JP3692939B2 - Rotor for eddy current type speed reducer and method for manufacturing the same - Google Patents

Rotor for eddy current type speed reducer and method for manufacturing the same Download PDF

Info

Publication number
JP3692939B2
JP3692939B2 JP2001011569A JP2001011569A JP3692939B2 JP 3692939 B2 JP3692939 B2 JP 3692939B2 JP 2001011569 A JP2001011569 A JP 2001011569A JP 2001011569 A JP2001011569 A JP 2001011569A JP 3692939 B2 JP3692939 B2 JP 3692939B2
Authority
JP
Japan
Prior art keywords
rotor
copper
width
eddy current
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001011569A
Other languages
Japanese (ja)
Other versions
JP2002218734A (en
Inventor
慎一朗 平松
泰隆 野口
国博 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001011569A priority Critical patent/JP3692939B2/en
Publication of JP2002218734A publication Critical patent/JP2002218734A/en
Application granted granted Critical
Publication of JP3692939B2 publication Critical patent/JP3692939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制動補助装置としてバスやトラック等の大型自動車に取付けられる渦電流式減速装置のロータ及びその製造方法に関するものである。
【0002】
【従来の技術】
バスやトラック等の大型自動車には、長い降坂時等において、安定した減速を行い、フットブレーキの使用回数を減少させて、ライニングの異常摩耗やフェード現象を防止するのと共に、制動停止距離を短縮することを目的として、主ブレーキであるフットブレーキや補助ブレーキである排気ブレーキの他に渦電流式減速装置が取付けられるようになってきた。
【0003】
図1は渦電流式減速装置の一例を示す縦断面図であり、永久磁石を使用した軸スライド方式の渦電流式減速装置である。
図1において、1はロータであり、強磁性材料からなる円筒部1aがアーム1bを介して回転軸2に取り付けられた構成で、前記円筒部1aは回転軸2と一体となって回転する。
【0004】
3はステータであり、複数個の永久磁石3aが周設された支持リング3bを内蔵している。この支持リング3b(永久磁石3a)は空圧装置3cのピストンロッド3caに連結され、ピストンロッド3caの出退動によって円周上に複数本配置された案内ロッド3dに沿ってステータ3の内部を回転軸2の軸方向に往復移動するようになっている。
【0005】
そして、前記軸方向の移動により、図1の上側に示したように、永久磁石3aがスイッチ板3eの位置すなわち円筒部1aの内周面1aaと磁気的に対向する位置まで挿入されると、制動ONの状態となる。反対に、図1の下側に示したように、永久磁石3aがスイッチ板3eから離れた位置に引き出されると、制動OFFの状態となる。
【0006】
ところで、前記した制動ONの状態では、永久磁石3aから発する磁束を横切って円筒部1aが回転するので、円筒部1aの内周面1aa近傍に渦電流が流れ、この渦電流と磁束の相互作用によってロータ1に制動トルクが発生することになる。
【0007】
従って、円筒部1aは渦電流にともなうジュール熱で加熱され、制動OFFの状態で円筒部1aの外周部に設けられた冷却フィン1cによって冷却されることになるため、円筒部1aには制動ON・OFFの繰り返しによって熱サイクルが負荷される。
【0008】
上述した図1では、永久磁石3aを使用し、永久磁石3aは円筒部1aの内周面1aaに対向して設けたものを示しているが、円筒部1aの外周面に対抗して設けることもできる。また、磁石として電磁石を使用することもできる。
【0009】
電磁石を使用した渦電流式減速装置においても制動トルクの発生原理は永久磁石を使用したものと同じであるが、電磁石を使用した場合には、電磁石コイルの電流を調整することで、制動ON・OFFの切替えを行なう。
【0010】
近年、渦電流式減速装置を搭載する大型車両が増加しており、従来よりも積載量の大きなトラックやトレーラーへの搭載が進められている。このため、渦電流式減速装置に要求される制動トルクは増大する傾向にあり、例えば特開平1−288636号、特開平5−236732号、特開平10−155266号、特開平11−308851号では、ロータの円筒部の磁石と対向する内面に銅又は銅合金層を含んだ被覆層を設けたロータが提案されている。このようなロータを採用した場合、現状の寸法を維持したまま制動トルクを向上させることができる。
【0011】
【発明が解決しようとする課題】
しかしながら、前記提案されたロータを使用した場合には、現状の寸法を維持したままでの制動トルクの増大にともなって、渦電流式減速装置の制動中におけるロータの回転面温度(磁力線が集中する特に永久磁石と対向する幅中央部分)は650℃以上にも達して熱負荷が大きくなることから、使用中に前記幅中央部分の被覆層が剥離脱落してトルク性能を損なう虞があり、耐久性の優れたロータが望まれている。
【0012】
本発明は、上記した問題点に鑑みてなされたものであり、制動トルクの大幅な低下をきたすことなく、ロータに作用する熱負荷が大きくなっても、ロータの円筒部における磁石と対向する面に設けた銅又は銅合金層を含んだ被覆層の劣化損傷寿命が車両走行寿命相当となるように延命させることが可能な渦電流式減速装置のロータ及びその製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る渦電流式減速装置のロータは、磁石と対向する面に設けた銅又は銅合金層を含んだ被覆層における磁力線が集中する幅中央部分の銅又は銅合金層の厚みを、両側の銅又は銅合金層の厚みよりも薄くしたり、或いは、なくしたりすることとしている。そして、このようにすることで、制動トルクの大幅な低下をきたすことなく、ロータに作用する熱負荷が大きくなっても、ロータの円筒部における磁石と対向する面に設けた銅又は銅合金層を含んだ被覆層の劣化損傷寿命が車両走行寿命相当となるように延命させることが可能になる。
【0014】
また、本発明に係る渦電流式減速装置のロータの製造方法は、ロータにおける磁石と対向する面の幅中央部分を、銅又は銅合金層の薄くする或いはなくする厚さだけ凸状に形成し、磁石と対向する面に銅又は銅合金層を形成した後に前記凸状部分に形成した銅又は銅合金層を所定厚さ取り除いたり、また、磁石と対向する面の厚みを幅中央に向って漸増させたロータの、前記磁石と対向する面に銅又は銅合金層を形成した後、幅中央部分の銅又は銅合金層を所定厚さ水平に取り除くこととしている。そして、このようにすることで、本発明に係る渦電流式減速装置のロータを、複雑な治具を使用することなく、容易に製造することができるようになる。
【0015】
【発明の実施の形態】
以下、本発明に係る渦電流式減速装置のロータ及びその製造方法を、図2以降の添付図面を用いて説明する。
【0016】
本発明に係る渦電流式減速装置のロータは、図1に示したような永久磁石を使用した軸スライド方式の渦電流式減速装置に限らず、永久磁石を使用した単列旋回方式や2列旋回方式はもとより、電磁石を使用した渦電流減速装置であっても適用可能であることは言うまでもない。
【0017】
また、本発明に係る渦電流式減速装置のロータの磁石と対向する面に設ける被覆層は、銅又は銅合金層を含んだものであれば、特開平1−288636号で提案されたような銅又は銅合金の単層のものや、特開平5−236732号で提案されたようなニッケル−銅−ニッケルクロム合金の3層からなるものや、特開平10−155266号で提案されたような銅−ニッケル合金−ニッケルの3層からなるものや、特開平11−308851号で提案されたようなニッケル合金−銅−ニッケル合金−ニッケルの4層からなるものなど、どのような被覆層であってもよい。
【0018】
また、これらの被覆層をロータの磁石と対向する面に設ける方法は、めっき、溶射、HIP、爆着、複層鋳込み等どのような方法を採用しても良い。以下、銅層の拡散劣化を防止するために銅層の表裏面にニッケル燐層を施し、最外層に酸化防止のためのニッケル層を施した、ニッケル燐−銅−ニッケル燐−ニッケルの4層からなるめっき層を設ける場合について説明する。
【0019】
本発明に係る渦電流式減速装置のロータは、磁石と対向する面に、例えばニッケル燐11a−銅11b−ニッケル燐11c−ニッケル11dの4層からなるめっき層11を設けた渦電流式減速装置のロータ12において、前記めっき層11における磁力線が集中する幅中央部分の銅11b層の厚みを、図2(a)に示したように、両側の銅11b層の厚みよりも薄くするか、或いは、図2(b)に示したように幅中央部分の銅11b層をなくしたものである。
【0020】
このように磁力線が集中するロータ12における磁石と対向する面の幅中央部分の銅11b層の厚みを薄くするか、或いは、幅中央部分の銅11b層をなくすることによって、幅中央部分の電気抵抗が高くなって幅中央部分における渦電流の集中が解消され、渦電流が両側に分散されて分布密度が抑えられる。これらの理由により、ロータ12における磁石と対向する面の幅中央部分の渦電流発生量を低減して、ロータ12における磁石と対向する面の幅方向の発熱分布が均一化され、熱による銅11b層の劣化損傷を抑制することができるようになる。
【0021】
上記した幅中央部分の銅11b層の厚みを均一に薄くしたり、幅中央部分の銅11b層をなくした本発明に係る渦電流式減速装置のロータ12にあっては、ロータ12における磁石と対向する面の厚みは、図2(a)(b)に示したような均一なものに限らず、図3(a)(b)に示したように、幅中央に向って漸減させたものであってもよい。このようにした場合、ロータ12における幅中央部分のエアーギャップが大きくなって、幅中央部分の磁束密度が更に低くなり、幅中央部分での銅11b層の劣化損傷を更に抑制することができる。
【0022】
また、上記したような本発明に係る渦電流式減速装置のロータ12にあっては、図3に示したものとは異なり、ロータ12における磁石と対向する面の幅中央部分の厚みを、図4(a)に示したように銅11b層の薄くする、或いは、図4(b)に示したように銅11b層をなくする厚さだけ凸状に形成したものであってもよい。また、図示省略したが図4に示した構成において、ロータ12における永久磁石と対向する面の幅中央部分の厚みを、幅中央に向かって漸減させたものであってもよい。
【0023】
このようにした場合には、ロータ12における永久磁石と対向する面を面一に形成することができる。また、凸状に形成した部分のコーナ部を湾曲状に形成できるので、応力集中を緩和できて亀裂が入りにくくなり、耐久性が向上する。この場合も、幅中央の凸状部分は銅11b層に比べて導電性が悪くなり、ロータ12における磁石と対向する面の幅方向の発熱分布が均一化され、熱による銅11b層の劣化損傷を抑制することができることは言うまでもない。
【0024】
上記した本発明に係る渦電流式減速装置のロータ12において、幅中央部分の銅11b層の厚みを薄くする場合には、銅11b層の厚みは、図2〜図4の(a)に示したように均一に限らず、図5に示したように、幅中央に向って漸減させたものであってもよい。このようにした場合には、温度が高い幅中央部は銅11b層の厚みが最も薄く、温度負荷の軽減に応じて銅11b層の厚みが厚くなるので、制動トルクの低下を効率良く抑えて、銅11b層の劣化損傷を抑制することが可能になる。
【0025】
このように、幅中央部分の銅11b層の厚みを幅中央に向って漸減させる場合には、ロータ12における磁石と対向する面の厚みは均一に限らず、図5に示したように、幅中央に向って漸増させたものであってもよい。
【0026】
上記した本発明に係る渦電流式減速装置のロータ12において、厚みを薄くしたり、或いは、なくしたりする銅11b層の幅中央部分とは、磁力線が集中する部分を言うことは先に述べたが、具体的には、図6に示したように、スイッチ板3eの幅をL1、永久磁石3aの幅をL2とした場合、前記幅L1又はL2の10〜30%が望ましい。
【0027】
すなわち、ロータは両端に比べて幅中央部が高温になることから、銅層(銅めっき)を設けたロータの損傷は、幅中央部が顕著である。また、車両の走行寿命は70万km〜130万kmと考えられ、この間に制動装置が使用されて銅層が劣化損傷し、制動性能の低下をきたすが、この制動性能の低下を10%以内とすることにより、メンテナンスフリーの製品として位置付けられる。
【0028】
そして、本発明者らが前記した基準に対して実機での耐久性評価試験を実施した結果、図7に示したような結果が得られた。実機での耐久性評価試験は、永久磁石3aの幅47mm、磁極板の幅47mm、極数16、ロータ12の幅76mmで、ロータ1における円筒部1aの内周面1aaに、ニッケル燐11a(厚さ10μm)−銅11b(厚さ200μm)−ニッケル燐11c(厚さ10μm)−ニッケル11d(厚さ50μm)の4層からなる被覆層(めっき)11を施して、図2(b)に示したように、ロータ12の幅中央部の銅11b層のみを所定の幅で除去したものを使用して行なった。
【0029】
図7に示したように、銅11b層を除去する幅が永久磁石3aの幅の10%未満であれば、低下する制動トルクは小さいものの、装置の寿命が短くなる。一方、銅11b層を除去する幅が永久磁石3aの幅の30%を超えると、装置の寿命は長くなるものの、制動トルクの低下が顕著になる。なお、実機での耐久性評価試験は、磁石の幅に対する値を変化させて行なったが、磁石とスイッチ板の幅は略同じであるので、スイッチ板の幅に対する値としても略同様の結果が得られることは言うまでもない。
【0030】
以上の結果より、本発明に係る渦電流式減速装置のロータ12において、厚みを薄くしたり、或いは、なくしたりする銅11b層の幅中央部分は、スイッチ板3eの幅をL1、永久磁石3aの幅をL2とした場合、前記幅L1又はL2の10〜30%とすることが望ましいことが判る。
【0031】
ところで、例えば図2や図3の(b)に示したような構成の本発明に係る渦電流式減速装置のロータ12を製造するに際しては、先ず、ロータ12における永久磁石と対向する面にニッケル燐11aをめっきし、次の銅11bをめっきする前に、図8や図9の(a)に示したように、その幅中央部分をテープ13等でマスキングし、幅中央部分に銅11bがめっきされるのを阻止して銅11bをめっきした後、図8や図9の(b)に示したように、テープ13等のマスキングを外して、図8や図9の(c)に示したように、ニッケル燐11cとニッケル11dを順にめっきすることで行なう。
【0032】
また、例えば図4示したような構成や図4のロータにおける永久磁石と対向する面の厚みを幅中央に向かって漸減させたような構成の本発明に係る渦電流式減速装置のロータ12を製造するに際しては、ロータ12における永久磁石と対向する面の幅中央部分を、図10や図11の(a)に示したように、銅11b層の薄くする或いはなくする厚さだけ凸状に形成し、この凸状に形成した永久磁石と対向する面に、図10や図11の(b)に示したように、ニッケル燐11a、銅11bの順にめっきした後、前記凸状部分に形成したニッケル燐11aや銅11bめっき層を図10や図11の(c)に示したように所定厚さ取り除き、その後、図10や図11の(d)に示したように、ニッケル燐11cとニッケル11dを順にめっきする。これが第1の本発明に係るロータの製造方法である。
【0033】
また、例えば図5に示したような構成の本発明に係る渦電流式減速装置のロータ12を製造するに際しては、図12(a)に示したように、永久磁石と対向する面の厚みを幅中央に向って漸増させたロータ12の、前記永久磁石と対向する面に図12(b)に示したように、ニッケル燐11a、銅11bの順にめっきした後、図12(c)に想像線で示したように、幅中央部分の銅11b層を所定厚さ水平に取り除く(図12(c)のハッチング部分)。その後、図12(d)に示したように、ニッケル燐11cとニッケル11dを順にめっきする。これが第2の本発明に係るロータの製造方法である。
【0034】
これらの本発明に係るロータの製造方法によれば、上記したような本発明に係る渦電流式減速装置のロータを、複雑な治具を使用することなく、容易に製造することができるようになる。
【0035】
【発明の効果】
以上説明したように、本発明によれば、制動トルクの大幅な低下をきたすことなく、ロータに作用する熱負荷が大きくなっても、ロータの円筒部内面に設けた銅又は銅合金層を含んだ被覆層の劣化損傷寿命が車両走行寿命相当となるように延命させることが可能になる。また、このようなロータを容易に製造することができるようになる。
【図面の簡単な説明】
【図1】永久磁石を使用した軸スライド方式の渦電流式減速装置の一例を示す縦断面図である。
【図2】本発明に係る渦電流式減速装置のロータの第1実施例を示した要部説明図で、(a)はロータにおける磁石と対向する面の幅中央部分の銅層の厚みを薄くしたもの、(b)は幅中央部分の銅層をなくしたものである。
【図3】本発明に係る渦電流式減速装置のロータの第2実施例を示した要部説明図で、図2におけるロータにおける磁石と対向する面の厚みを幅中央に向って漸減させたものである。
【図4】本発明に係る渦電流式減速装置のロータの第3実施例を示した要部説明図で、(a)はロータにおける磁石と対向する面の幅中央部分の厚みを、銅層の薄くする厚さだけ凸状に形成したもの、(b)は銅層をなくする厚さだけ凸状に形成したものである。
【図5】本発明に係る渦電流式減速装置のロータの第4実施例を示した要部説明図で、ロータにおける磁石と対向する面の幅中央部分の銅層の厚みを幅中央に向って漸減させたものである。
【図6】(a)は渦電流式減速装置におけるロータの円筒部、スイッチ板、永久磁石部分の説明図、(b)は(a)の拡大図である。
【図7】耐久性評価試験の結果を示した図である。
【図8】図2(b)に示した構成の本発明に係る渦電流式減速装置のロータを製造する方法を順を追って説明した図である。
【図9】図3(b)に示した構成の本発明に係る渦電流式減速装置のロータを製造する方法を順を追って説明した図である。
【図10】図4に示した構成の本発明に係る渦電流式減速装置のロータを製造する方法を順を追って説明した図である。
【図11】図4のロータにおける永久磁石と対向する面の厚みを幅中央に向かって漸減させたような構成の本発明に係る渦電流式減速装置のロータを製造する方法を順を追って説明した図である。
【図12】図5に示した構成の本発明に係る渦電流式減速装置のロータを製造する方法を順を追って説明した図である。
【符号の説明】
1 ロータ
1a 円筒部
1aa 内周面
3a 永久磁石
3e スイッチ板
11 めっき層
11b 銅
12 ロータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor of an eddy current type speed reducer attached to a large vehicle such as a bus or a truck as a braking assist device and a method for manufacturing the same.
[0002]
[Prior art]
For large vehicles such as buses and trucks, stable deceleration on long downhills, etc., reducing the number of times the foot brake is used, preventing abnormal lining wear and fading, and increasing the braking stop distance For the purpose of shortening, an eddy current type speed reducer has been installed in addition to a foot brake as a main brake and an exhaust brake as an auxiliary brake.
[0003]
FIG. 1 is a longitudinal sectional view showing an example of an eddy current reduction device, which is a shaft slide type eddy current reduction device using a permanent magnet.
In FIG. 1, reference numeral 1 denotes a rotor, in which a cylindrical portion 1 a made of a ferromagnetic material is attached to a rotating shaft 2 via an arm 1 b, and the cylindrical portion 1 a rotates integrally with the rotating shaft 2.
[0004]
Reference numeral 3 denotes a stator, which incorporates a support ring 3b around which a plurality of permanent magnets 3a are provided. This support ring 3b (permanent magnet 3a) is connected to the piston rod 3ca of the pneumatic device 3c, and the inside of the stator 3 is guided along the guide rods 3d arranged on the circumference by the movement of the piston rod 3ca. The rotary shaft 2 reciprocates in the axial direction.
[0005]
When the permanent magnet 3a is inserted to the position of the switch plate 3e, that is, to the position magnetically opposed to the inner peripheral surface 1aa of the cylindrical portion 1a, as shown in the upper side of FIG. The brake is turned on. On the contrary, as shown in the lower side of FIG. 1, when the permanent magnet 3a is pulled out to a position away from the switch plate 3e, the brake is turned off.
[0006]
By the way, in the above-described braking-on state, the cylindrical portion 1a rotates across the magnetic flux generated from the permanent magnet 3a, so that an eddy current flows in the vicinity of the inner peripheral surface 1aa of the cylindrical portion 1a, and the interaction between the eddy current and the magnetic flux. As a result, a braking torque is generated in the rotor 1.
[0007]
Accordingly, the cylindrical portion 1a is heated by Joule heat accompanying the eddy current, and is cooled by the cooling fins 1c provided on the outer peripheral portion of the cylindrical portion 1a in the brake OFF state. -Thermal cycle is loaded by repeated OFF.
[0008]
In FIG. 1 described above, the permanent magnet 3a is used, and the permanent magnet 3a is provided facing the inner peripheral surface 1aa of the cylindrical portion 1a. However, the permanent magnet 3a is provided opposite to the outer peripheral surface of the cylindrical portion 1a. You can also. An electromagnet can also be used as the magnet.
[0009]
Even in an eddy current type speed reducer using an electromagnet, the generation principle of the braking torque is the same as that using a permanent magnet. However, when an electromagnet is used, the brake coil is turned on by adjusting the current of the electromagnet coil. Switch off.
[0010]
In recent years, an increasing number of large vehicles are equipped with eddy current reduction gears, and they are being installed in trucks and trailers that have larger loads than before. For this reason, the braking torque required for the eddy current type reduction gear tends to increase. For example, in JP-A-1-288636, JP-A-5-236732, JP-A-10-155266, and JP-A-11-308851 There has been proposed a rotor in which a coating layer including a copper or copper alloy layer is provided on the inner surface of the rotor that faces the magnet of the cylindrical portion. When such a rotor is employed, the braking torque can be improved while maintaining the current dimensions.
[0011]
[Problems to be solved by the invention]
However, when the proposed rotor is used, the rotational surface temperature of the rotor during the braking of the eddy current speed reducer (the lines of magnetic force concentrate) as the braking torque increases while maintaining the current dimensions. In particular, the width center portion facing the permanent magnet) reaches 650 ° C. or more and the heat load increases, so that the coating layer at the width center portion may peel off during use and the torque performance may be impaired. A rotor with excellent performance is desired.
[0012]
The present invention has been made in view of the above-described problems, and even if the thermal load acting on the rotor increases without causing a significant reduction in braking torque, the surface facing the magnet in the cylindrical portion of the rotor. An object of the present invention is to provide a rotor of an eddy current type speed reducer capable of extending the life of a coating layer including a copper or copper alloy layer provided on the steel layer so that the life of the deterioration is equivalent to the life of a vehicle. Yes.
[0013]
[Means for Solving the Problems]
In order to achieve the above-described object, the rotor of the eddy current type speed reducer according to the present invention is a copper in the central portion of the width where the magnetic lines of force are concentrated in the coating layer including the copper or copper alloy layer provided on the surface facing the magnet. Alternatively, the thickness of the copper alloy layer is made thinner or less than the thickness of the copper or copper alloy layers on both sides. And by doing in this way, even if the thermal load which acts on a rotor becomes large, without causing a big fall of braking torque, the copper or copper alloy layer provided in the surface facing the magnet in the cylindrical part of a rotor It is possible to extend the life so that the deterioration damage life of the coating layer containing the water becomes equivalent to the vehicle running life.
[0014]
Further, in the method of manufacturing a rotor of an eddy current reduction device according to the present invention, the central portion of the width of the surface of the rotor facing the magnet is formed in a convex shape with a thickness that makes the copper or copper alloy layer thinner or thinner. The copper or copper alloy layer formed on the convex portion after the copper or copper alloy layer is formed on the surface facing the magnet is removed by a predetermined thickness, or the thickness of the surface facing the magnet is directed toward the center of the width. After a copper or copper alloy layer is formed on the surface of the gradually increased rotor facing the magnet, the copper or copper alloy layer at the central portion of the width is removed horizontally by a predetermined thickness. And by doing in this way, the rotor of the eddy current type reduction gear device according to the present invention can be easily manufactured without using a complicated jig.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a rotor of an eddy current type reduction gear according to the present invention and a method for manufacturing the same will be described with reference to the accompanying drawings of FIG.
[0016]
The rotor of the eddy current type speed reducer according to the present invention is not limited to the shaft slide type eddy current type speed reducer using a permanent magnet as shown in FIG. Needless to say, the present invention can be applied to an eddy current reduction device using an electromagnet as well as a turning method.
[0017]
Moreover, if the coating layer provided on the surface facing the magnet of the rotor of the eddy current type reduction gear according to the present invention includes a copper or copper alloy layer, it is proposed in Japanese Patent Laid-Open No. 1-288636. A single layer of copper or a copper alloy, a three-layered nickel-copper-nickel chrome alloy as proposed in JP-A-5-236732, or as proposed in JP-A-10-155266 What is the coating layer, such as three layers of copper-nickel alloy-nickel or four layers of nickel alloy-copper-nickel alloy-nickel as proposed in JP-A-11-308551? May be.
[0018]
Moreover, any method such as plating, thermal spraying, HIP, explosive deposition, or multi-layer casting may be adopted as a method of providing these coating layers on the surface facing the rotor magnet. In the following, four layers of nickel phosphorus-copper-nickel phosphorus-nickel, in which a nickel phosphorous layer is applied to the front and back surfaces of the copper layer in order to prevent diffusion deterioration of the copper layer, and a nickel layer for preventing oxidation is applied to the outermost layer The case where the plating layer which consists of is provided is demonstrated.
[0019]
The rotor of the eddy current speed reduction device according to the present invention has an eddy current speed reduction device in which, for example, four plating layers 11 of nickel phosphorus 11a-copper 11b-nickel phosphorus 11c-nickel 11d are provided on the surface facing the magnet. In the rotor 12, the thickness of the copper 11b layer at the central portion where the magnetic lines of force concentrate in the plating layer 11 is made thinner than the thickness of the copper 11b layers on both sides as shown in FIG. As shown in FIG. 2B, the copper 11b layer at the center of the width is eliminated.
[0020]
In this way, by reducing the thickness of the copper 11b layer in the central portion of the width of the surface facing the magnet in the rotor 12 where the magnetic field lines are concentrated, or by eliminating the copper 11b layer in the central portion of the width, The resistance is increased, the concentration of eddy currents in the central portion of the width is eliminated, and the eddy currents are distributed on both sides to suppress the distribution density. For these reasons, the amount of eddy current generation in the central portion of the width of the surface of the rotor 12 facing the magnet is reduced, the heat generation distribution in the width direction of the surface of the rotor 12 facing the magnet is made uniform, and the copper 11b due to heat Deterioration damage of the layer can be suppressed.
[0021]
In the rotor 12 of the eddy current type speed reducer according to the present invention in which the thickness of the copper 11b layer in the central portion of the width is uniformly reduced or the copper 11b layer in the central portion of the width is eliminated, The thickness of the opposing surfaces is not limited to the uniform one as shown in FIGS. 2 (a) and 2 (b), but is gradually reduced toward the center of the width as shown in FIGS. 3 (a) and 3 (b). It may be. In this case, the air gap in the width center portion of the rotor 12 is increased, the magnetic flux density in the width center portion is further reduced, and deterioration damage of the copper 11b layer at the width center portion can be further suppressed.
[0022]
Further, in the rotor 12 of the eddy current type speed reducer according to the present invention as described above, the thickness of the central portion of the width of the surface of the rotor 12 facing the magnet is different from that shown in FIG. As shown in FIG. 4 (a), the copper 11b layer may be made thin, or as shown in FIG. 4 (b), the copper 11b layer may be formed so as to have a convex shape. Although not shown, in the configuration shown in FIG. 4, the thickness of the width center portion of the surface of the rotor 12 facing the permanent magnet may be gradually reduced toward the width center.
[0023]
In this case, the surface of the rotor 12 that faces the permanent magnet can be formed flush. In addition, since the corner portion of the convex portion can be formed in a curved shape, stress concentration can be relaxed and cracks are less likely to occur, and durability is improved. Also in this case, the convex portion at the center of the width is less conductive than the copper 11b layer, the heat distribution in the width direction of the surface of the rotor 12 facing the magnet is made uniform, and the copper 11b layer is damaged by heat. Needless to say, it can be suppressed.
[0024]
In the rotor 12 of the eddy current type speed reducer according to the present invention described above, when the thickness of the copper 11b layer at the center of the width is reduced, the thickness of the copper 11b layer is shown in FIG. As shown in FIG. 5, it may be gradually reduced toward the center of the width. In such a case, the thickness of the copper 11b layer is the thinnest at the center of the width where the temperature is high, and the thickness of the copper 11b layer is increased in accordance with the reduction of the temperature load. It becomes possible to suppress the deterioration damage of the copper 11b layer.
[0025]
As described above, when the thickness of the copper 11b layer at the width center portion is gradually reduced toward the width center, the thickness of the surface of the rotor 12 facing the magnet is not limited to a uniform one, as shown in FIG. It may be gradually increased toward the center.
[0026]
In the rotor 12 of the eddy current type speed reducer according to the present invention described above, the central portion of the width of the copper 11b layer whose thickness is reduced or eliminated refers to the portion where the magnetic lines of force concentrate. Specifically, as shown in FIG. 6, when the width of the switch plate 3e is L1 and the width of the permanent magnet 3a is L2, 10 to 30% of the width L1 or L2 is desirable.
[0027]
That is, since the rotor has a higher temperature at the center of the width than both ends, damage to the rotor provided with the copper layer (copper plating) is significant at the center of the width. In addition, the running life of the vehicle is considered to be 700,000 km to 1.3 million km. During this time, the braking device is used and the copper layer is deteriorated and damaged, resulting in a decrease in braking performance. By doing so, it is positioned as a maintenance-free product.
[0028]
And as a result of having implemented the durability evaluation test by an actual machine with respect to the above-mentioned reference | standard, the present inventors obtained the result as shown in FIG. The durability evaluation test in the actual machine was performed using a nickel phosphor 11a (on the inner peripheral surface 1aa of the cylindrical portion 1a of the rotor 1 having a width of 47mm of the permanent magnet 3a, a width of 47mm of the magnetic pole plate, a number of poles of 16 and a width of 76mm of the rotor 12. A coating layer (plating) 11 consisting of four layers of thickness 10 μm) -copper 11 b (thickness 200 μm) -nickel phosphorus 11 c (thickness 10 μm) -nickel 11 d (thickness 50 μm) is applied, and FIG. As shown, this was performed using only the copper 11b layer at the center of the width of the rotor 12 removed at a predetermined width.
[0029]
As shown in FIG. 7, if the width for removing the copper 11b layer is less than 10% of the width of the permanent magnet 3a, the braking torque to be reduced is small, but the life of the device is shortened. On the other hand, when the width for removing the copper 11b layer exceeds 30% of the width of the permanent magnet 3a, the life of the device becomes longer, but the braking torque is significantly reduced. In addition, although the durability evaluation test with an actual machine was performed by changing the value with respect to the width of the magnet, since the width of the magnet and the switch plate is substantially the same, substantially the same result is obtained as the value with respect to the width of the switch plate. It goes without saying that it is obtained.
[0030]
From the above results, in the rotor 12 of the eddy current type speed reducer according to the present invention, the central portion of the width of the copper 11b layer to be thinned or eliminated has the width L1 of the switch plate 3e and the permanent magnet 3a. When the width of L2 is L2, it is understood that it is desirable that the width is 10 to 30% of the width L1 or L2.
[0031]
By the way, when manufacturing the rotor 12 of the eddy current type reduction gear according to the present invention having the structure as shown in FIG. 2 or FIG. 3B, for example, first, nickel is applied to the surface of the rotor 12 facing the permanent magnet. Before plating the phosphor 11a and the next copper 11b, as shown in FIG. 8 and FIG. 9A, the width center portion is masked with the tape 13 or the like, and the copper 11b is formed in the width center portion. After preventing the plating and plating the copper 11b, as shown in FIG. 8 and FIG. 9 (b), the masking of the tape 13 etc. is removed, and as shown in FIG. 8 (c). As described above, nickel phosphorus 11c and nickel 11d are sequentially plated.
[0032]
Further, for example, the rotor 12 of the eddy current reduction device according to the present invention having a configuration as shown in FIG. 4 or a configuration in which the thickness of the surface of the rotor of FIG. 4 facing the permanent magnet is gradually reduced toward the width center. When manufacturing, as shown in FIG. 10 and FIG. 11A, the central portion of the width of the surface facing the permanent magnet in the rotor 12 is made convex so as to be thinned or eliminated by the copper 11b layer. After forming and plating on the surface facing the permanent magnet formed in this convex shape in the order of nickel phosphorus 11a and copper 11b, as shown in FIG. 10 and FIG. The nickel phosphor 11a and the copper 11b plating layer are removed by a predetermined thickness as shown in FIGS. 10 and 11C, and then the nickel phosphorus 11c and the nickel phosphorus 11c are removed as shown in FIGS. Nickel 11d is plated in order. This is the rotor manufacturing method according to the first aspect of the present invention.
[0033]
Further, for example, when manufacturing the rotor 12 of the eddy current type reduction gear according to the present invention having the configuration as shown in FIG. 5, the thickness of the surface facing the permanent magnet is set as shown in FIG. As shown in FIG. 12 (b), the surface of the rotor 12 that is gradually increased toward the center of the width is plated with nickel phosphorus 11a and copper 11b in this order, as shown in FIG. 12 (b). As indicated by the lines, the copper 11b layer at the central portion of the width is removed horizontally by a predetermined thickness (hatched portion in FIG. 12C). Thereafter, as shown in FIG. 12D, nickel phosphorus 11c and nickel 11d are plated in order. This is the rotor manufacturing method according to the second aspect of the present invention.
[0034]
According to these rotor manufacturing methods according to the present invention, the rotor of the eddy current type speed reducer according to the present invention as described above can be easily manufactured without using a complicated jig. Become.
[0035]
【The invention's effect】
As described above, according to the present invention, the copper or copper alloy layer provided on the inner surface of the cylindrical portion of the rotor is included even if the thermal load acting on the rotor is increased without causing a significant reduction in braking torque. It is possible to extend the life so that the deterioration damage life of the coating layer is equivalent to the vehicle running life. Further, such a rotor can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a shaft slide type eddy current type reduction device using a permanent magnet.
FIG. 2 is a main part explanatory view showing a first embodiment of a rotor of an eddy current type speed reducer according to the present invention, in which (a) shows a thickness of a copper layer in a central portion of a width of a surface facing a magnet in the rotor; The thinned one and (b) are the ones without the copper layer at the center of the width.
FIG. 3 is an explanatory view of a principal part showing a second embodiment of the rotor of the eddy current type speed reducer according to the present invention, in which the thickness of the surface of the rotor facing the magnet in FIG. 2 is gradually reduced toward the center of the width; Is.
FIG. 4 is a main part explanatory view showing a third embodiment of the rotor of the eddy current type speed reducer according to the present invention, in which (a) shows the thickness of the central portion of the width of the surface facing the magnet in the rotor; (B) is formed in a convex shape with a thickness that eliminates the copper layer.
FIG. 5 is a main part explanatory view showing a fourth embodiment of the rotor of the eddy current type speed reducer according to the present invention, in which the thickness of the copper layer at the width central portion of the surface facing the magnet in the rotor is directed toward the width center; Is gradually reduced.
6A is an explanatory view of a cylindrical portion, a switch plate, and a permanent magnet portion of a rotor in an eddy current reduction device, and FIG. 6B is an enlarged view of FIG.
FIG. 7 is a diagram showing the results of a durability evaluation test.
FIG. 8 is a diagram for explaining step by step a method of manufacturing the rotor of the eddy current type speed reducer according to the present invention having the configuration shown in FIG. 2 (b).
FIG. 9 is a diagram for explaining step by step a method of manufacturing the rotor of the eddy current type speed reducer according to the present invention having the configuration shown in FIG. 3 (b).
10 is a view for explaining the method of manufacturing the rotor of the eddy current type speed reducer according to the present invention having the configuration shown in FIG. 4 in order. FIG.
11 is a step-by-step description of a method for manufacturing the rotor of the eddy current reduction gear according to the present invention having a configuration in which the thickness of the surface facing the permanent magnet in the rotor of FIG. 4 is gradually reduced toward the center of the width; FIG.
12 is a view for explaining the method of manufacturing the rotor of the eddy current type reduction gear according to the present invention having the configuration shown in FIG. 5 in order.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor 1a Cylindrical part 1aa Inner peripheral surface 3a Permanent magnet 3e Switch board 11 Plating layer 11b Copper 12 Rotor

Claims (8)

磁石と対向する面に銅又は銅合金層を含んだ被覆層を設けた渦電流式減速装置のロータにおいて、前記被覆層における磁力線が集中する幅中央部分の銅又は銅合金層の厚みを、両側の銅又は銅合金層の厚みよりも薄くしたことを特徴とする渦電流式減速装置のロータ。In a rotor of an eddy current type speed reducer provided with a coating layer containing a copper or copper alloy layer on the surface facing the magnet, the thickness of the copper or copper alloy layer at the center of the width where the magnetic field lines in the coating layer are concentrated A rotor of an eddy current type speed reducer characterized by being made thinner than the thickness of the copper or copper alloy layer. 幅中央部分の銅又は銅合金層の厚みを、幅中央に向って漸減させたことを特徴とする請求項1記載の渦電流式減速装置のロータ。The rotor of an eddy current type speed reducer according to claim 1, wherein the thickness of the copper or copper alloy layer in the width center portion is gradually decreased toward the width center. 磁石と対向する面に銅又は銅合金層を含んだ被覆層を設けた渦電流式減速装置のロータにおいて、前記被覆層における磁力線が集中する幅中央部分の銅又は銅合金層をなくしたことを特徴とする渦電流式減速装置のロータ。In the rotor of the eddy current type speed reducer in which the coating layer containing the copper or copper alloy layer is provided on the surface facing the magnet, the copper or copper alloy layer in the central portion of the width where the magnetic field lines in the coating layer are concentrated is eliminated. The rotor of the eddy current type reduction gear characterized by the above. ロータにおける磁石と対向する面の厚みを、幅中央に向って漸減させたことを特徴とする請求項1又は3記載の渦電流式減速装置のロータ。4. The rotor of an eddy current reduction device according to claim 1, wherein the thickness of the surface of the rotor facing the magnet is gradually decreased toward the center of the width. ロータにおける磁石と対向する面の幅中央部分の厚みを、銅又は銅合金層の薄くする或いはなくする厚さだけ凸状に形成したことを特徴とする請求項1又は3又は4記載の渦電流式減速装置のロータ。5. The eddy current according to claim 1, 3, or 4, wherein the thickness of the central portion of the surface of the rotor facing the magnet is convex so that the thickness of the copper or copper alloy layer is reduced or eliminated. Rotor of the speed reducer. ロータにおける磁石と対向する面の厚みを、幅中央に向って漸増させたことを特徴とする請求項2記載の渦電流式減速装置のロータ。The rotor of the eddy current type speed reducer according to claim 2, wherein the thickness of the surface of the rotor facing the magnet is gradually increased toward the center of the width. ロータにおける磁石と対向する面の幅中央部分を、銅又は銅合金層の薄くする或いはなくする厚さだけ凸状に形成し、磁石と対向する面に銅又は銅合金層を形成した後に前記凸状部分に形成した銅又は銅合金層を所定厚さ取り除くことを特徴とする請求項5記載のロータの製造方法。The central portion of the width of the surface facing the magnet in the rotor is formed in a convex shape by a thickness that makes the copper or copper alloy layer thinner or eliminated, and the convex portion is formed after the copper or copper alloy layer is formed on the surface facing the magnet. 6. The method of manufacturing a rotor according to claim 5, wherein a predetermined thickness of the copper or copper alloy layer formed on the shaped portion is removed. 磁石と対向する面の厚みを幅中央に向って漸増させたロータの、前記磁石と対向する面に銅又は銅合金層を形成した後、幅中央部分の銅又は銅合金層を所定厚さ水平に取り除くことを特徴とする請求項6記載のロータの製造方法。After forming a copper or copper alloy layer on the surface facing the magnet of the rotor in which the thickness of the surface facing the magnet is gradually increased toward the center of the width, the copper or copper alloy layer at the center portion of the width is horizontally horizontal. The method of manufacturing a rotor according to claim 6, wherein the rotor is removed.
JP2001011569A 2001-01-19 2001-01-19 Rotor for eddy current type speed reducer and method for manufacturing the same Expired - Fee Related JP3692939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011569A JP3692939B2 (en) 2001-01-19 2001-01-19 Rotor for eddy current type speed reducer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001011569A JP3692939B2 (en) 2001-01-19 2001-01-19 Rotor for eddy current type speed reducer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002218734A JP2002218734A (en) 2002-08-02
JP3692939B2 true JP3692939B2 (en) 2005-09-07

Family

ID=18878694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011569A Expired - Fee Related JP3692939B2 (en) 2001-01-19 2001-01-19 Rotor for eddy current type speed reducer and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3692939B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629948B1 (en) * 2019-06-06 2024-01-29 닛폰세이테츠 가부시키가이샤 Eddy current type reduction device
JP7510055B2 (en) 2019-10-18 2024-07-03 日本製鉄株式会社 Eddy current reduction gear

Also Published As

Publication number Publication date
JP2002218734A (en) 2002-08-02

Similar Documents

Publication Publication Date Title
JP3690616B2 (en) Rotating machine
JPH0386060A (en) Eddy current type reduction gear
US9397539B2 (en) Method for fabricating a rotor for an induction motor
US11205930B2 (en) Axial flux motor assemblies with variable thickness rotors and rotors having interiorly disposed magnets
JPH0638415A (en) Permanent magnet type rotor
JP3630332B2 (en) Permanent magnet rotor
JP3692939B2 (en) Rotor for eddy current type speed reducer and method for manufacturing the same
EP0860934A1 (en) Eddy current brake
US7538456B2 (en) Moving magnet type linear actuator
JP3731468B2 (en) Eddy current reducer
KR102629948B1 (en) Eddy current type reduction device
JP3633291B2 (en) Eddy current reducer
JP7311758B2 (en) Eddy current reduction gear
JP3443825B2 (en) Rotor for eddy current type reduction gear
JP3470592B2 (en) Eddy current type reduction gear
US12003160B2 (en) Eddy current deceleration device
JPH11144930A (en) Stripe-like magnetic path forming member and manufacture of the same
JP2002218733A (en) Eddy-current reduction gear
JP2004007973A (en) Eddy current reduction gear and its manufacturing method
JP2000236655A (en) Eddy current speed reducer
JP3892599B2 (en) Eddy current reducer
JP2023154503A (en) shaft
JP3955691B2 (en) Eddy current reducer for railway vehicles
JP4016537B2 (en) Eddy current reducer
JP2002142442A (en) Eddy current reducer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3692939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees