンネルの発進、中間、到着坑の土留め用硬質壁体(たとえばNOMST壁:石灰石粗骨材を使用した高強度コンクリートに炭素繊維からなる高強度補強材を埋め込んだもの)などの硬質地盤をカッターヘッド1で掘削する場合に、固定ビット7ではその硬質地盤を確実に切削することが困難で、裏込剤注入管3を損傷させるおそれがある。また、その切削片をシールド本体2内に取り込めないため、その切削片がトンネル5の内周面とシールド本体2及びセグメント6との間に不均一に介在されて、地山やシールド本体2に悪影響を与える。
【0005】
本発明は、上記問題点に鑑み、硬質岩盤や発進、中間、到達孔の硬質壁体でも確実に切削して裏込剤注入管を損傷させることがなく、またその切削片をシールド本体内に取り込んで良好に掘削通過できるシールド掘進機の裏込剤注入管用先行カッターを提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、シールド本体の前部に回転駆動されるカッターヘッドを有し、シールド本体の後部外面に、シールド本体後部で組み立てられる一次覆工体と地山との間に裏込め剤を注入する裏込剤注入管が配設されたシールド掘進機の裏込剤注入管用先行カッターであって、シールド本体の外周面で前記裏込剤注入管より前方適所に形成された収納凹部と、この収納凹部内から外方に出退自在に配設されトンネル半径方向の軸心周りに回転する回転カッターと、前記収納凹部に接続された送泥管および収納凹部からカッターヘッド後部の圧力室に連通される排泥管とからなる排土装置と、を具備し、前記回転カッターに、切削面に溝を形成する溝切削ビットと、溝が形成された切削面を切削する面切削ビットと、切削片を収納凹部内に取り入れる取入口とを設けたものである。
【0007】
上記構成によれば、硬質岩盤や硬質壁体などの硬質地盤を掘削する場合には、回転カッターの先端部をシールド本体の外周面から外部に突出させた状態で、カッターヘッドを回転駆動してシールド本体を前進させることにより、硬質地盤を掘削してトンネルを形成する。同時にその通過時に前記回転カッターを回転駆動してトンネル内周面の裏込剤注入管前方の硬質地盤を切削する。
【0008】
このように、回転駆動される回転カッターは切削能力が高く、例えば土留め用NOMST壁などのように強化繊維で強化されだ硬質壁体でも、まず溝切削ビットにより壁体に内在された強化繊維を短く切断し、ついで面切削ビットにより壁体自体を削り取ることで、裏込剤注入管前方の硬質壁体を確実に切除することができ、裏込剤注入管が損傷されるおそれがない。
【0009】
また、掘削土砂や切削片は回転カッターの取入口から収容凹部内に取り込まれ、排土装置により排泥管から圧力室に送られるので、従来のように切削片がトンネルの内周面とシールド本体及びセグメントとの間に不均一に介在されることがなく、切削片により地山やシールド本体に悪影響を与えることがない。
【0010】
請求項2記載の発明は、回転カッターの先端面に、切削面に溝を形成する先端溝切削ビットと、溝が形成された切削面を切削する先端面切削ビットと、切削片を収納凹部内に取り入れる取入口とを設けたものである。
【0011】
上記構成によれば、回転カッターを突出した状態でシールド掘進機を前進させて硬質地盤を切除する他に、シールド掘進機の前進を一定間隔毎に停止し、停止毎に回転カッターを突出させて硬質地盤を穿孔し、この穿孔部を連続させることにより、裏込剤注入管の前方の硬質地盤を掘削することができる。このように、あらゆる硬質地盤に2つの方法で先行穴を掘削することができ、その応用範囲も広い。
【0012】

【発明の実施の形態】
以下、本発明の実施の形態を図1〜図5に基づいて説明する。なお従来と同一の部材には同一符号を付して説明は省略する。
【0013】
シールド本体2の外周面の裏込剤注入管3より前方でこのシールド本体2の大気室2c内に対向する箇所に開口部9が形成されている。そしてこの開口部9に有底筒状の外筒12がスキンプレート2a裏面に固着され、排土装置10付きの収納凹部11が形成されている。さらにシールド本体2内には、収納凹部11内にシールド本体2の半径方向に出退自在に配設された回転カッター41と、この回転カッター41を回転駆動するためのカッター駆動装置14と、回転カッター41をシールド本体2の半径方向に沿って出退駆動させるためのカッター出退装置15と、開口部9を開閉するゲート16とが設けられている。
【0014】
前記回転カッター41は、図1〜図2に示すように、裏込剤注入管3の幅と略同一径に設定され、外筒12内に軸受ブッシュ17を介して摺動及び回転可能に配置された内筒42と、この内筒42内に十字状に架設された十字枠43と、この十字枠43の内筒42より上方に突出する先端部に固着されたカッター部44とで構成されている。
【0015】
前記カッター部44は、図3,図4に示すように、リングフレーム44a上に十字フレーム44bが固着され、さらにリングフレーム44a上に周方向一定間隔ごとにビット取付フレーム44cが立設されている。そしてこれら十字フレーム44bおよびビット取付フレーム44cの外周側で回転方向前部に、切削面に面接触して切削する面切削ビットの1つである外周面切削ビット45Aが取り付けられるとともに、外周面切削ビット45Aによる切削面より突出して所定のピッチで切削面に周方向の溝を形成し硬質地盤に内在された強化繊維等を切断する溝切削ビットの1つである複数の円弧形外周溝切削ビット46Aが軸心方向に所定間隔ごとに突出されている。また十字フレーム44bおよびビット取付フレーム44cの先端面に、切削面に面接触して切削する面切削ビットの1つである先端面切削ビット45Bが取り付けられるとともに、先端面切削ビット45Bによる切削面より突出して半径方向に所定のピッチで回転方向の溝を形成し硬質地盤に内在された強化繊維等を切断する複数の円弧形の溝切削ビットの1つである先端溝切削ビット46Bが半径方向に所定間隔ごとに突出されている。そして、リングフレーム44a内で十字フレーム44bの間の空間部が収容凹部11に連通する切削片の取入口47に構成されている。
【0016】
前記カッター駆動装置14は、図1および図2に示すように、十字枠13bの下面中央部に突設されたカッター軸21が、外筒12の底壁部に固着されたシールボックス18を貫通して移動枠19の軸受20に回転可能に支持されている。そして移動枠19に取り付けられた駆動モータ25がスプロケットホイール22,23及びチェン24を介してカッター軸21に連動連結されて構成されている。したがって、この駆動モータ25を駆動することにより回転カッター41を回転駆動することができる。
【0017】
前記カッター出退装置15は、図2に示すように、外筒12の外周面に突設したブラケット26に連結ピン27を介して左右一対の油圧や空気圧などの流体圧シリンダ28が配設され、その各流体圧シリンダ28のピストンロッド28aの先端部が移動枠19に突設した左右一対のアーム29にそれぞれ連結ピン30を介して連結されて構成されている。したがって、各流体圧シリンダ28を伸縮駆動することにより、回転カッター41をシールド本体2の半径方向に沿って往復移動させることができる。
【0018】
前記排土装置10は、図1に示すように、収納凹部11に接続された開閉弁31付き送泥管32と、収納凹部11からカッターヘッド1後部の圧力室2bに接続された排泥管33とから構成されている。
【0019】
前記ゲート16は、図2に示すように、外筒12の上部に形成されたゲート用凹部16a内に、ゲート板16bがスライド自在に嵌合され、ゲート板16bに連結された油圧や空気圧などの流体圧シリンダ34により開閉されるようになっている。
【0020】
上記構成において、カッターヘッド1により例えば土留め用NOMST壁などの硬質壁体を掘削する場合には、図1に仮想線で示すように、ゲート16を開動させて開口部9を開放し、カッター出退装置15により回転カッター41を移動させて、カッター部44をシールド本体2の外周面よりも外方に突出させる。そして、カッターヘッド1を回転駆動するとともにシールド本体2を前進させることにより、硬質壁体が掘削されて先行溝が形成される。そしてカッター駆動装置14により回転カッター41が回転駆動されて硬質壁体に形成されたトンネルの内周面の裏込剤注入管3の前方部分が切削される。この時、まず外周溝切削ビット46Aにより切削面に周方向の溝が形成されて内在された強化繊維が切断され、溝が形成された切削面に外周面切削ビット45Aが面接触されて掘削することにより、強化繊維が内在された硬質壁体を効果的に切削することができる。そして切削片が回転カッター41の取入口47から収納凹部11内に回収され、その回収した切削片が送泥管32を介して収納凹部11内に供給した泥水によりスラリー状された後、排泥管33を介してカッターヘッド1側の圧力室2b内に流入され、このカッターヘッド1による掘削土砂といっしょにスラリー輸送で地上まで排出される。
【0021】
また硬質地盤の掘削終了後、ゲート16が閉動させて開口部9が閉鎖されることにより(図1実線参照)、その開口部9から収納凹部11内に土砂が流入されるのを阻止して地山の崩壊を防止することができる。
【0022】
また、他の掘削形式では、シールド本体2の掘進を回転カッター41の掘削直径より小さい間隔で間欠移動させ、停止時にカッター出退装置15により回転カッター41を突出移動させて硬質地盤に先行穴を形成する。この時、先端溝切削ビット46Bにより切削面に回転方向の溝が形成され、溝が形成された切削面に先端面切削ビット45Bが面接触して切削することにより、強化繊維が内在された硬質壁体を効果的に切削除去することができる。これを繰り返すことにより、先行穴を連続させて裏込剤注入管3の損傷を防止する先行溝を形成することができる。先の外周溝切削ビット46Aおよび外周面切削ビット45Aによる先行溝掘削に加えて、先端溝切削ビット46Bおよび先端面切削ビット45Bを併用することで、あらゆる種類の硬質地盤を掘削できるとともに、ビットの寿命も長くできる。
【0023】
上記実施の形態によれば、回転カッター41を回転駆動しているので、切削能力が高く、例えば土留め用NOMST壁などの硬質壁体でも、外周溝切削ビット46Aと外周面切削ビット45Aの組み合わせにより、確実に切削することができ、裏込剤注入管3が損傷されるおそれがない。また、切削片を排土装置10を介してシールド本体2内に取り込むようになっており、従来のように切削片がトンネル5の内周面とシールド本体2及びセグメント6との間に不均一に介在されることがないから、その切削片により地山やシールド本体2に悪影響を与えることがない。
【0024】
【発明の効果】
以上に述べたごとく、請求項1記載の発明によれば、回転駆動される回転カッターは切削能力が高く、例えば土留め用NOMST壁などのように強化繊維で強化されだ硬質壁体でも、まず溝切削ビットにより壁体に内在された強化繊維を短く切断し、ついで面切削ビットにより壁体自体を削り取ることで、裏込剤注入管前方の硬質壁体を確実に切除して先行溝を形成することができ、裏込剤注入管が損傷されるおそれがない。
【0025】
また、掘削土砂や切削片は回転カッターの取入口から収容凹部内に取り込まれ、排土装置により排泥管から圧力室に送られるので、従来のように切削片がトンネルの内周面とシールド本体及びセグメントとの間に不均一に介在されることがなく、切削片により地山やシールド本体に悪影響を与えることがない。
【0026】
また請求項2記載の発明によれば、回転カッターを突出した状態でシールド掘進機を前進させて硬質地盤を切除する他に、シールド掘進機の前進を一定間隔毎に停止し、停止毎に回転カッターを突出させて硬質地盤を穿孔し、この穿孔部を連続させることにより、裏込剤注入管の前方の硬質地盤を掘削することができる。このように、あらゆる硬質地盤に2つの方法で先行穴を掘削することができ、その応用範囲も広い。
【図面の簡単な説明】
【図1】本発明の実施の形態であるシールド掘進機の裏込剤注入管用先行カッターを示す縦断面図である。
【図2】同先行カッターの横断面図である。
【図3】同回転カッターのカッター部を示す平面図である。
【図4】同回転カッターのカッター部を示す側面図である。
【図5】従来のシールド掘進機における裏込剤注入管用先行カッター装置を示す概略平面図である。
【図6】同要部の概略正面図である。
【図7】同要部の拡大横断面図である。
【図8】同要部の側面図である。
【符号の説明】
1 カッターヘッド
2 シールド本体
2b 圧力室
3 裏込剤注入管
9 開口部
10 排土装置
11 収納凹部
14 カッター駆動装置
15 カッター出退装置
16 ゲート
32 送泥管
33 排泥管
41 回転カッター
45A 外周面切削ビット
45B 先端面切削ビット
46A 外周溝切削ビット
46B 先端溝切削ビット
47 取入口
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a lining body that is excavated in the tunnel and assembled at the rear of the shield machine, and a backfilling agent injection pipe for injecting a backfilling agent between the ground and the outer surface of the shield body are projected. The present invention relates to a leading cutter for a backfilling agent injection pipe for preventing breakage of the backfilling agent injection pipe when passing through the excavation of a hard ground or bedrock, a start hole, an intermediate hole, and a wall of an arrival hole in a shield machine.
[0002]
[Prior art]
Conventionally, there exist some which are shown in FIGS. 5-8 as an example of this kind of shield machine. This is one in which a plurality of backing agent injection pipes 3 project from the rear part of the outer peripheral surface of the shield body 2 provided with the cutter head 1 rotatably at the front part at a predetermined interval along the circumferential direction. (See FIG. 6), the cutter head 1 is driven to rotate to excavate the face 4 to excavate the tunnel 5, and at the same time, the inside of the shield body 2 passes through the back agent injection pipe 3 to inject this back agent. The inner periphery of the segment 6 and the tunnel 5 which is a primary lining body in which a backing agent such as mortar is ejected rearward from the rear end opening 3a of the pipe 3 and the ejected backing agent is assembled behind the shield body 2 The gap between the surfaces is filled.
[0003]
As shown also in FIGS. 7 and 8, the back agent injection pipe 3 protrudes outward from the outer peripheral surface of the shield body 2, so that the front side of the back agent injection pipe 3 on the outer peripheral surface of the shield body 2. A plurality of fixed bits 7 are projected at appropriate positions, and the inner surface of the tunnel 5 is cut by the plurality of fixed bits 7 as the shield body 2 advances, so that the backing agent injection pipe 3 is not damaged. ing.
[0004]
[Problems to be solved by the invention]
In the above conventional configuration, since the cutting ability of the fixed bit 7 is low, for example, a hard wall for starting a hard rock or a tunnel, a middle wall or a retaining wall of an arrival mine (for example, NOMST wall: high strength concrete using limestone coarse aggregate) When excavating a hard ground such as a high-strength reinforcing material made of carbon fiber) with the cutter head 1, it is difficult to reliably cut the hard ground with the fixed bit 7, and a backing agent injection tube 3 may be damaged. Further, since the cut piece cannot be taken into the shield body 2, the cut piece is non-uniformly interposed between the inner peripheral surface of the tunnel 5 and the shield body 2 and the segment 6, so Adversely affected.
[0005]
In view of the above-mentioned problems, the present invention does not damage the backing agent injection pipe by securely cutting even the hard wall of the hard bedrock, starting, middle, or reaching hole, and the cutting piece is placed in the shield body. It is an object of the present invention to provide a leading cutter for a back-filling agent injection pipe of a shield machine that can be taken in and excavated well.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 has a cutter head that is rotationally driven at the front portion of the shield body, and a primary lining body and a ground that are assembled on the rear outer surface of the shield body at the rear portion of the shield body. This is a leading cutter for a backfilling agent injection pipe of a shield machine in which a backfilling agent injection pipe for injecting a backfilling agent between the piles is provided, and is forward of the backfilling agent injection pipe on the outer peripheral surface of the shield body. A storage recess formed in a proper position, a rotary cutter that is arranged so as to be able to move out of and out of the storage recess and rotate around the axial center in the tunnel radial direction, and a mud pipe and storage connected to the storage recess A drainage device comprising a drainage pipe communicating with the pressure chamber at the rear of the cutter head from the recess , and a groove cutting bit for forming a groove on the cutting surface on the rotary cutter, and a cutting with the groove formed Surface cutting bit to cut the surface When it is obtained by providing the inlet incorporate shavings in the storage recess.
[0007]
According to the above configuration, when excavating hard ground such as hard rock or hard wall, the cutter head is driven to rotate with the tip of the rotary cutter protruding outward from the outer peripheral surface of the shield body. By advancing the shield body, the hard ground is excavated to form a tunnel. At the same time, the rotary cutter is driven to rotate to cut the hard ground in front of the backing agent injection pipe on the inner peripheral surface of the tunnel.
[0008]
As described above, the rotationally driven rotary cutter has a high cutting ability. For example, even in the case of a hard wall reinforced with a reinforcing fiber such as a soil retaining NOMST wall, the reinforcing fiber is first embedded in the wall by a groove cutting bit. Is cut short, and then the wall body itself is scraped off with a surface cutting bit, so that the hard wall body in front of the backfilling agent injection tube can be surely cut, and the backfilling agent injection tube is not likely to be damaged.
[0009]
In addition, since the excavated sediment and cutting pieces are taken into the accommodating recess from the intake of the rotary cutter and sent from the sludge pipe to the pressure chamber by the earth removing device, the cutting pieces are shielded from the inner peripheral surface of the tunnel and the shield as in the past. There is no non-uniform intervening between the main body and the segment, and the ground pieces and the shield main body are not adversely affected by the cut pieces.
[0010]
According to the second aspect of the present invention, a tip groove cutting bit for forming a groove on a cutting surface on a tip surface of the rotary cutter, a tip surface cutting bit for cutting a cutting surface on which the groove is formed, and a cutting piece are stored in the recess And an intake to be taken in.
[0011]
According to the above configuration, in addition to advancing the shield machine with the rotary cutter protruding and cutting the hard ground, the shield machine is stopped at regular intervals and the rotary cutter is protruded at each stop. The hard ground in front of the back-filling agent injection pipe can be excavated by drilling the hard ground and continuing the drilled portion. Thus, it is possible to excavate the leading hole in any hard ground by two methods, and its application range is wide.
[0012]
.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the member same as the past, and description is abbreviate | omitted.
[0013]
An opening 9 is formed at a location facing the inside of the atmospheric chamber 2c of the shield body 2 in front of the backing agent injection pipe 3 on the outer peripheral surface of the shield body 2. A bottomed cylindrical outer cylinder 12 is fixed to the back surface of the skin plate 2 a in the opening 9 to form a storage recess 11 with a soil removal device 10. Further, in the shield main body 2, a rotary cutter 41 disposed in the storage recess 11 so as to be freely retractable in the radial direction of the shield main body 2, a cutter driving device 14 for rotationally driving the rotary cutter 41, and a rotation A cutter retracting device 15 for driving the cutter 41 in and out along the radial direction of the shield body 2 and a gate 16 for opening and closing the opening 9 are provided.
[0014]
As shown in FIGS. 1 to 2, the rotary cutter 41 is set to have substantially the same diameter as the width of the back-filling agent injection tube 3, and is arranged to be slidable and rotatable in the outer cylinder 12 via the bearing bush 17. The inner cylinder 42, a cross frame 43 installed in a cross shape in the inner cylinder 42, and a cutter portion 44 fixed to a tip portion of the cross frame 43 protruding above the inner cylinder 42. ing.
[0015]
As shown in FIGS. 3 and 4, the cutter portion 44 has a cross frame 44b fixed on a ring frame 44a, and a bit mounting frame 44c standing on the ring frame 44a at regular intervals in the circumferential direction. . An outer peripheral surface cutting bit 45A, which is one of the surface cutting bits to be cut in contact with the cutting surface, is attached to the front portion in the rotational direction on the outer peripheral side of the cross frame 44b and the bit mounting frame 44c, and the outer peripheral surface cutting is performed. Cutting a plurality of arc-shaped outer circumferential grooves, which is one of groove cutting bits that protrude from the cutting surface by the bit 45A and form a circumferential groove on the cutting surface at a predetermined pitch and cut reinforcing fibers or the like contained in the hard ground. Bits 46A protrude in the axial direction at predetermined intervals. Further the end face of the cross frame 44b and the bit mounting frame 44c, with the one side cutting bit for cutting in surface contact with the cutting surface leading end surface cutting bit 45B is attached, from the cutting surface by the distal end surface cutting bit 45B A tip groove cutting bit 46B, which is one of a plurality of arc-shaped groove cutting bits that protrude and form grooves in the rotational direction at a predetermined pitch in the radial direction and cut reinforcing fibers or the like contained in the hard ground, is provided in the radial direction. It protrudes at predetermined intervals. A space between the cross frames 44 b in the ring frame 44 a is configured as a cutting piece intake 47 that communicates with the housing recess 11.
[0016]
As shown in FIGS. 1 and 2, the cutter driving device 14 has a cutter shaft 21 protruding from the center of the bottom surface of the cross frame 13 b that penetrates a seal box 18 fixed to the bottom wall portion of the outer cylinder 12. Then, it is rotatably supported by the bearing 20 of the moving frame 19. A drive motor 25 attached to the moving frame 19 is coupled to the cutter shaft 21 via sprocket wheels 22 and 23 and a chain 24. Therefore, the rotary cutter 41 can be driven to rotate by driving the drive motor 25.
[0017]
As shown in FIG. 2, the cutter retracting device 15 is provided with a pair of left and right hydraulic cylinders 28 such as hydraulic pressure and pneumatic pressure via a connecting pin 27 on a bracket 26 protruding from the outer peripheral surface of the outer cylinder 12. The tip of the piston rod 28a of each fluid pressure cylinder 28 is connected to a pair of left and right arms 29 projecting from the moving frame 19 via connecting pins 30. Therefore, the rotary cutter 41 can be reciprocated along the radial direction of the shield body 2 by driving each fluid pressure cylinder 28 to extend and contract.
[0018]
As shown in FIG. 1, the earth discharging device 10 includes a mud pipe 32 with an on-off valve 31 connected to the storage recess 11 and a mud pipe connected from the storage recess 11 to the pressure chamber 2 b at the rear of the cutter head 1. 33.
[0019]
As shown in FIG. 2, the gate 16 has a gate plate 16b slidably fitted in a gate recess 16a formed in the upper portion of the outer cylinder 12, and is connected to the gate plate 16b. The fluid pressure cylinder 34 opens and closes.
[0020]
In the above configuration, when excavating a hard wall body such as a soil retaining NOMST wall with the cutter head 1, the gate 16 is opened to open the opening 9 as shown by the phantom line in FIG. The rotary cutter 41 is moved by the retracting device 15 so that the cutter portion 44 protrudes outward from the outer peripheral surface of the shield body 2. Then, by rotating the cutter head 1 and moving the shield body 2 forward, the hard wall body is excavated to form a leading groove. Then, the rotary cutter 41 is rotationally driven by the cutter driving device 14 to cut the front portion of the back-filling agent injection tube 3 on the inner peripheral surface of the tunnel formed on the hard wall. At this time, first, a circumferential groove is formed on the cutting surface by the outer circumferential groove cutting bit 46A, and the embedded reinforcing fiber is cut, and the outer circumferential surface cutting bit 45A is brought into surface contact with the cutting surface on which the groove is formed and excavated. Thus, the hard wall body in which the reinforcing fibers are contained can be effectively cut. Then, the cut pieces are collected from the inlet 47 of the rotary cutter 41 into the storage recess 11, and the recovered cut pieces are slurried by the muddy water supplied into the storage recess 11 through the mud pipe 32, and then the mud is discharged. It flows into the pressure chamber 2b on the cutter head 1 side through the pipe 33, and is discharged to the ground by slurry transport together with excavated sediment by the cutter head 1.
[0021]
In addition, after the excavation of the hard ground, the gate 16 is closed and the opening 9 is closed (see the solid line in FIG. 1), thereby preventing sediment from flowing into the storage recess 11 from the opening 9. Can prevent the collapse of natural ground.
[0022]
In another excavation type, the shield body 2 is intermittently moved at intervals smaller than the excavation diameter of the rotary cutter 41, and when the stop is stopped, the rotary cutter 41 is protruded and moved by the cutter retracting device 15 so that a leading hole is formed in the hard ground. Form. At this time, a groove in the rotational direction is formed on the cutting surface by the tip groove cutting bit 46B, and the tip surface cutting bit 45B comes into surface contact with the cutting surface on which the groove is formed to cut, so that the reinforcing fiber is contained in the hard surface. The wall body can be effectively cut off. By repeating this, it is possible to form a leading groove that continues the leading hole and prevents damage to the backfilling agent injection tube 3. In addition to the preceding groove excavation by the outer peripheral groove cutting bit 46A and the outer peripheral surface cutting bit 45A, by using the front end groove cutting bit 46B and the front end surface cutting bit 45B in combination, all kinds of hard ground can be excavated, Life can be extended.
[0023]
According to the above embodiment, since the rotary cutter 41 is driven to rotate, the cutting ability is high, and a combination of the outer peripheral groove cutting bit 46A and the outer peripheral surface cutting bit 45A even with a hard wall body such as a soil retaining NOMST wall. Thus, the cutting can be surely performed, and the backing agent injection tube 3 is not likely to be damaged. Further, the cutting piece is taken into the shield main body 2 through the earth removing device 10, and the cutting piece is not uniform between the inner peripheral surface of the tunnel 5 and the shield main body 2 and the segment 6 as in the prior art. Therefore, the cut pieces do not adversely affect the natural ground and the shield main body 2.
[0024]
【The invention's effect】
As described above, according to the first aspect of the present invention, the rotary cutter that is rotationally driven has a high cutting ability. For example, even a hard wall reinforced with reinforcing fibers such as a soil retaining NOMST wall, By cutting the reinforcing fibers contained in the wall body with a groove cutting bit, and then cutting off the wall body with a surface cutting bit, the hard wall body in front of the backfilling agent injection pipe is surely cut to form a leading groove. And there is no risk of damaging the backfilling tube.
[0025]
In addition, since the excavated sediment and cutting pieces are taken into the accommodating recess from the intake of the rotary cutter and sent from the sludge pipe to the pressure chamber by the earth removing device, the cutting pieces are shielded from the inner peripheral surface of the tunnel and the shield as in the past. There is no non-uniform intervening between the main body and the segment, and the ground pieces and the shield main body are not adversely affected by the cut pieces.
[0026]
According to the second aspect of the invention, in addition to advancing the shield machine with the rotary cutter protruding and cutting the hard ground, the shield machine is stopped at regular intervals and rotated at every stop. The hard ground in front of the back-filling agent injection pipe can be excavated by causing the cutter to protrude to perforate the hard ground and making this perforated part continuous. Thus, it is possible to excavate the leading hole in any hard ground by two methods, and its application range is wide.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a leading cutter for a back-filling agent injection pipe of a shield machine according to an embodiment of the present invention.
FIG. 2 is a transverse sectional view of the preceding cutter.
FIG. 3 is a plan view showing a cutter portion of the rotary cutter.
FIG. 4 is a side view showing a cutter portion of the rotary cutter.
FIG. 5 is a schematic plan view showing a preceding cutter device for a backfilling agent injection pipe in a conventional shield machine.
FIG. 6 is a schematic front view of the main part.
FIG. 7 is an enlarged cross-sectional view of the main part.
FIG. 8 is a side view of the main part.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cutter head 2 Shield main body 2b Pressure chamber 3 Backing agent injection pipe 9 Opening part 10 Earth removal apparatus 11 Storage recessed part 14 Cutter drive device 15 Cutter withdrawal apparatus 16 Gate 32 Mud pipe 33 Mud pipe 41 Rotating cutter 45A outer peripheral surface Cutting bit
45B Tip cutting bit
46A Peripheral groove cutting bit 46B Tip groove cutting bit 47 Inlet

Claims (2)

シールド本体の前部に回転駆動されるカッターヘッドを有し、シールド本体の後部外面に、シールド本体後部で組み立てられる一次覆工体と地山との間に裏込め剤を注入する裏込剤注入管が配設されたシールド掘進機の裏込剤注入管用先行カッターであって、
シールド本体の外周面で前記裏込剤注入管より前方適所に形成された収納凹部と、この収納凹部内から外方に出退自在に配設されトンネル半径方向の軸心周りに回転する回転カッターと、前記収納凹部に接続された送泥管および収納凹部からカッターヘッド後部の圧力室に連通される排泥管とからなる排土装置と、を具備し、
前記回転カッターに、切削面に溝を形成する溝切削ビットと、溝が形成された切削面を切削する面切削ビットと、切削片を収納凹部内に取り入れる取入口とを設けた
ことを特徴とするシールド掘進機の裏込剤注入管用先行カッター。
Backing agent injection that has a cutter head that is rotationally driven at the front of the shield body, and injects a backfilling agent between the primary lining body assembled at the rear of the shield body and the ground on the rear outer surface of the shield body. A preceding cutter for a backfilling agent injection pipe of a shield machine in which a pipe is disposed,
A storage recess formed on the outer peripheral surface of the shield body in front of the backfilling agent injection tube, and a rotary cutter that rotates about the axis in the tunnel radial direction and is arranged to be able to move out of and out of the storage recess. And a soil discharge device comprising a mud pipe connected to the storage recess and a drain pipe connected to the pressure chamber at the rear of the cutter head from the storage recess ,
The rotary cutter is provided with a groove cutting bit for forming a groove on a cutting surface, a surface cutting bit for cutting a cutting surface on which the groove is formed, and an intake for taking a cutting piece into a storage recess. Leading cutter for backfilling agent injection pipe of shield machine.
回転カッターの先端面に、切削面に溝を形成する先端溝切削ビットと、溝が形成された切削面を切削する先端面切削ビットと、切削片を収納凹部内に取り入れる取入口とを設けたことを特徴とする請求項1記載のシールド掘進機の裏込剤注入管用先行カッター。  A tip groove cutting bit for forming a groove on the cutting surface, a tip surface cutting bit for cutting the cutting surface on which the groove is formed, and an inlet for taking the cutting piece into the storage recess are provided on the tip surface of the rotary cutter. The preceding cutter for the backfilling agent injection pipe of the shield machine according to claim 1.
JP14074097A 1997-05-30 1997-05-30 Leading cutter for backfilling pipe of shield machine Expired - Lifetime JP3693465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14074097A JP3693465B2 (en) 1997-05-30 1997-05-30 Leading cutter for backfilling pipe of shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14074097A JP3693465B2 (en) 1997-05-30 1997-05-30 Leading cutter for backfilling pipe of shield machine

Publications (2)

Publication Number Publication Date
JPH10331593A JPH10331593A (en) 1998-12-15
JP3693465B2 true JP3693465B2 (en) 2005-09-07

Family

ID=15275618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14074097A Expired - Lifetime JP3693465B2 (en) 1997-05-30 1997-05-30 Leading cutter for backfilling pipe of shield machine

Country Status (1)

Country Link
JP (1) JP3693465B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131552A (en) 2000-10-24 2002-05-09 Nitto Denko Corp Light guiding plate, planer light source device and reflective liquid crystal display
JP4662402B2 (en) 2001-03-12 2011-03-30 日東電工株式会社 Light guide plate for front light for both external light and illumination modes, surface light source device for front light for both external light and illumination modes, and front light type reflective liquid crystal display device for both external light and illumination modes
JP4668631B2 (en) * 2005-01-21 2011-04-13 西松建設株式会社 Shield machine
JP4504826B2 (en) * 2005-01-21 2010-07-14 西松建設株式会社 Shield machine

Also Published As

Publication number Publication date
JPH10331593A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
US4655493A (en) Shield tunneling machine
JP2001107684A (en) Cutter exchanging method for shield machine, and the shield machine
JP3693465B2 (en) Leading cutter for backfilling pipe of shield machine
JP4600686B2 (en) Shield machine
JP3785030B2 (en) Tunnel excavator
JP3667717B2 (en) Shield machine
JP3937401B2 (en) Cutter bit replacement timing detection device for shield machine and wear detection method for cutter bit of shield machine
JP3640499B2 (en) Leading cutter device for backfilling agent injection pipe in shield machine
JP3396026B2 (en) Shield machine cutter disk
JPH09303088A (en) Method for replacing cutter bit for shield machine
JP4177948B2 (en) Underground junction tunnel excavator and tunnel junction method
JP3640513B2 (en) Leading cutter device for backfilling agent injection pipe of shield machine
JP7307664B2 (en) Cutter bit changer for tunnel boring machine
JP3564297B2 (en) Sealing device
JP4092265B2 (en) Tunnel construction method and tunnel excavator
JP3832005B2 (en) Shield machine
JP7289195B2 (en) Supporting method and supporting device for lining
JP2002242593A (en) Cutter bit exchanging method for shield machine
JPS6011997Y2 (en) Backfilling injection device for shield tunneling machine
JP4629626B2 (en) Tunnel excavator and tunnel excavation method
JP3759015B2 (en) Underground junction tunnel excavator
JPH02229395A (en) Ground improving method utilizing shield excavator
JP3636538B2 (en) Leading cutter device for backfilling agent injection pipe in shield machine
JP4281205B2 (en) Cutter bit exchanging device and exchanging method thereof
JP3821658B2 (en) Shield device for backfilling pipes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term