JP3691679B2 - Network with dual transmission path - Google Patents

Network with dual transmission path Download PDF

Info

Publication number
JP3691679B2
JP3691679B2 JP03966199A JP3966199A JP3691679B2 JP 3691679 B2 JP3691679 B2 JP 3691679B2 JP 03966199 A JP03966199 A JP 03966199A JP 3966199 A JP3966199 A JP 3966199A JP 3691679 B2 JP3691679 B2 JP 3691679B2
Authority
JP
Japan
Prior art keywords
transmission
information
parent
network
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03966199A
Other languages
Japanese (ja)
Other versions
JP2000244506A (en
Inventor
孝浩 西岡
隆夫 野内
卓志 浜田
芳昭 足達
勲 寺門
一男 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03966199A priority Critical patent/JP3691679B2/en
Publication of JP2000244506A publication Critical patent/JP2000244506A/en
Application granted granted Critical
Publication of JP3691679B2 publication Critical patent/JP3691679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は二重伝送路を有するネットワークシステムに関し、特に伝送部の障害時にバイパス機能を持つ伝送装置に関する。
【0002】
【従来の技術】
分散システム構築に必要なネットワークの条件として、高性能、高信頼、経済性があげられる。リング型ネットワークは伝送路数が少なく、広域網の構築が容易なため、近年のLAN技術の進歩と相まって有力な候補である。このような二重共有伝送路を有するリング型ネットワークとして、電子情報通信学会技術報告SE79−120の「光ファイバ通信によるデータハイウェイシステム(94頁、図10)」には、伝送部の障害発生時に伝送部をバイパスする方式が開示されている。
【0003】
これによれば、伝送装置の二つの伝送部の一方に障害が発生すると、障害の発生した伝送部のみをリング伝送路から切り離し、その間をバイパスして伝送路を確保するので、当該伝送路に接続する他の伝送装置の伝送を継続でき、ネットワーク全体の伝送性能を維持できる。
【0004】
【発明が解決しようとする課題】
しかし、従来の伝送部のバイパス方式では二重共有伝送路を伝送する情報の重要度に対する考慮がない。いま、A系とB系の二重伝送路と接続する伝送装置で、A系の伝送路に優先度(重要度)の高い情報を伝送する伝送部Aに障害が発生し、B系の伝送路に優先度の低い情報を伝送する伝送部Bは正常であるとする。この場合、伝送部Aのバイパスで高優先度情報が失われ、一方、伝送部Bの低優先度情報が伝送され続ける。ネットワークのバイパス数が増加すると、結果的に高優先度情報が大量に失われる可能性もあり、システム全体の伝送品質を著しく低下しかねない問題がある。
【0005】
本発明の目的は、上記従来技術の問題点を克服し、バイパスによる伝送品質の低下を抑止できる信頼性の高い、二重伝送路を有するネットワークを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明は、障害の発生した伝送部のバイパス機能を備える複数の伝送装置を二重伝送路で結合するネットワークにおいて、親となる1つの伝送装置(以下、親伝送装置)が伝送路毎にバイパス状態を監視し、バイパス数の少ない方を高優先度情報、バイパス数の多い方を低優先度情報の伝送路に設定し、この伝送路設定情報に従って複数の子となる伝送装置(以下、子伝送装置)の各々が高・低優先度の子伝送情報を伝送路別に分配して伝送する構成としたことを特徴とする。
【0007】
また、伝送サイクル毎に、送元アドレス(SA)を含む子伝送情報が2つの伝送部から伝送され、前記親伝送装置は伝送路毎に前記子伝送情報から取得した送元アドレスに不在のアドレスによりバイパス個所を検知することを特徴とする。なお、前記子伝送情報は子伝送装置の伝送部毎のアライブ情報であればよく、高/低優先度情報を含むデータフレームによっても、あるいはよらなくてもよい。
【0008】
また、前記伝送路設定情報は、前記親伝送装置の伝送フレームに含まれる高/低の情報優先度で、かつ、二つの伝送路の一方に高優先度情報、他方に低優先度情報が伝送されるように初期設定されてなる。なお、前記伝送路設定情報は、高/低優先度情報を含むデータフレームによらず、別に発行する管理フレームによってもよい。
【0009】
さらに、前記親伝送装置がバイパス状態となった場合に、それを最初に検知した1つの子伝送装置が親伝送装置の代行可能な構成を備えてなる。
【0010】
図面を参照して、本発明の作用を説明する。図1は本発明の二重伝送路を有するネットワークの概略の構成と作用を示す説明図である。一つの親伝送装置101と複数の子伝送装置102−1〜5がリング型の二重伝送路103A,Bで接続され、二つの伝送路103に高/低優先度情報を分配するため、親伝送装置101から発行される伝送路設定情報に従い、各子伝送装置102は自発の高・低優先度情報を分別し、伝送部104A/Bを介して伝送路103(A/B)に高優先度情報105、伝送路103(B/A)に低優先度情報106を送信している。
【0011】
図1(a)では、伝送路103Aで高優先度情報105、伝送路103Bで低優先度情報106を伝送している。いま、伝送路103Aと接続する子伝送装置▲3▼の伝送部104Aに障害が発生したとする。すると、子伝送装置▲3▼のバイパス機構が作動し、伝送路103Aと伝送部104Aを切り離し、伝送路103Aをバイパス108Aでバイパスする。親伝送装置101は伝送周期毎に、各伝送装置102のバイパス状態を伝送路毎に監視し、高優先度情報を伝送している伝送路103Aのバイパス数が伝送路103Bのバイパス数を上回る場合は、A系とB系の伝送路設定情報を切り換える。
【0012】
同図(b)は伝送路設定情報の切り換え後の状態を示し、親伝送装置101からの切り換え設定に従い、各伝送装置102は伝送路103Bに高優先度情報105、伝送路103Aに低優先度情報106を送信している。この結果、障害を発生している子伝送装置▲3▼は、自発の高優先度情報105を伝送部104Bに分配して伝送する。
【0013】
図2は、本発明による伝送装置の特徴部を示す概略の機能ブロック図で、(a)は親伝送装置、(b)は子伝送装置である。親伝送装置101は伝送部104A,Bと、バイパス制御部113と、アクセス制御部114と、優先度制御部115を含んでいる。二つの伝送部104A,Bは伝送路103A,Bとそれぞれ送受信を行う。バイパス制御部113は伝送部103A/Bの障害発生時に、切替部109を作動して障害側をバイパスする。アクセス部114は各伝送装置102からの伝送情報を伝送部104A,Bから受け取り、また、伝送周期の度に自発の伝送情報を送出する。
【0014】
優先度制御部115は本発明の特徴部をなすもので、高/低の優先度情報と伝送路A/Bを対応させる伝送路設定と、高優先度情報を伝送する伝送路(A/B)のバイパス数が他伝送路(B/A)を上回る場合に、A系とB系の伝送路設定を切り換え、自発の伝送フレームに伝送路設定情報を載せて、各子伝送装置102に通知する。
【0015】
子伝送装置102は二つの伝送部104A,Bと、バイパス制御部113と、アクセス部114及び情報分配制御部116を有している。アクセス部114は親伝送装置101の伝送フレーム、自宛伝送フレーム、送信権をチエックして分岐する。また、伝送周期毎に自発の伝送フレームを送出する。
【0016】
情報分配制御部116は、親伝送装置101の伝送フレームからの伝送路設定情報を伝送路別にチエックし、その伝送路設定に従って自発の高・低優先度情報を伝送路103A、B別に分配する。また、親伝送装置101の障害時に、親の機能を代行するために、子伝送装置102の情報分配制御部116を親の優先度制御部115に機能変更できるようにしている。
【0017】
以上のように、本発明のネットワークは二重伝送路の各々に異なる情報を送信し、かつ、故障した伝送部をバイパスして他の伝送装置の伝送路を確保するので、ネットワークの伝送効率を向上できる。特に、二つの伝送路を高優先度と低優先度の情報伝送に使い分けている場合に、伝送部の障害、つまりバイパス数の少ない伝送路に高優先度情報を分配するので、より多くの伝送装置で高優先度情報の伝送が可能となり、ネットワーク全体での伝送品質の低下を押さえ、ネットワークの可用性を向上できる。
【0018】
【発明の実施の形態】
以下、本発明の一実施例を詳細に説明する。本発明のネットワークの実施例は図1及び図2に示したように、1つの親伝送装置101と分散配置された複数の子伝送装置102が、各々の伝送部104を経由して順次シリアルに接続されて、ループネットワークを構成し、二つの伝送路103A、Bは伝送情報の優先度により使い分けされる。伝送装置101、102は伝送路103A、Bと送受信する二つの伝送部104A、Bを有し、障害が発生した伝送部104Aまたは104Bを伝送路103から切り離し、その間をバイパス108で接続する切替部109を備えている。なお、伝送路103AのループをA系、103BのループをB系と呼んで区別する。
【0019】
図3は、本実施例によるネットワークのループアクセス方式を示す伝送タイムチャートである。ここでは説明を簡単にする為、トークンパスタイプのループアクセス方式として、GAポーリングの場合を二重ループ伝送路内の片系ループについて示している。
【0020】
本方式ではループネットワーク内の親伝送装置101がマスター(中継動作をしない1次局モード)となって、子伝送装置102(中継動作をする2次局モード)に対し、一般にGA(Go Ahead)とよばれる送信権を意味する信号Tを供給する。送信要求のある伝送装置102は伝送路上に送信権Tを検出したらこれを下流に中継しない様にして(すなわち自伝送装置より下流の伝送装置が同時に送信する事を避ける)、フレームと呼ぶ伝送情報を送信する。フレーム送信が完了すると中継状態に戻る事で自伝送装置より下流伝送装置にTを転送する。
【0021】
送信権Tを時間おくれなく順次下流に移していくことで、全伝送装置の送信要求を効率的に処理していく。全伝送装置の送信が完了したら親伝送装置101は再度Tの生成が必要で、これを伝送サイクルと呼び、本例ではある固定の長さとする。なお、本図では全ての伝送装置で送信要求があり、リング伝送路内に伝送部バイパスが発生してない状態の例を示しており、横軸は時間、縦軸は伝送装置の物理的な位置を各々示している。
【0022】
図4は、伝送情報のフォーマットの一例である。本実施例の伝送情報としては、情報フレームData、送信権Tの2種があり、フレーム形式はHDLC(High level Data Link Control)に準じている。従って、図中の記号Fはフレームの境界を表わすフラグ、DAは宛先アドレス、SAは送元アドレス、Cは制御バイト、Iはデータ、FCSはエラー検出部を示している。
【0023】
制御バイトCの内容はPLとMからなり、PLはデータIの送信優先度を示すもので高低2種類を設定でき、例えば、1が高優先度情報、0が低優先度情報となる。Mは親伝送装置と子伝送装置の伝送フレーム識別するデータである。親伝送装置101は自発の伝送フレームのMに親の識別子を設定し、高優先度情報のフレームのPLに1、低優先度情報のフレームのPLに0を設定し、例えばA系ループに高優先度情報、B系ループに低優先度情報の伝送フレームを送信する。
【0024】
このA系、B系に分配された親伝送フレームのPLの送信優先度が、本発明で言う伝送路設定情報となる。つまり、伝送路A、Bの送信優先度(高/低)を別の管理フレームによらず、親伝送装置101の伝送情報の優先度情報をそのまま利用している。本実施例によればシステム構成が簡単で、ネットワークの伝送性能の低下を生じない。
【0025】
子伝送装置102はA系とB系から受信した、Mの識別子を持つ伝送フレームのPLのデータから、どちらのループで高優先度情報を伝送すべきかを知る。また、子伝送装置102は自己の伝送部104が正常動作(アライブ状態)していることを親伝送装置101に通知するため、送元アドレスSAに自アドレスをのせたDataフレームを伝送サイクルで発行する。自発の伝送情報がない場合は、宛先アドレスDAやデータIは空になる。親伝送装置101は全受信情報の送元アドレスSAのうち、受信不能のSAからバイパス発生部分を特定する。
【0026】
次に、親伝送装置101と子伝送装置102の詳細な構成と動作を説明する。図5は親伝送装置の機能構成で、図2(a)をより具体的に示している。親伝送装置101は複数の情報機器215を機器インターフェース214を介して収容し、ネットワーク内にある他の任意の情報機器との伝送を可能にしている。伝送部104を構成する送信部206と受信部207は、それぞれ伝送路103A,B毎に設けられて伝送情報の送受信を実行する。
【0027】
アクセス部114A、Bは伝送路103A、Bを複数の伝送装置で共有使用する為の機能で、後述するように、受信伝送路からの自宛情報の分岐取り込みと、送信伝送路への自発情報の挿入処理をおこなう。伝送制御211は情報転送する為の伝送プロトコル処理を実行する機能で、通常プロセッサのソフトウェア処理で実現される。メモリ212はプロセッサの処理プログラムおよび伝送情報の格納部分である。
【0028】
網構成制御部201は伝送路の切替を制御する為の機能で、予め全伝送装置のSA(送元アドレス)を記憶し、全受信フレームのSAを監視して伝送部バイパスの有無と発生個所を検出するバイパス発生部検知202と、バイパスの発生個所の情報からA系、B系伝送路のバイパス件数を比較し、バイパス件数の少ない伝送路に高優先度情報を、バイパス件数の多い伝送路に低優先度情報を分配するように、伝送路対応に高/低の送信優先度を設定する伝送路設定204と、この送信優先度、つまり伝送路設定情報(本実施例では、親伝送装置の伝送情報の高/低優先度を利用)をDataフレームのCフィールド(制御バイト)のPLビットに載せて、各伝送装置に通知する伝送路通知203を有している。
【0029】
バイパス制御部113と切替部109の説明は後述する。なお、送受信部206、207を除く各機能部は、内部バス213により相互に接続され、情報交換が可能な構成となっている。
【0030】
図6は、子伝送装置の機能構成図で、図2(b)をより具体的に示している。親伝送装置101と同等の機能には同一の符号を付して詳細な説明を省略する。子伝送装置102は複数の情報機器215を機器インターフェース214を介して収容し、ネットワーク内にある他の任意の情報機器との伝送を可能にしている。アクセス部114A、Bは送信部206と受信部207を介し、受信伝送路からの自宛情報の分岐取り込みと、送信伝送路への自発情報の挿入処理をおこなう。
【0031】
子伝送装置102の網構成制御部301は、伝送路103A,Bの切替を制御する為の機能で、親伝送フレームのCフィールドのPLビットから伝送路設定情報(送信優先度)を検知する伝送路設定情報検知302と、この伝送路設定情報に従い、自発の高・低優先度の伝送情報をA系、B系どちらの伝送路に分配するかを割り付ける伝送路割付303と、子伝送装置102では機能していない伝送路通知203より成る。
【0032】
なお、子伝送装置102の網構成制御部301に、親伝送装置101の網構成制御部201と同じ機能を具備させ、親伝送装置101に障害が発生し、ループ内に親伝送フレームが存在しないことを最初に検知した子伝送装置102に、代行させるようにしてもよい。すなわち、親伝送フレームの消失を最初に検知した子伝送装置102の伝送路設定情報検知302が、伝送路通知203に機能開始、伝送路割付303に伝送路設定203への機能変更をそれぞれ指示し、自らもバイパス発生検知202に機能変更して、親伝送装置101となり、ネットワークの伝送を継続する。
【0033】
図7は、伝送装置のアクセス部の機能構成図である。伝送路103A、Bからの受信情報はアクセス部1145A、Bに取り込まれ、アクセス制御401、受信データバッファ402に供給される。アクセス制御401は伝送路103に直列に挿入され、自伝送装置が情報を送信するか受信情報をそのまま中継するかを制御する。トークンパスタイプのループアクセス方式では、送信権Tの獲得や送信情報のループ一巡消去等の為に必須の機能である。受信データバッファ402はそれぞれ入力前段に受信情報フィルタを備えて、目的の情報のみを選択して格納する一時メモリである。
【0034】
一方、送信情報の一時メモリである送信権パターンバッファ403、送信データバッファ404は、アクセス制御401の中継出力とともにセレクタ405に集められ、その内の1情報だけが選択されて伝送路103に出力される。これらの送信タイミングは、アクセス制御401より制御される。セレクタ405および送信権パターンバッファ403を除く各機能モジュールは、内部バス213に接続されており、図5、6で示した網構成制御部201、301、伝送制御211、メモリ212等と情報交換が可能である。
【0035】
図8は、伝送装置のバイパス手段の機能構成図である。バイパス制御部113は、送信部206、受信部207からなる伝送部104A、Bを監視し、伝送サイクル毎の送信または受信が実行されていない、つまり、伝送部104に障害が発生した場合、切替部109A/Bを制御して障害発生の伝送部104A/Bを伝送路103から切り離し、その間をバイパス108で接続する。
【0036】
図9は、一実施例による親伝送装置の動作フローを示したものである。親伝送装置101は、まず伝送路設定情報の初期設定を行う(s101)。伝送サイクル毎に、親伝送装置101は伝送路103A、Bに親伝送フレーム(Dataフレーム)を送信する(s102)。親伝送フレームには親識別子Mと送信優先度(高/低)PLが載せられ、伝送路へ分配後のPLは伝送路設定情報である。次に、各子伝送装置102からの伝送データを伝送路103A、Bから受信する(s103)。
【0037】
親伝送フレームが一巡して受信されたタイミングで、全受信データから不在の送元アドレスSAを割り出し、バイパス発生個所を検知する(s104)。次に、伝送路103Aと103Bのバイパス数を比較し、伝送路設定情報の切替の要否を判定する(s105)。現在、高優先度を設定されている伝送路103A/Bのバイパス数が、他(B/A)より多ければ切替要となり、A系とB系の伝送路設定情報を切替る(s106)。それ以外は、現在の伝送路設定情報を保持して、s102に戻る。
【0038】
図10は、子伝送装置の動作フローを示したものである。伝送サイクル毎に、親伝送フレームを受信し(s201)、伝送路毎の伝送路設定情報(PL)を検出し(s202)、自発の高・低優先度情報を伝送路設定情報(PL)に対応して伝送路103A、Bに割付け(s203)、割付けに従って伝送路103A、Bに分配した伝送データを送信する(s204)。子伝送フレームには、送元アドレスSAをのせて伝送し、親伝送装置101の障害発生個所検知に利用する。
【0039】
【発明の効果】
本発明のネットワークによれば、複数の伝送装置を二重伝送路で結合し、各伝送装置の高優先度情報と低優先度情報を伝送路別に伝送する場合に、伝送路毎にバイパスされた伝送部を検知し、バイパスの少ない伝送路で高優先度情報を伝送するように制御するので、障害発生による高優先度情報の消失を抑制でき、伝送品質と伝送効率を向上する効果がある。
【図面の簡単な説明】
【図1】本発明の二重伝送路を有するネットワークの概略構成と動作の一実施例を示す説明図。
【図2】親伝送装置と子伝送装置の概略の機能の一実施例を示す構成図。
【図3】一実施例のループアクセス方式を示すネットワークの伝送タイムチャート。
【図4】一実施例による伝送情報のフォーマットの説明図。
【図5】一実施例による親伝送装置の機能構成図。
【図6】一実施例による子伝送装置の機能構成図。
【図7】一実施例によるアクセス部の機能構成図。
【図8】一実施例による伝送部バイパス機構の機能構成図。
【図9】一実施例による親伝送装置の動作フローチャート。
【図10】一実施例による子伝送装置の動作フローチャート。
【符号の説明】
101…親伝送装置、102…子伝送装置、103…伝送路、104…伝送部、105…高優先度情報、106…低優先度情報、108…バイパス、109…切替部、113…バイパス制御部、114…アクセス部、115…優先度制御部、116…情報分配制御部、201…網構成制御部、202…バイパス発生部検知、203…伝送路通知、204…伝送路設定、206…送信部、207…受信部、211…伝送制御、212…メモリ、213…内部バス、214…機器インタフェース、215…情報機器、301…網構成制御部、302…伝送路設定情報検知、303…伝送路割付。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a network system having a dual transmission line, and more particularly to a transmission apparatus having a bypass function when a transmission unit fails.
[0002]
[Prior art]
High-performance, high-reliability, and economic efficiency are examples of network conditions necessary for building a distributed system. The ring network is a promising candidate because of the small number of transmission paths and easy construction of a wide area network, coupled with recent advances in LAN technology. As a ring network having such a dual shared transmission line, “Data Highway System by Optical Fiber Communication (page 94, FIG. 10)” of the Technical Report SE79-120 of the Institute of Electronics, Information and Communication Engineers, shows that when a failure occurs in the transmission unit. A method of bypassing the transmission unit is disclosed.
[0003]
According to this, when a failure occurs in one of the two transmission units of the transmission apparatus, only the transmission unit in which the failure has occurred is disconnected from the ring transmission path, and the transmission path is secured by bypassing between them. Transmission of other connected transmission devices can be continued, and transmission performance of the entire network can be maintained.
[0004]
[Problems to be solved by the invention]
However, in the conventional transmission unit bypass method, there is no consideration on the importance of information transmitted through the dual shared transmission line. Now, in a transmission device connected to the A-system and B-system dual transmission lines, a failure occurs in the transmission unit A that transmits high-priority (importance) information to the A-system transmission lines. It is assumed that the transmission unit B that transmits low priority information to the path is normal. In this case, the high priority information is lost due to the bypass of the transmission unit A, while the low priority information of the transmission unit B continues to be transmitted. As the number of network bypasses increases, a large amount of high priority information may be lost as a result, and there is a problem that the transmission quality of the entire system may be significantly reduced.
[0005]
An object of the present invention is to provide a highly reliable network having a dual transmission path that can overcome the above-described problems of the prior art and suppress deterioration in transmission quality due to bypass.
[0006]
[Means for Solving the Problems]
The present invention that achieves the above object is to provide a single transmission apparatus (hereinafter referred to as a parent transmission apparatus) as a parent in a network in which a plurality of transmission apparatuses having a bypass function of a transmission unit in which a failure has occurred are coupled by a dual transmission path. The bypass status is monitored for each transmission line, and the one with the smaller number of bypasses is set as the transmission line for the high priority information and the one with the larger number of bypasses is set as the transmission path for the low priority information. Each of the devices (hereinafter referred to as child transmission devices) is configured to distribute and transmit high / low priority child transmission information according to transmission paths.
[0007]
Further, in each transmission cycle, child transmission information including a source address (SA) is transmitted from two transmission units, and the parent transmission device is an address that is absent from the source address obtained from the child transmission information for each transmission path. It is characterized by detecting a bypass part by. The child transmission information may be alive information for each transmission unit of the child transmission device, and may or may not be based on a data frame including high / low priority information.
[0008]
The transmission path setting information includes high / low information priority included in the transmission frame of the parent transmission apparatus, and high priority information is transmitted to one of the two transmission paths and low priority information is transmitted to the other. It is initially set to be The transmission path setting information may be a management frame that is issued separately, instead of a data frame including high / low priority information.
[0009]
Furthermore, when the parent transmission device is in a bypass state, one child transmission device that first detects it is configured to be able to substitute for the parent transmission device.
[0010]
The operation of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing the schematic configuration and operation of a network having a dual transmission path according to the present invention. One parent transmission device 101 and a plurality of child transmission devices 102-1 to 102-5 are connected by ring-type dual transmission lines 103A and 103B, and the high / low priority information is distributed to the two transmission lines 103. In accordance with the transmission path setting information issued from the transmission apparatus 101, each child transmission apparatus 102 sorts the spontaneous high / low priority information and gives high priority to the transmission path 103 (A / B) via the transmission unit 104A / B. Degree information 105 and low priority information 106 are transmitted to the transmission path 103 (B / A).
[0011]
In FIG. 1A, high priority information 105 is transmitted on the transmission path 103A, and low priority information 106 is transmitted on the transmission path 103B. It is assumed that a failure has occurred in the transmission unit 104A of the child transmission device (3) connected to the transmission line 103A. Then, the bypass mechanism of the child transmission device (3) is activated to disconnect the transmission path 103A and the transmission unit 104A and bypass the transmission path 103A with the bypass 108A. The parent transmission apparatus 101 monitors the bypass state of each transmission apparatus 102 for each transmission cycle, and the number of bypasses in the transmission path 103A transmitting high priority information exceeds the number of bypasses in the transmission path 103B. Switches the transmission path setting information of the A system and the B system.
[0012]
FIG. 5B shows a state after the transmission line setting information is switched. In accordance with the switching setting from the parent transmission apparatus 101, each transmission apparatus 102 has high priority information 105 for the transmission line 103B and low priority for the transmission line 103A. Information 106 is transmitted. As a result, the child transmission device {circle around (3)} in which the failure has occurred distributes the spontaneous high priority information 105 to the transmission unit 104B for transmission.
[0013]
FIG. 2 is a schematic functional block diagram showing the characteristic part of the transmission apparatus according to the present invention, where (a) is a parent transmission apparatus and (b) is a child transmission apparatus. The parent transmission apparatus 101 includes transmission units 104A and 104B, a bypass control unit 113, an access control unit 114, and a priority control unit 115. The two transmission units 104A and B perform transmission and reception with the transmission lines 103A and B, respectively. When the failure of the transmission unit 103A / B occurs, the bypass control unit 113 operates the switching unit 109 to bypass the failure side. The access unit 114 receives transmission information from each transmission device 102 from the transmission units 104A and 104B, and sends out spontaneous transmission information every transmission cycle.
[0014]
The priority control unit 115 is a characteristic part of the present invention. The priority control unit 115 is a transmission line setting that associates high / low priority information with the transmission line A / B, and a transmission line (A / B) that transmits the high priority information. ) Exceeds the other transmission line (B / A), the transmission line setting of the A system and the B system is switched, the transmission line setting information is placed in the spontaneous transmission frame, and notified to each slave transmission device 102 To do.
[0015]
The slave transmission apparatus 102 includes two transmission units 104A and 104B, a bypass control unit 113, an access unit 114, and an information distribution control unit 116. The access unit 114 checks and branches the transmission frame of the parent transmission apparatus 101, the transmission frame addressed to itself, and the transmission right. In addition, a spontaneous transmission frame is transmitted every transmission cycle.
[0016]
The information distribution control unit 116 checks transmission path setting information from the transmission frame of the parent transmission apparatus 101 for each transmission path, and distributes spontaneous high / low priority information for each transmission path 103A and B according to the transmission path setting. In addition, when the failure of the parent transmission apparatus 101 occurs, the function of the information distribution control unit 116 of the child transmission apparatus 102 can be changed to the parent priority control unit 115 in order to perform the function of the parent.
[0017]
As described above, the network of the present invention transmits different information to each of the dual transmission lines and secures the transmission line of other transmission devices by bypassing the failed transmission unit, thereby improving the transmission efficiency of the network. It can be improved. In particular, when two transmission lines are used separately for high-priority and low-priority information transmission, high-priority information is distributed to the transmission path failure, that is, the transmission path with a small number of bypasses, so that more transmissions are possible. High priority information can be transmitted by the device, so that deterioration of transmission quality in the entire network can be suppressed and network availability can be improved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail. In the embodiment of the network of the present invention, as shown in FIGS. 1 and 2, one parent transmission apparatus 101 and a plurality of child transmission apparatuses 102 arranged in a distributed manner are sequentially serialized via respective transmission units 104. They are connected to form a loop network, and the two transmission paths 103A and 103B are selectively used according to the priority of transmission information. The transmission apparatuses 101 and 102 have two transmission units 104A and 104 that transmit and receive to the transmission lines 103A and 103B, disconnect the transmission unit 104A or 104B in which a failure has occurred from the transmission line 103, and connect between them by a bypass 108 109. Note that the loop of the transmission path 103A is called the A system and the loop of the 103B is called the B system.
[0019]
FIG. 3 is a transmission time chart showing a network loop access system according to this embodiment. Here, for simplicity of explanation, the GA polling case is shown for a single loop in a double loop transmission line as a token path type loop access method.
[0020]
In this method, the master transmission device 101 in the loop network becomes the master (primary station mode without relay operation), and generally the GA (Go Ahead) for the child transmission device 102 (secondary station mode with relay operation). A signal T meaning a transmission right called is supplied. When the transmission apparatus 102 having a transmission request detects the transmission right T on the transmission line, the transmission apparatus 102 does not relay the transmission right T downstream (that is, avoids simultaneous transmission by a transmission apparatus downstream from the own transmission apparatus), and transmission information called a frame. Send. When the frame transmission is completed, T is transferred from the own transmission apparatus to the downstream transmission apparatus by returning to the relay state.
[0021]
By sequentially transferring the transmission right T to the downstream without taking time, the transmission requests of all the transmission apparatuses are efficiently processed. When transmission of all the transmission apparatuses is completed, the parent transmission apparatus 101 needs to generate T again, and this is called a transmission cycle, which is a fixed length in this example. Note that this figure shows an example of a state in which there is a transmission request in all the transmission devices, and no transmission unit bypass occurs in the ring transmission line, the horizontal axis is time, and the vertical axis is the physical transmission device. Each position is shown.
[0022]
FIG. 4 is an example of a format of transmission information. There are two types of transmission information according to the present embodiment, information frame Data and transmission right T, and the frame format conforms to HDLC (High Level Data Link Control). Accordingly, the symbol F in the figure indicates a flag indicating a frame boundary, DA indicates a destination address, SA indicates a source address, C indicates a control byte, I indicates data, and FCS indicates an error detection unit.
[0023]
The contents of the control byte C are composed of PL and M. The PL indicates the transmission priority of the data I, and two types can be set, for example, 1 is high priority information and 0 is low priority information. M is data for identifying transmission frames of the parent transmission device and the child transmission device. The parent transmission apparatus 101 sets the parent identifier in M of the spontaneous transmission frame, sets 1 in the PL of the high priority information frame, and 0 in the PL of the low priority information frame. The transmission frame of the low priority information is transmitted to the priority information and the B-system loop.
[0024]
The transmission priority of PL of the parent transmission frame distributed to the A system and the B system becomes the transmission path setting information referred to in the present invention. That is, the priority information of the transmission information of the parent transmission apparatus 101 is used as it is, regardless of the transmission priority (high / low) of the transmission paths A and B without using another management frame. According to the present embodiment, the system configuration is simple and the transmission performance of the network is not deteriorated.
[0025]
The child transmission apparatus 102 knows which loop should transmit the high priority information from the PL data of the transmission frame having the identifier of M received from the A system and the B system. In addition, the child transmission apparatus 102 issues a Data frame with its own address on the source address SA in a transmission cycle in order to notify the parent transmission apparatus 101 that its own transmission unit 104 is operating normally (alive state). To do. When there is no spontaneous transmission information, the destination address DA and data I are empty. The parent transmission apparatus 101 identifies the bypass occurrence part from the SA that cannot be received among the source addresses SA of all reception information.
[0026]
Next, detailed configurations and operations of the parent transmission apparatus 101 and the child transmission apparatus 102 will be described. FIG. 5 is a functional configuration of the parent transmission apparatus, and more specifically shows FIG. The parent transmission apparatus 101 accommodates a plurality of information devices 215 via a device interface 214, and enables transmission with any other information device in the network. A transmission unit 206 and a reception unit 207 constituting the transmission unit 104 are provided for the transmission paths 103A and 103B, respectively, and execute transmission / reception of transmission information.
[0027]
The access units 114A and 114B are functions for sharing the transmission paths 103A and B with a plurality of transmission apparatuses. As will be described later, branching of the self-addressed information from the reception transmission path and spontaneous information to the transmission transmission path are described later. Perform the insertion process. The transmission control 211 is a function for executing transmission protocol processing for transferring information, and is usually realized by software processing of a processor. The memory 212 is a storage part for the processor processing program and transmission information.
[0028]
The network configuration control unit 201 is a function for controlling the switching of the transmission path, stores the SA (source address) of all transmission apparatuses in advance, monitors the SA of all received frames, and determines whether or not there is a transmission unit bypass. Bypass detection unit 202 for detecting the number of bypasses in the A-system and B-system transmission lines from the information on the location of the occurrence of the bypass, and high priority information for transmission lines with a small number of bypasses, transmission lines with a large number of bypasses Transmission line setting 204 for setting high / low transmission priority corresponding to the transmission line so that the low priority information is distributed to the transmission line, and this transmission priority, that is, transmission line setting information (in this embodiment, the parent transmission apparatus) The transmission path notification 203 for notifying each transmission device is put on the PL bit of the C field (control byte) of the Data frame.
[0029]
The description of the bypass control unit 113 and the switching unit 109 will be described later. The functional units other than the transmission / reception units 206 and 207 are connected to each other via an internal bus 213 so that information can be exchanged.
[0030]
FIG. 6 is a functional configuration diagram of the child transmission apparatus, and more specifically shows FIG. 2B. The same functions as those of the parent transmission apparatus 101 are denoted by the same reference numerals, and detailed description thereof is omitted. The slave transmission apparatus 102 accommodates a plurality of information devices 215 via the device interface 214, and enables transmission with any other information device in the network. The access units 114A and 114 perform branching and fetching of self-addressed information from the reception transmission path and insertion processing of spontaneous information into the transmission transmission path via the transmission unit 206 and the reception unit 207.
[0031]
The network configuration control unit 301 of the child transmission apparatus 102 is a function for controlling the switching of the transmission paths 103A and 103B, and detects transmission path setting information (transmission priority) from the PL bit in the C field of the parent transmission frame. A path setting information detection 302; a transmission path allocation 303 for allocating whether transmission information of high priority and low priority is distributed to the transmission path of the A system or B system according to the transmission path setting information; and the child transmission apparatus 102 Consists of a non-functioning transmission line notification 203.
[0032]
Note that the network configuration control unit 301 of the child transmission device 102 has the same function as the network configuration control unit 201 of the parent transmission device 101, a failure occurs in the parent transmission device 101, and there is no parent transmission frame in the loop. The child transmission apparatus 102 that first detects this may be substituted. That is, the transmission path setting information detection 302 of the child transmission apparatus 102 that first detected the disappearance of the parent transmission frame instructs the transmission path notification 203 to start the function and the transmission path allocation 303 to change the function to the transmission path setting 203. The function itself is changed to the bypass occurrence detection 202 to become the parent transmission apparatus 101, and the network transmission is continued.
[0033]
FIG. 7 is a functional configuration diagram of the access unit of the transmission apparatus. Information received from the transmission paths 103A, B is taken into the access units 1145A, B and supplied to the access control 401 and the reception data buffer 402. The access control 401 is inserted in series in the transmission path 103 and controls whether the own transmission apparatus transmits information or relays received information as it is. The token path type loop access method is an essential function for acquiring the transmission right T and for erasing the loop of transmission information. The reception data buffer 402 is a temporary memory that includes a reception information filter in the previous stage of input and selects and stores only target information.
[0034]
On the other hand, the transmission right pattern buffer 403 and the transmission data buffer 404, which are temporary memories of transmission information, are collected together with the relay output of the access control 401 in the selector 405, and only one piece of information is selected and output to the transmission path 103. The These transmission timings are controlled by the access control 401. Each functional module except the selector 405 and the transmission right pattern buffer 403 is connected to the internal bus 213, and exchanges information with the network configuration control units 201 and 301, the transmission control 211, the memory 212, and the like shown in FIGS. Is possible.
[0035]
FIG. 8 is a functional configuration diagram of the bypass means of the transmission apparatus. The bypass control unit 113 monitors the transmission units 104A and 104B including the transmission unit 206 and the reception unit 207, and performs switching when transmission or reception for each transmission cycle is not performed, that is, when a failure occurs in the transmission unit 104. The unit 109A / B is controlled to disconnect the faulty transmission unit 104A / B from the transmission path 103 and connect between them by the bypass 108.
[0036]
FIG. 9 shows an operation flow of the parent transmission apparatus according to one embodiment. First, the parent transmission apparatus 101 performs initial setting of transmission path setting information (s101). For each transmission cycle, the parent transmission apparatus 101 transmits a parent transmission frame (Data frame) to the transmission paths 103A and 103B (s102). The parent transmission frame carries a parent identifier M and a transmission priority (high / low) PL, and the PL after distribution to the transmission path is transmission path setting information. Next, transmission data from each child transmission apparatus 102 is received from the transmission paths 103A and 103B (s103).
[0037]
At the timing when the parent transmission frame is received in a round, the absent source address SA is determined from all the received data, and the location where the bypass occurs is detected (s104). Next, the number of bypasses of the transmission lines 103A and 103B is compared to determine whether or not switching of the transmission line setting information is necessary (s105). If the number of bypasses of the transmission path 103A / B for which high priority is currently set is larger than the other (B / A), switching is required, and the transmission path setting information for the A system and the B system is switched (s106). Otherwise, the current transmission path setting information is held, and the process returns to s102.
[0038]
FIG. 10 shows an operation flow of the child transmission apparatus. For each transmission cycle, a parent transmission frame is received (s201), transmission path setting information (PL) for each transmission path is detected (s202), and spontaneous high / low priority information is used as transmission path setting information (PL). Correspondingly, the transmission data is allocated to the transmission paths 103A and B (s203), and the transmission data distributed to the transmission paths 103A and B is transmitted according to the allocation (s204). The child transmission frame is transmitted with the source address SA, and is used for detecting the location where the parent transmission apparatus 101 has failed.
[0039]
【The invention's effect】
According to the network of the present invention, when a plurality of transmission devices are coupled by a double transmission line, and high priority information and low priority information of each transmission apparatus are transmitted for each transmission line, each transmission line is bypassed. Since the transmission unit is detected and controlled so that high priority information is transmitted through a transmission path with few bypasses, loss of the high priority information due to the occurrence of a failure can be suppressed, and there is an effect of improving transmission quality and transmission efficiency.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a schematic configuration and operation of a network having a dual transmission path according to the present invention.
FIG. 2 is a configuration diagram illustrating an example of schematic functions of a parent transmission device and a child transmission device.
FIG. 3 is a network transmission time chart showing a loop access system according to an embodiment;
FIG. 4 is an explanatory diagram of a format of transmission information according to an embodiment.
FIG. 5 is a functional configuration diagram of a parent transmission apparatus according to an embodiment.
FIG. 6 is a functional configuration diagram of a child transmission device according to an embodiment.
FIG. 7 is a functional configuration diagram of an access unit according to an embodiment.
FIG. 8 is a functional configuration diagram of a transmission unit bypass mechanism according to an embodiment.
FIG. 9 is an operation flowchart of the parent transmission apparatus according to one embodiment.
FIG. 10 is an operation flowchart of a child transmission apparatus according to an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Master transmission apparatus, 102 ... Child transmission apparatus, 103 ... Transmission path, 104 ... Transmission part, 105 ... High priority information, 106 ... Low priority information, 108 ... Bypass, 109 ... Switching part, 113 ... Bypass control part , 114 ... access section, 115 ... priority control section, 116 ... information distribution control section, 201 ... network configuration control section, 202 ... bypass generation section detection, 203 ... transmission path notification, 204 ... transmission path setting, 206 ... transmission section 207: Reception unit 211 ... Transmission control 212 ... Memory 213 ... Internal bus 214 ... Device interface 215 ... Information device 301 ... Network configuration control unit 302 ... Transmission path setting information detection 303 ... Transmission path allocation .

Claims (4)

障害の発生した伝送部のバイパス機能を備える複数の伝送装置を二重伝送路で結合するネットワークにおいて、
親となる1つの伝送装置(以下、親伝送装置)が伝送路毎にバイパス状態を監視し、バイパス数の少ない方を高優先度情報、バイパス数の多い方を低優先度情報の伝送路に設定し、この伝送路設定情報に従って複数の子となる伝送装置(以下、子伝送装置)の各々が高・低優先度の子伝送情報を伝送路別に分配して伝送するとともに、
前記子伝送装置の伝送部に障害が発生して前記バイパス機能によりバイパスされる時に、前記高優先度情報を伝送している伝送路のバイパス数が前記低優先度情報を伝送している伝送路のバイパス数を上回った場合は両伝送路の伝送路設定情報を切り換えることを特徴とする二重伝送路を有するネットワーク。
In a network in which a plurality of transmission devices having a bypass function of a transmission unit in which a failure has occurred are coupled by a double transmission path,
One parent transmission device (hereinafter referred to as “parent transmission device”) monitors the bypass state for each transmission line, and the one with the smaller number of bypasses becomes the transmission line for the high priority information and the one with the larger number of bypasses becomes the transmission line for the low priority information. In accordance with this transmission path setting information, each of a plurality of child transmission devices (hereinafter referred to as child transmission devices) distributes the high / low priority child transmission information for each transmission path and transmits it ,
A transmission path in which the number of bypasses of the transmission path transmitting the high priority information transmits the low priority information when a failure occurs in the transmission unit of the slave transmission apparatus and the bypass function bypasses A network having a dual transmission line, characterized in that the transmission line setting information of both transmission lines is switched when the number of bypasses exceeds the number of bypasses .
請求項1において、伝送サイクル毎に、送元アドレス(SA)を含む子伝送情報が2つの伝送部から伝送され、前記親伝送装置は伝送路毎に前記子伝送情報から取得した送元アドレスに不在のアドレスによりバイパス個所を検知することを特徴とする二重伝送路を有するネットワーク。  2. The transmission information according to claim 1, wherein each transmission cycle includes child transmission information including a transmission source address (SA) from two transmission units, and the parent transmission apparatus sets a transmission source address obtained from the transmission transmission information for each transmission path. A network having a dual transmission line, wherein a bypass location is detected by an absent address. 請求項1または2において、前記伝送路設定情報は、前記親伝送装置の伝送フレームに含まれる高/低の情報優先度で、かつ、二つの伝送路の一方に高優先度情報、他方に低優先度情報が伝送されるように初期設定されてなる二重伝送路を有するネットワーク。  3. The transmission path setting information according to claim 1, wherein the transmission path setting information has high / low information priority included in a transmission frame of the parent transmission apparatus, high priority information in one of the two transmission paths, and low in the other. A network having a dual transmission line that is initially set to transmit priority information. 請求項1、2または3において、前記親伝送装置がバイパス状態となった場合に、それを最初に検知した1つの子伝送装置が親伝送装置の代行可能な構成を備えてなる二重伝送路を有するネットワーク。According to claim 1, 2 or 3, before when Kioya transmission device becomes the bypass state, one child transmission apparatus which has detected it first becomes comprise alternate possible configurations of main transmission apparatus duplex A network with a path.
JP03966199A 1999-02-18 1999-02-18 Network with dual transmission path Expired - Fee Related JP3691679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03966199A JP3691679B2 (en) 1999-02-18 1999-02-18 Network with dual transmission path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03966199A JP3691679B2 (en) 1999-02-18 1999-02-18 Network with dual transmission path

Publications (2)

Publication Number Publication Date
JP2000244506A JP2000244506A (en) 2000-09-08
JP3691679B2 true JP3691679B2 (en) 2005-09-07

Family

ID=12559281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03966199A Expired - Fee Related JP3691679B2 (en) 1999-02-18 1999-02-18 Network with dual transmission path

Country Status (1)

Country Link
JP (1) JP3691679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014005B2 (en) 2013-01-14 2015-04-21 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Low-latency lossless switch fabric for use in a data center

Also Published As

Publication number Publication date
JP2000244506A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JP5073812B2 (en) Distributed Ethernet system and method for detecting faults based on the system
JP3640187B2 (en) Fault processing method for multiprocessor system, multiprocessor system and node
EP2204952A1 (en) System, method and device for automatic protection switching
US8830825B2 (en) Method and system for priority based (1:1)n ethernet protection
JPS62239641A (en) Multiple address communication system
JP5404938B2 (en) COMMUNICATION DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
JPH10326261A (en) Error reporting system using hardware element of decentralized computer system
CN102724030A (en) Stacking system with high reliability
JP2002171268A (en) Method and device for transmission in linear or ring network
CN101371524B (en) Packet ring network system, packet transfer system, redundancy node, and packet transfer program
JP4705492B2 (en) Ring node device and ring node redundancy method
JP4895972B2 (en) Ring protocol fast switching method and apparatus
JPH10326260A (en) Error reporting method using hardware element of decentralized computer system
WO2022217786A1 (en) Cross-network communicaton method, apparatus, and system for multi-bus network, and storage medium
JP3036524B2 (en) VP protection system and method
JP3691679B2 (en) Network with dual transmission path
US5793769A (en) Multiplexed network connecting apparatus
JP2013118440A (en) Transmission device and interface device
JP6457962B2 (en) Node device and redundant network communication method
CN102055657A (en) Load distributing method of fiber channel (FC) data message and FC exchanger system
JP2008252192A (en) Frame repeating device and communication network system
JPWO2007096987A1 (en) Error control device
JP2019168739A (en) Parallel computation system
CN118118292A (en) Data transmission method and related device thereof
CN112073162A (en) Method for operating redundant automation systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees