JP3691004B2 - Ni-based powder having excellent antibacterial and antifungal properties, its production method, and an antibacterial and antifungal material, resin and member containing the Ni-based powder - Google Patents

Ni-based powder having excellent antibacterial and antifungal properties, its production method, and an antibacterial and antifungal material, resin and member containing the Ni-based powder Download PDF

Info

Publication number
JP3691004B2
JP3691004B2 JP2001252944A JP2001252944A JP3691004B2 JP 3691004 B2 JP3691004 B2 JP 3691004B2 JP 2001252944 A JP2001252944 A JP 2001252944A JP 2001252944 A JP2001252944 A JP 2001252944A JP 3691004 B2 JP3691004 B2 JP 3691004B2
Authority
JP
Japan
Prior art keywords
antibacterial
powder
based powder
antifungal
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001252944A
Other languages
Japanese (ja)
Other versions
JP2003064401A (en
Inventor
亘 漆原
武典 中山
貞子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001252944A priority Critical patent/JP3691004B2/en
Publication of JP2003064401A publication Critical patent/JP2003064401A/en
Application granted granted Critical
Publication of JP3691004B2 publication Critical patent/JP3691004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、抗菌・防かび性に優れたNiまたはNi合金粉末とその製法、更には該粉末を含む抗菌・防かび性に優れた材料、樹脂、並びにそれらで被覆された抗菌・防かび性に優れた部材に関するものである。
【0002】
【従来の技術】
近年、食品加工分野や医療分野等を初めとして生活必需品に至る様々な用途で、衛生上の観点から菌やかびの生育を防止する(本明細書では抗菌・防かび性と称す)処理を施した金属部材の採用が検討され始めている。それら用途で求められる抗菌・防かび性のレベルは用途によって各々異なり、高衛生性という好イメージ付与のため僅かな抗菌・防かび性で目的を果たし得る用途から、菌やかびの時間単位での繁殖・感染防止が必要で即効性を重んじる用途まで様々である。そのうち、例えば病院や医療施設で使用される機器や食品の製造・加工分野で使用される機器、或はそれらの施設で用いる建具、トイレ、空調機器、冷蔵庫、輸送機、運搬車などは後者に当たり、高レベルの抗菌・防かび性を有する表面処理金属部材の要望が高まっている。
【0003】
この様な表面処理金属部材を製造するに当たっては、部材ごとに表面処理する方法、金属板等に表面処理を施してから組み立てる方法などが考えられる。しかし金属粉末に抗菌・防かび性を付与しておけば、樹脂に混ぜて塗布したり塗料に混ぜて使用するなど、用途や使用形態の幅が大幅に拡大するため、優れた抗菌・防かび性を有する金属粉末の開発が望まれている。
【0004】
被覆タイプの抗菌・防かび性表面処理剤は、その殆どが、被膜形成用のマトリックスに抗菌・防かび性の付与された粉末を分散させたもので、具体的には、
(1)特開平8−156175号、特開平8−27404号および特開平8−25548号各公報などに開示されている、CuやAgの如き抗菌・防かび性を有する金属や、TiO2の如き光触媒機能を有する各種無機化合物の粉末を含有させた塗膜や樹脂層を金属表面に施す方法、
(2)特開平8−53738号、特開平8−60303号および特開平8−104952号各公報等に開示されている、ステンレス鋼の表面にCuやAgの如き抗菌・防かび性を有する金属を濃化させる方法、
(3)特開平9−195061号、特開平7−228999号や特開平9−157860号各公報等に開示されている、化成処理やめっき処理によって、CuやAgの如き抗菌・防かび性を有する金属やTiO2の如き光触媒機能を有する無機物化合物粒子を含む表面層を形成する方法
等である。
【0005】
これらの方法で抗菌・防かび性付与に用いられる粉末としては、CuやAgの如く電気化学的に貴な金属成分、あるいは光触媒機能を有する無機化合物を使用するか、或はそれらのイオンまたは錯体をシリカゲル、ゼオライト、リン酸カルシウム等の無機酸化物に担持させることによって製造される。
【0006】
しかしながら、CuやAg等の金属粉末は電気化学的に貴であるためイオン化し難く、金属粉末そのままでは殆ど抗菌・防かび性を示さない。また、無機酸化物への担持法や無機質担体を工夫しても、抗菌・防かび性粉末の安定性とイオン化速度の向上とが両立しないため、抗菌性の効果を発揮するまで長時間(早いものでも12時間)を要し、また防かび性については殆どその効果を発揮しない。
【0007】
また光触媒機能を有する無機質粉末は、抗菌効果を発揮するのに強力な日光や紫外線を必要とし、実用部品でその様な強力な日光や紫外線を確保することのできる部品は自ずと限られてくる。
【0008】
こうした状況の下で本発明者らはかねてより研究を進めており、その一環として、Niを主成分としCoやP等を含有させた抗菌性粉末を開発し、先に提案した(特開平2000−143422号公報)。この公報では、該抗菌性粉末中の水素含量を制御することにより、優れた抗菌性が得られることも明かにした。
【0009】
しかし、該粉末中の水素を安定的且つ確実に制御することは非常に難しい。なぜならば、上記公報に開示されている水素侵入法、具体的には、Ni系粉末へ電気化学的に水素チャージする方法、あるいは、Ni系粉末を高温高圧の水素ガス雰囲気に曝す方法は、何れも水素浸入のために高価な設備を必要とし、しかも目標量の水素をNi系粉末中に均一に含有させることが難しい。そのため、水素量を安定に制御されたものが得られ難く、現在実用化されているのは、抗菌・防かび性のやや劣る水素未含有のNi−CoやNi−P粉末である。
【0010】
【発明が解決しようとする課題】
本発明者は、上記の様な事情に着目してなされたものであって、その目的は、前掲の特開2000−143422号公報に開示した抗菌・防かび性を更に高めると共に、安定して優れた抗菌・防かび性を示す金属粉末を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る抗菌・防かび性に優れたNi系粉末とは、NiまたはNi合金部分のNi含量が20質量%以上であり、水素含量が1〜10,000ppmであるNiまたはNi合金粉末の表面に、Pおよび/またはS含有化合物が付着しており、該Pおよび/またはS含有化合物の付着量が粉末全体中に占める比率で1質量%以下であり、且つ該化合物中のPおよび/またはSの合計含量が、粉末全体中に占める比率で0.001質量%以上であるところに要旨が存在する。
【0012】
上記本発明のNi系粉末においては、NiまたはNi合金部分のNi含量が50質量%以上、より好ましくは90質量%以上であるものが好ましく、また、前記Pおよび/またはS含有化合物としては、Pおよび/またはSの酸化物もしくは複合酸化物、あるいは、リン酸亜鉛、リン酸カルシウム、リン酸鉄およびリン酸マンガンから選ばれる1種以上を含むものが特に好ましいものとして推奨される。
【0013】
また本発明に係る製法は、上記特性を備えたNi系粉末の製法として位置付けられるもので、NiまたはNi合金粉末を、該粉末の溶出量が0.05〜50g/m2/h以上となる水溶液に1〜10,000分間浸漬させる処理を含むところに要旨を有している。
【0014】
そして、本発明の上記抗菌・防かび性に優れたNi系粉末を各種の無機物質、有機物質またはそれらの混合物に1〜30質量%含有させると、抗菌・防かび性に優れた材料を得ることができ、この材料も本発明の好ましい実施形態に含まれる。特に、有機物質として、ふっ化ビニリデン系樹脂、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂またはそれらの混合樹脂を使用すると、これらの樹脂に抗菌・防かび性を付与することができ、これらの抗菌・防かび性樹脂を各種の無機質部材または有機質部材の表面被覆に利用すれば、それら部材に優れた抗菌・防かび性を与えることができ、得られる該抗菌・防かび性部材も本発明の範疇に含まれる。
【0015】
【発明の実施の形態】
本発明において、NiまたはNi合金粉末(以下、Ni系粉末と記す)におけるNi含量や水素含量を定めた理由は下記の通りである。
【0016】
まず、Ni系粉末が抗菌・防かび性を示すのは、その表面に、通常の雰囲気で10nm〜1μm程度、高湿度雰囲気では数10〜数100μm程度存在する吸着水に素材表面のNi等が溶出し、吸着水の存在下で増殖すると考えられる菌やかびが該Niイオンなどに接触して死滅するためと考えられている。こうした滅菌効果を有効に発揮させるには、Ni系粉末中に20質量%以上のNiを含有させることが必要であり、滅菌効果をより効果的に発揮させるには50質量%以上含有させることが望ましい。
【0017】
また、水素が抗菌・防かび性に効果を発揮する原因としては、
i)水素は還元作用を有しており、Ni系粉末表面で酸化、変質を防いでNi系粉末表面を活性状態に保ってNiの溶出量を安定に維持し、また
ii)水素化物は菌やかびを構成する蛋白質の変質、破壊に有効に作用する、
といった2つの作用が相乗的に働くためと考えられる。特に上記ii)の作用は、Ni由来の作用とは異なる抗菌・防かび機構であり、耐性菌を生じる可能性も低いため極めて有効と考えられる。
【0018】
こうした水素の作用を有効に発揮させるには、Ni系粉末中に少なくとも0.1ppm以上含有させることが必要であり、これ未満では満足のいく抗菌・防かび性が得られない。但し、水素量が10,000ppmを超えて過度に多くなると、Ni系粉末の靱性が乏しくなる他、表層部で水素が安定に存在し得なくなって効果の安定性が損なわれるので、10,000ppm以下に抑えるべきである。水素のより好ましい含有量は10ppm以上、1,000ppm以下である。
【0019】
本発明における最大の特徴点は、上記の様なNi系粉末の表面にPおよび/またはS含有化合物(以下、P,S含有化合物という)を付着せしめ、適正量の水素を安定的に含有させ得る様にした点にあり、該P,S含有化合物によってもたらされる作用効果は以下の通りである。
【0020】
即ち本発明者らは前述した様な公知技術の下で、Ni系粉末に水素を安定的且つ大量に含有させるための手法を確立すべく鋭意研究を重ねた結果、Ni系粉末の表面にP,S含有化合物を存在させることが極めて有効であることを突き止めた。
【0021】
水素がNi系合金に如何なる状態で侵入し固定されるか、そのメカニズムは未解明であるが、Ni系粉末の表面にP,S含有化合物を存在させておくと、短時間の水素化処理で表面に多量の水素を保持し得ることが確認された。従って本発明の粉末を製造するに当たっては、Ni系粉末の表面にP,S含有化合物を付着させてから水素含有処理を施し、あるいは、P,S含有化合物の付着と水素含有処理を兼ねた処理を施せばよく、その結果として本発明の粉末は、Ni系粉末の表面にP,S含有化合物が存在し、且つ従来例に比べて多量の水素が含まれた新規な抗菌・防かび性粉末となる。
【0022】
しかも、Ni系粉末の表面に付着したP,S含有化合物は、その後の熱処理でPおよび/またはSがNi系粉末中に拡散して粒界偏析を生じ、その結果として、Ni系粉末からのNiイオンの溶出を高める作用も発揮する。そのため、使用時における吸着水への抗菌性金属イオンの溶出が加速され、これも抗菌・防かび性の向上に寄与する。ただし、水素を含有させた後に上記熱処理を行なうと、折角導入した水素が放出される恐れがあるので、熱処理は水素を含有させる前に行うのが望ましい。
【0023】
更に、Ni系粉末の表面にP含有化合物を付着させたものでは、使用時にPが還元性イオンとなって吸着水へ溶出するため、これも抗菌・防かび性の向上に寄与する。
【0024】
上記P,S含有化合物の作用は、先に挙げた特開2000−43422号公報に開示した如くNi系粉末中にPを含有させたのでは得ることができない。ちなみに、同公報に記載されている如くNi系粉末素材としてNi−P合金を用いたのでは、合金粉末としての製造上の制約や強度確保の必要上充分な量のPを含有させることができず、表面へのPの露出が不足するため満足の行く抗菌・防かび作用を得ることができない。しかも、Ni−P合金の製造には高コストを要し、またP含量が高くなると均一なNi−P含有合金が得られ難くなる。
【0025】
これに対し、上記の如くNi系粉末の表面にP,S含有化合物を付着させた粉末は、後述する如くその製造が容易で且つ必要量のPやSを容易に付着させることができ、安定して優れた抗菌・防かび効果を有するものを安価に製造できる。
【0026】
上述したP,S含有化合物の作用効果を、前述したNiまたはその合金自体が有する抗菌・防さび作用や水素の抗菌・防かび作用とバランス良く発揮させるには、Ni系粉末表面に付着させるP,S含有化合物の面積割合が重要となる。すなわち該化合物の面積割合が多過ぎると、Niやその合金と水素による前記抗菌効果が有効に発揮され難くなるし、該化合物の面積割合が少な過ぎると、P,S含有化合物の前記作用が有意に発揮され難くなるからである。また、P,S含有化合物自体についても、該化合物中に占めるPおよび/またはSの含有率が多いものの方が優れた抗菌・防かび性を示す。
【0027】
なお実際問題としては、Niまたはその合金粉末表面における前記P,S含有化合物の占める面積割合を正確に知ることは難かしい。そこで本発明においては、上記面積割合に代えて、Ni系粉末に対するP,S含有化合物の付着量で制御するする方法を採用することが推奨される。具体的には、Ni系粉末の全質量中に占めるP,S含有化合物の量を、Pおよび/またはS換算で0.001質量%以上、より好ましくは0.1質量%以上で、且つ1質量%以下に制御するのがよい。
【0028】
ちなみに、P,S換算の合計量が0.001質量%未満では、P,S含有化合物付着による抗菌・防かび作用が不十分で、本発明で意図する効果が得られ難くなり、逆に1質量%を超えて過度に多くなると、Niまたはその合金粉末の表面露出が不足気味となってNi自身の抗菌・防かび作用が有効に発揮され難くなり全体として性能不足になるからである。
【0029】
本発明でNiまたはその合金粉末表面に形成されるP,S含有化合物の種類は特に限定されず、リンや硫黄そのものやその酸化物、その他の各種リン化合物や硫黄化合物、リン酸塩や硫酸塩、それらの複合化合物、PやSを含む各種合金などが包含される。また、リンや硫黄以外の化合物とリン(または硫黄)含有化合物との複合化合物や混合物であっても勿論構わない。
【0030】
しかし、前述したPやSの作用効果、殊に、Ni系粉末中への水素侵入促進作用や、熱処理によるNi系粉末へのP,Sの拡散促進作用、更には付着水への溶解によるイオン化のし易さ等を総合的に考慮すると、PやSの酸化生成物が好ましく、特に好ましいのは、リン酸亜鉛、リン酸カルシウム、リン酸鉄、リン酸マンガン等の1種以上を含む皮膜である。ちなみにこれらの皮膜は、それ自身の製造が容易であるばかりでなく、Ni系粉末表面への付着が容易で且つP,S含量(付着量)の制御も容易であり、目標とする抗菌・防かび作用に応じた性能の調整も容易であるからである。
【0031】
尚本発明の抗菌・防かび性粉末は、上記の如くNiまたはその合金粉末の表面にP,S含有化合物を付着せしめたもので、その付着量は、表面に付着したP,S含有化合物およびNiまたはその合金の一方のみを溶解させ、他方を不溶物として残存させることによって測定すればよい。
【0032】
上記抗菌・防かび性粉末を製造する方法としては、まず、Ni含量が20質量%以上、望ましくは50質量%以上であるNi系合金、より好ましくは実質的にNiのみからなる粉末を公知の任意の方法によって製造し、該粉末にP,S含有化合物を接触させてその表面に付着させ、その後、好ましくは100〜700℃程度で熱処理を行なってP,S含有化合物を表面に固定した後、水素を含有させる処理を行うことが望ましい。
【0033】
原料として使用されるNi系粉末中への混入が許容される他の成分の種類は特に制限されず、例えばCo等の他の合金元素や酸素、更にはNi製造時に混入することのある公知の不純元素などが包含される。
【0034】
Ni系粉末にP,S含有化合物を付着させる方法としては、湿式あるいは乾式のめっき法、化成処理法、吸着法など様々の方法があり、本発明ではいずれの方法を採用しても構わない。しかし、簡便にしかも短時間の処理で所望量のP,S含有化合物を付着させるには、Ni系粉末をリン酸溶液へ浸漬する方法、あるいはリン酸塩で表面処理する方法などが好ましい方法として推奨される。
【0035】
また、P,S含有化合物の付着処理が施されたNi系粉末に水素を含有させる方法も格別特殊な方法が要求されるわけではなく、前述した如き既存の方法を採用できるが、簡便なのは、Ni系粉末を、該粉末の溶出量が0.05g/m2/h以上、50g/m2/h以下、より好ましくは0.1g/m2/h以上、20g/m2/h以下となる水溶液に1分以上、10,000分以下、より好ましくは5分以上、2,000分以下の範囲で浸漬させる方法であり、この方法を採用すれば、Ni系粉末中に多量の水素を均一に含有させることができる。
【0036】
この水素含有処理は、水溶液に浸漬させることによりNi系粉末の酸化反応に伴う反応として起こる水素の発生を利用するもので、これらの発生水素は大部分が水素ガスとして発生するが、一部はNi系粉末中に侵入し、粉末全体に拡散する。そしてこの水素含有処理法を採用すると、処理に用いられる溶液組成と温度および浸漬時間で水素含有量がほぼ一義的に決定するため、水素含有量の制御が容易で且つ必要に応じて多量の水素を含有させることができる。
【0037】
上記水素発生反応は、上記処理溶液中でのNi系粉末の酸化反応に伴って生じるが、酸化反応によって粉末表面に皮膜が形成されると上記反応が抑制される。従って水素発生反応を円滑に進めるには、処理液として、皮膜形成が少なくてNi系粉末の溶出反応が継続的に進行し得る様な水溶液を使用することが必要となる。
【0038】
こうした観点から、水素発生反応を継続的に効率よく進めるための浸漬処理条件について検討を行なったところ、該浸漬処理によるNi系粉末の溶出量を0.05〜50g/m2/h、好ましくは0.1〜20g/m2/hの範囲とし、且つこの条件で1分以上、10,000分以下、より好ましくは5分以上、2,000分以下の時間浸漬すれば、得られるNi系粉末中の水素含有量を1〜10,000ppmの範囲に制御できる。
【0039】
尚、浸漬処理時におけるNi系粉末の上記溶出速度は、処理前後の質量減量を処理時間および粉末全体の表面積で除算することによって求めることができる。また上記粉末全体の表面積は、粉末の平均粒径から粉末1個当たりの表面積を求め、粉末1個当たりの質量または密度・体積と粉末全体の質量から求められる粉末の個数と、粉末1個当たりの表面積を積算することによって求めればよい。そして、Ni系粉末全体としての質量当たりの溶出速度や浸漬時間が前記好適範囲を外れると、得られるNi系粉末の水素含有量に過不足が生じ、本発明の目的にそぐわなくなることがある。
【0040】
上記浸漬処理に用いられる水溶液中の成分については特に限定されないが、好ましいものとしては、例えばH2SO4,HCl,HF,H3PO4の如き各種酸やNaOHなどのアルカリ;H22,FeCl3,Fe2(SO43など各種酸化剤が例示される。処理液として上記H2SO4,H3PO4,H3PO3などの酸水溶液を使用すると、Ni系粉末表面へPおよび/またはS含有化合物を付着させるための処理剤と兼用することも可能となる。
【0041】
本発明で使用する前記Ni系粉末の平均粒径や形状等は特に限定されないが、抗菌・防かび性付与のための金属粉末としての実用性を考慮して好ましいのは0.01〜100μm、より好ましくは0.1〜10μmの粒径のものであり、形状は表面に凹凸のある複雑な形状のものの方が、表面処理皮膜中へ配合して使用する際の分散性を高めると共に実使用時におけるNiイオンの溶出性を高めることができるので好ましい。
【0042】
水素含有処理の施されたNi系粉末と処理液の分離は、濾紙やフィルター等で濾過する方法や遠心分離法、電磁石などを用いて分離する方法などを採用すればよい。その後、表面に付着している酸またはアルカリ水を除去するため、水で洗浄したり、弱酸もしくは弱アルカリで中和処理しておくことが望ましい。
【0043】
尚、上記水素含有処理の後に加熱すると、Ni系粉末中での水素の拡散係数が高まり、折角導入した水素が減少する恐れがあるので、乾燥は常温付近の低温で行うのが望ましい。
【0044】
本発明は以上の様に構成されており、Ni系粉末に上記の如く簡易な処理を施すだけで、低コストで且つ優れた抗菌活性を有するNi系粉末を効率よく製造することができる。
【0045】
そして、該抗菌・防かび性を付与した粉末を、公知の各種無機物質や有機物質若しくはそれらの混合物に1〜30質量%程度含有させると、それらに抗菌・防かび性を付与することができる。該抗菌・防かび性粉末が配合される物質としては、各種の塗装用樹脂、金属や合金めっき、陽極酸化処理などを施した金属材、セラミックス、コンクリート、プラスチックなどが幅広く適用でき、前記粉末の配合によりこれらの物質全体に優れた抗菌・防かび性を与えることができる。
【0046】
上記塗装用樹脂の具体例としては、アルキド樹脂、ニトロセルロース系樹脂、ブチラール系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、タールエポキシ系樹脂、メラミン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、フッ素系樹脂、ふっ化ビニリデン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ガラス繊維強化ポリエステル系樹脂などが挙げられ、これらに前記抗菌・防かび性粉末を適量配合すればよい。
【0047】
特に適用用途の広さや、Ni系粉末の分散性、樹脂とNi系粉末との密着性、樹脂の加工性や耐傷付き性などを考慮すると、ふっ化ビニリデン系樹脂やアクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂やそれらの混合樹脂は、好ましい塗装樹脂材として推奨される。
【0048】
なおNi系粉末の配合量が1質量%未満では、抗菌・防かび性付与効果が不十分で本発明で意図するレベルの効果が得られ難く、逆に30質量%を超えて過度に配合し過ぎると、配合する樹脂などの種類によっては機械的強度に悪影響が現われたり、加工性や耐傷付き性を劣化する恐れも出てくる。従って、Ni系粉末の配合量は1質量%以上、30質量%以下、より好ましくは1質量%以上、10質量%以下に調整することが望ましい。
【0049】
なお上記塗装用樹脂を用いて各種部材を塗装する際の方法は特に制限されないが、代表的な方法としてはスプレー塗装、静電塗装、浸漬塗装、粉体塗装、電着塗装、ロールコーター塗装などが例示される。
【0050】
又めっきとしては、例えば亜鉛めっき、クロムめっき、ニッケルめっき、錫めっきなどが例示され、それらめっき材の中に前記Ni系粉末を分散めっき法などによって含有させればよい。めっき法としては、電気めっき、無電解めっきなどの湿式めっき法や各種気相めっき法などが任意に選択して適用できる。
【0051】
更に陽極酸化処理の後で、多孔質の陽極酸化処理層内のポア部分を前記Ni系粉末を含有させた樹脂や金属塩などで封孔処理すれば、該陽極酸化処理層に抗菌・防かび性を与えることができる。この際に用いる金属塩としては、例えばニッケル、コバルト、亜鉛、アルミニウム、銅、鉛等の酢酸塩、硝酸塩、硫酸塩などを使用することができ、また樹脂としては前掲の各種の樹脂が同様に使用できる。
【0052】
セラミックとしては、酸化ケイ素、酸化鉛、酸化ホウ素、チタニア、ジルコニア、アルミナなどの各種酸化物の他、各種の炭化物や窒化物、硼化物などを使用でき、これらの中に前記抗菌・防かび性粉末を配合すればよい。なおこれらのセラミック層を金属や合金その他の無機物質などの上に形成する方法としては、ほうろうやゾルゲル法など公知の方法を採用すればよい。
【0053】
また前記粉末により抗菌・防かび性を付与することのできるコンクリートとしては、各種セメントや骨材と水を混練して固化させるペースト、モルタル、コンクリート、コールタールエナメル、アスファルトなど包含され、ライニング法や塗装法によってそれらを基材表面に被覆すればよい。
【0054】
更に、前記抗菌・防かび性粉末を配合することのできるプラスチックとしては、塩化ビニル系樹脂、エポキシ系樹脂、タールエポキシ樹脂、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、ふっ素系樹脂、ふっ化ビニリデン系樹脂等が例示され、これらに前記抗菌・防かび性粉末を適量配合すれば、それら樹脂成形体自体に抗菌・防かび性を付与できるので、各種成形材料として有効に活用できる他、抗菌・防かび性付与のためのラミネート材やライニング材としての利用も可能となる。
【0055】
【実施例】
以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限されるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0056】
実験例
実施例および比較例として、以下に示す条件で供試材を作製し、抗菌・防かび性を評価した。
【0057】
試験に用いたNi系粉末は、溶製後、平均粒径が約1μmとなる様に粉砕して使用した。該粉末の表面に、P,S含有化合物付着処理を施した。該付着処理は下記(A)〜(D)に従って行なった。
【0058】
(A)塩化パラジウム:0.01mol/dm3、エチレンジアミン:0.08mol/dm3、ホスフィン酸ナトリウム:0.06mol/dm3、チオジグリコール酸:30mg/dm3を含む水性液を用いたPd−5質量%Pの表面付着処理、
(B)10質量%Na2SO4溶液への浸漬によるS酸化物の表面付着処理、
(C)10質量%H3PO4溶液への浸漬によるP酸化物の表面付着処理、
(D)市販のリン酸塩処理液に適宜、亜鉛イオン、鉄イオン、カルシウムイオンまたはマンガンイオンを添加した処理浴への浸漬による、リン酸亜鉛、リン酸鉄、リン酸カルシウムまたはリン酸マンガンの表面付着処理。
【0059】
次いで、該粉末に水素含有処理を施した。該水素含有処理は、下記(E)〜(F)に従って行なった。
【0060】
(E)800℃、1気圧の水素ガス雰囲気中で曝露による水素含有処理、
(F)NaCl;50g/l、HCl;0.0001〜17質量%、HF;0〜10質量%を含む水溶液での浸漬による水素含有処理。
【0061】
その後、水洗、乾燥した後、一部の処理粉末については、市販の2,4,6−ふっ化ビニリデン共重合体と市販のアクリル系樹脂を質量比で7:3の割合で混合し、溶剤を加えたものにNi系粉末を加え、ペイントシェーカーで30分間分散させて塗料を製造した。次いで、ステンレス鋼板にロールコーター塗装し、焼付け硬化させた。また一部の処理粉末については、シリカ微粉末とCH3Si(OCH33とから調製したゾル中に混合、分散させてからディップコートし、500℃で熱処理を行なって10μmのSiO2膜を形成した。
【0062】
得られた各処理粉末、塗装ステンレス鋼板の抗菌・防かび性を下記の方法で評価した。なお各粉末のNi,P,S各含有量の確認は、各々の粉末を硝酸または硝弗酸に溶出させた後、ICP発光分光分析法によって行ない、水素含有量は昇温ガス分析装置を用いて行った。
【0063】
抗菌性の評価には菌種に黄色ブドウ球菌と大腸菌を使用し、培養後の各菌体を各々濃度が2×105〜1×106(CFU/ml)となるように調整した液0.5mlを各Ni系粉末または塗装ステンレス鋼板に滴下し、その上にポリエチレンフィルムを被せて密着させた。
【0064】
これを35℃、相対湿度90%以上の条件下で2時間保持した後、生菌数(菌の生存率:%)を平板希釈法によって測定し、試料1個当たりに換算した。各々の菌を用いた試験での生存率を平均し、平均生存率が5%未満の場合は評価○、5%以上20%未満の場合は評価◇、20〜50%の場合は評価△、50%以上の場合は評価×として表した。
【0065】
また防かび性調査には、菌種として黒麹かびを使用し、胞子懸濁液2.0mlを400mlのPD培地に加えて培養原液とした。この原液に、上記で得た各Ni系粉末を1.0質量%添加し、または上記で得た塗装ステンレス鋼板に接種し、1週間培養した。菌糸の生育が認められない場合は評価○、菌糸の生育が認められる場合は評価◇、胞子は形成されないが菌糸が全体を覆う場合は評価△、黒い胞子が形成される場合は評価×として表した。
【0066】
また、上記3種類の評価で最も低い評価結果となったものを、抗菌・防かび総合評価とした。
【0067】
実施例に従って処理した粉末の、処理工程、P,S含有化合物の付着量、P,S換算の付着量、水素量、抗菌性、防かび性の評価結果を表1に一括して示す。また、水素含有処理(F)を行なったときのNi系粉末の浸漬時間と溶出量が抗菌・防かび総合評価に与える影響を調べた結果を図1に示す。また表1の試験No.17の粉末を混合した樹脂とSiO2膜における、Ni系粉末の混合割合と抗菌・防かび総合評価の関係を調べた結果を図2に示す。
【0068】
【表1】

Figure 0003691004
【0069】
表1からも明らかな様に、本発明で規定するNi含量と水素量を満たし、且つ表面にP,Sのうち1種以上を含有する化合物が所定量付着しているNi系粉末は、抗菌性、防かび性共に優れた効果を有していることが分かる。また図1からも明らかなように、Ni系粉末に対して適度の溶出量を示す処理液にNi系粉末を所定時間浸漬処理すれば、該Ni系粉末に優れた抗菌・防かび性を付与できる。そして図2からも明らかなように、該Ni系粉末を適度の割合で混合させた樹脂やSiO2膜は、優れた抗菌・防かび性を有している。
【0070】
【発明の効果】
本発明のNi系粉末は以上の様に構成されており、Niイオンの溶出に加えて含有水素による表面活性化効果、更には表面に付着したP,S含有化合物の作用が相俟って、卓越した抗菌・防かび活性を示すので、抗菌性、防かび性を付与したい食品加工分野や医療分野を初めとして、様々の分野で抗菌・防かび性の求められる機器、部材への表面処理用添加剤として幅広く有効に活用できる。また本発明の製法を利用すれば、上記優れた抗菌・防かび性を備えたNi系粉末を容易に得ることができる。更に該Ni粉末を抗菌・防かび性付与剤として各種材料に配合することによって、様々の材料に抗菌・防かび性を与え得る他、抗菌・防かび性に優れが部材を得ることができる。
【図面の簡単な説明】
【図1】実験で採用した水素含有処理(F)におけるNi系粉末の浸漬時間と溶出量が抗菌・防かび総合評価に与える影響を示すグラフである。
【図2】樹脂またはSiO2膜への抗菌・防かび性粉末の配合割合と抗菌・防かび総合評価結果の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to Ni or Ni alloy powder excellent in antibacterial and antifungal properties, a method for producing the same, a material and resin excellent in antibacterial and antifungal properties containing the powder, and antibacterial and antifungal properties coated with them. It is related with the member excellent in.
[0002]
[Prior art]
In recent years, it has been applied to prevent the growth of fungi and fungi (referred to as antibacterial and antifungal properties in this specification) for various purposes ranging from food processing and medical fields to daily necessities. The use of such metal members has begun to be studied. The level of antibacterial and antifungal properties required for each application varies depending on the application, and in order to provide a good image of high hygiene, it can be used with a small amount of antibacterial and antifungal properties. There are a variety of uses that require breeding / infection prevention and value immediate effect. Among them, for example, equipment used in hospitals and medical facilities, equipment used in the field of food manufacturing and processing, or joinery, toilets, air-conditioning equipment, refrigerators, transport equipment, and transport vehicles used in those facilities are the latter. There is an increasing demand for surface-treated metal members having a high level of antibacterial and antifungal properties.
[0003]
In manufacturing such a surface-treated metal member, a method of surface-treating each member, a method of assembling after performing a surface treatment on a metal plate or the like can be considered. However, if antibacterial and antifungal properties are imparted to the metal powder, the range of applications and forms of use can be greatly expanded, such as mixing with resin and applying it to paints. Development of a metal powder having properties is desired.
[0004]
Most of the coating type antibacterial / antifungal surface treatment agents are powders with antibacterial / antifungal properties dispersed in a matrix for film formation. Specifically,
(1) Metals having antibacterial / antifungal properties such as Cu and Ag, disclosed in JP-A-8-156175, JP-A-8-27404, and JP-A-8-25548, and TiO 2 2 A method of applying a coating film or a resin layer containing various inorganic compound powders having a photocatalytic function such as
(2) Metals having antibacterial and antifungal properties such as Cu and Ag on the surface of stainless steel as disclosed in JP-A-8-53738, JP-A-8-60303 and JP-A-8-104952 How to thicken,
(3) Antibacterial and antifungal properties such as Cu and Ag can be obtained by chemical conversion treatment or plating treatment disclosed in Japanese Patent Application Laid-Open Nos. 9-195061, 7-228999, and 9-157860. Metals and TiO 2 For forming a surface layer containing inorganic compound particles having a photocatalytic function such as
Etc.
[0005]
The powder used for imparting antibacterial and antifungal properties by these methods uses electrochemically noble metal components such as Cu and Ag, or inorganic compounds having a photocatalytic function, or ions or complexes thereof. Is supported on an inorganic oxide such as silica gel, zeolite, or calcium phosphate.
[0006]
However, since metal powders such as Cu and Ag are electrochemically noble, they are difficult to ionize, and the metal powder as it is exhibits almost no antibacterial / antifungal properties. In addition, even if the method for supporting the inorganic oxide and the inorganic carrier are devised, the stability of the antibacterial / antifungal powder and the improvement of the ionization rate are not compatible, so a long time (fast) until the antibacterial effect is exhibited. 12 hours), and the antifungal property is hardly exhibited.
[0007]
In addition, inorganic powders having a photocatalytic function require strong sunlight and ultraviolet rays to exert antibacterial effects, and parts that can secure such strong sunlight and ultraviolet rays are naturally limited by practical parts.
[0008]
Under these circumstances, the present inventors have been further researching, and as part of this, an antibacterial powder containing Ni as a main component and containing Co, P or the like has been developed and previously proposed (Japanese Patent Laid-Open No. 2000-2000). -143422). This publication also revealed that excellent antibacterial properties can be obtained by controlling the hydrogen content in the antibacterial powder.
[0009]
However, it is very difficult to stably and reliably control the hydrogen in the powder. This is because the hydrogen intrusion method disclosed in the above publication, specifically, the method of electrochemically charging the Ni-based powder with hydrogen, or the method of exposing the Ni-based powder to a high-temperature and high-pressure hydrogen gas atmosphere, However, expensive equipment is required for hydrogen penetration, and it is difficult to uniformly contain a target amount of hydrogen in the Ni-based powder. Therefore, it is difficult to obtain a product in which the amount of hydrogen is stably controlled, and what is currently put into practical use is hydrogen-free Ni—Co or Ni—P powder that is slightly inferior in antibacterial and antifungal properties.
[0010]
[Problems to be solved by the invention]
The present inventor has been made paying attention to the circumstances as described above, and the purpose thereof is to further improve the antibacterial and antifungal properties disclosed in the above-mentioned JP-A No. 2000-143422 and stably. The object is to provide a metal powder exhibiting excellent antibacterial and antifungal properties.
[0011]
[Means for Solving the Problems]
The Ni-based powder excellent in antibacterial and antifungal properties according to the present invention that has solved the above problems is that the Ni content of the Ni or Ni alloy part is 20% by mass or more, and the hydrogen content is 1 to 10,000 ppm. The P and / or S-containing compound is attached to the surface of the Ni or Ni alloy powder, and the amount of the P and / or S-containing compound is 1% by mass or less as a proportion of the whole powder, In addition, the gist exists in that the total content of P and / or S in the compound is 0.001% by mass or more in the ratio of the whole powder.
[0012]
In the Ni-based powder of the present invention, it is preferable that the Ni content of Ni or Ni alloy part is 50% by mass or more, more preferably 90% by mass or more, and as the P and / or S-containing compound, P and / or S oxides or composite oxides, or those containing one or more selected from zinc phosphate, calcium phosphate, iron phosphate and manganese phosphate are recommended as particularly preferable ones.
[0013]
Further, the production method according to the present invention is positioned as a production method of Ni-based powder having the above characteristics, and the elution amount of Ni or Ni alloy powder is 0.05 to 50 g / m. 2 It has a gist in that it includes a treatment of immersing in an aqueous solution of 1 / 10,000 minutes or more.
[0014]
When the Ni-based powder having excellent antibacterial and antifungal properties of the present invention is contained in various inorganic substances, organic substances or mixtures thereof in an amount of 1 to 30% by mass, a material excellent in antibacterial and antifungal characteristics is obtained. This material is also included in a preferred embodiment of the present invention. In particular, when an organic substance is a vinylidene fluoride resin, an acrylic resin, an epoxy resin, a silicone resin or a mixed resin thereof, antibacterial and antifungal properties can be imparted to these resins. If an antibacterial / antifungal resin is used for the surface coating of various inorganic or organic members, the antibacterial / antifungal property can be given to these members, and the obtained antibacterial / antifungal member is also the present invention. Included in the category.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the reason for determining the Ni content and the hydrogen content in Ni or Ni alloy powder (hereinafter referred to as Ni-based powder) is as follows.
[0016]
First, Ni-based powders exhibit antibacterial / antifungal properties, such as Ni on the surface of the adsorbed water present on the surface of the adsorbed water, which is about 10 nm to 1 μm in a normal atmosphere and about several tens to several 100 μm in a high humidity atmosphere. It is thought that bacteria and fungi that are eluted and proliferate in the presence of adsorbed water come into contact with the Ni ions and die. In order to exert such a sterilizing effect effectively, it is necessary to contain 20% by mass or more of Ni in the Ni-based powder, and in order to exhibit the sterilizing effect more effectively, it is necessary to contain 50% by mass or more. desirable.
[0017]
As a cause of hydrogen's antibacterial and antifungal properties,
i) Hydrogen has a reducing action, prevents oxidation and alteration on the surface of the Ni-based powder, keeps the surface of the Ni-based powder in an active state, and stably keeps the elution amount of Ni.
ii) Hydride works effectively on the alteration and destruction of proteins that compose fungi and fungi,
It is thought that these two actions work synergistically. In particular, the above action ii) is considered to be extremely effective because it is an antibacterial / antifungal mechanism different from that derived from Ni and has a low possibility of causing resistant bacteria.
[0018]
In order to effectively exhibit the action of hydrogen, it is necessary to contain at least 0.1 ppm or more in the Ni-based powder, and if it is less than this, satisfactory antibacterial and antifungal properties cannot be obtained. However, when the amount of hydrogen exceeds 10,000 ppm, the toughness of the Ni-based powder becomes poor, and hydrogen cannot exist stably in the surface layer portion, and the stability of the effect is impaired, so that the ppm is 10,000 ppm. Should be kept below. A more preferable content of hydrogen is 10 ppm or more and 1,000 ppm or less.
[0019]
The greatest feature of the present invention is that P and / or S-containing compounds (hereinafter referred to as P and S-containing compounds) are adhered to the surface of the Ni-based powder as described above so that an appropriate amount of hydrogen is stably contained. The effects brought about by the P and S-containing compounds are as follows.
[0020]
That is, the present inventors have conducted intensive research to establish a method for stably and abundantly containing hydrogen in Ni-based powders under the known techniques as described above, and as a result, P on the surface of Ni-based powders. , S has been found to be very effective.
[0021]
The mechanism of how hydrogen enters and fixes Ni-based alloys is not yet elucidated. However, if P- and S-containing compounds are present on the surface of Ni-based powders, hydrogenation can be performed in a short time. It was confirmed that a large amount of hydrogen could be retained on the surface. Accordingly, in producing the powder of the present invention, the hydrogen-containing treatment is performed after the P, S-containing compound is adhered to the surface of the Ni-based powder, or the treatment that combines the adhesion of the P, S-containing compound and the hydrogen-containing treatment. As a result, the powder of the present invention is a novel antibacterial / antifungal powder in which a P- and S-containing compound is present on the surface of a Ni-based powder and a larger amount of hydrogen is contained than in the conventional example. It becomes.
[0022]
Moreover, the P- and S-containing compounds adhering to the surface of the Ni-based powder cause P and / or S to diffuse into the Ni-based powder and cause grain boundary segregation in the subsequent heat treatment. It also exhibits the effect of increasing the elution of Ni ions. Therefore, the elution of antibacterial metal ions into the adsorbed water during use is accelerated, which also contributes to the improvement of antibacterial and antifungal properties. However, if the above heat treatment is performed after hydrogen is contained, hydrogen introduced at an angle may be released. Therefore, it is desirable to perform the heat treatment before containing hydrogen.
[0023]
Furthermore, in the case where the P-containing compound is adhered to the surface of the Ni-based powder, P becomes a reducing ion during use and is eluted into the adsorbed water, which also contributes to the improvement of antibacterial and antifungal properties.
[0024]
The action of the P, S-containing compound cannot be obtained if P is contained in the Ni-based powder as disclosed in JP-A-2000-43422 mentioned above. Incidentally, as described in the same publication, when a Ni-P alloy is used as the Ni-based powder material, it is possible to contain a sufficient amount of P in terms of manufacturing restrictions and ensuring strength as an alloy powder. Therefore, since the exposure of P to the surface is insufficient, a satisfactory antibacterial / antifungal action cannot be obtained. In addition, the production of the Ni—P alloy requires high costs, and when the P content increases, it becomes difficult to obtain a uniform Ni—P containing alloy.
[0025]
On the other hand, the powder in which the P and S-containing compound is attached to the surface of the Ni-based powder as described above is easy to manufacture and can easily attach the necessary amount of P and S, as will be described later. As a result, it is possible to manufacture a product having an excellent antibacterial and antifungal effect at a low cost.
[0026]
In order to exhibit the above-described effects of the P and S-containing compound in a well-balanced manner with the antibacterial / rust prevention action of Ni or its alloy itself and the antibacterial / antifungal action of hydrogen, P attached to the Ni-based powder surface is used. , The area ratio of the S-containing compound is important. That is, when the area ratio of the compound is too large, the antibacterial effect due to Ni or its alloy and hydrogen is hardly exhibited effectively, and when the area ratio of the compound is too small, the action of the P, S-containing compound is significant. This is because it becomes difficult to be demonstrated. As for the P and S-containing compounds themselves, those having a higher P and / or S content in the compounds exhibit superior antibacterial and antifungal properties.
[0027]
As an actual problem, it is difficult to accurately know the area ratio of the P or S-containing compound on the surface of Ni or its alloy powder. Therefore, in the present invention, it is recommended to adopt a method of controlling by the amount of the P, S-containing compound attached to the Ni-based powder instead of the area ratio. Specifically, the amount of the P and S-containing compound in the total mass of the Ni-based powder is 0.001% by mass or more in terms of P and / or S, more preferably 0.1% by mass or more, and 1 It is good to control to mass% or less.
[0028]
Incidentally, if the total amount in terms of P and S is less than 0.001% by mass, the antibacterial and antifungal action due to the adhesion of the P and S-containing compound is insufficient, and it is difficult to obtain the intended effect in the present invention. This is because when the amount exceeds excessively more than mass%, the surface exposure of Ni or its alloy powder is inadequate, and the antibacterial / antifungal action of Ni itself is hardly exhibited effectively, resulting in insufficient performance as a whole.
[0029]
The kind of the P and S-containing compound formed on the surface of Ni or its alloy powder in the present invention is not particularly limited, and phosphorus, sulfur itself and its oxide, other various phosphorus compounds, sulfur compounds, phosphates and sulfates , Those composite compounds, and various alloys containing P and S are included. Of course, a compound or mixture of a compound other than phosphorus or sulfur and a phosphorus (or sulfur) -containing compound may be used.
[0030]
However, the above-mentioned effects of P and S, in particular, the hydrogen penetration promoting action into Ni-based powder, the diffusion promoting action of P and S into Ni-based powder by heat treatment, and further the ionization by dissolution in adhering water. Considering comprehensively the ease of treatment, oxidation products of P and S are preferable, and a film containing one or more of zinc phosphate, calcium phosphate, iron phosphate, manganese phosphate and the like is particularly preferable. . By the way, these coatings are not only easy to manufacture themselves, but also easy to adhere to the Ni-based powder surface and easy to control the P and S content (adhesion amount). This is because it is easy to adjust the performance according to the fungal action.
[0031]
The antibacterial / antifungal powder of the present invention is obtained by adhering a P or S-containing compound to the surface of Ni or its alloy powder as described above, and the amount of adhesion is determined by the amount of P, S-containing compound adhering to the surface and The measurement may be performed by dissolving only one of Ni or its alloy and leaving the other as an insoluble matter.
[0032]
As a method for producing the antibacterial / antifungal powder, a Ni-based alloy having a Ni content of 20% by mass or more, desirably 50% by mass or more, more preferably a powder consisting essentially of Ni is known. After the P, S-containing compound is produced by an arbitrary method, the P, S-containing compound is brought into contact with the powder and adhered to the surface, and then heat treatment is preferably performed at about 100 to 700 ° C to fix the P, S-containing compound to the surface. It is desirable to perform a treatment containing hydrogen.
[0033]
There are no particular restrictions on the types of other components that are allowed to be mixed into the Ni-based powder used as a raw material. For example, other alloy elements such as Co, oxygen, and the like may be mixed during Ni production. Impure elements are included.
[0034]
There are various methods such as a wet or dry plating method, a chemical conversion treatment method, and an adsorption method as a method for attaching the P, S-containing compound to the Ni-based powder, and any method may be adopted in the present invention. However, in order to deposit a desired amount of the P and S-containing compound in a simple and short-time treatment, a preferred method is a method in which Ni-based powder is immersed in a phosphoric acid solution or a surface treatment with phosphate. Recommended.
[0035]
In addition, the Ni-based powder that has been subjected to the adhesion treatment of the P and S-containing compound is not required to have a special method, and an existing method as described above can be adopted. The Ni-based powder has an elution amount of 0.05 g / m. 2 / H or more, 50 g / m 2 / H or less, more preferably 0.1 g / m 2 / H or more, 20 g / m 2 / H or less in an aqueous solution of 1 minute or more and 10,000 minutes or less, more preferably 5 minutes or more and 2,000 minutes or less. A large amount of hydrogen can be uniformly contained.
[0036]
This hydrogen-containing treatment utilizes the generation of hydrogen that occurs as a reaction accompanying the oxidation reaction of Ni-based powders by immersing in an aqueous solution, and most of these generated hydrogen is generated as hydrogen gas, but partly It penetrates into the Ni-based powder and diffuses throughout the powder. When this hydrogen-containing treatment method is adopted, the hydrogen content is determined almost uniquely by the solution composition, temperature, and immersion time used in the treatment, so that it is easy to control the hydrogen content and a large amount of hydrogen as required. Can be contained.
[0037]
The hydrogen generation reaction occurs with the oxidation reaction of the Ni-based powder in the treatment solution, but the reaction is suppressed when a film is formed on the powder surface by the oxidation reaction. Therefore, in order to smoothly advance the hydrogen generation reaction, it is necessary to use an aqueous solution that has a small film formation and that allows the elution reaction of the Ni-based powder to proceed continuously.
[0038]
From such a viewpoint, when the immersion treatment conditions for continuously and efficiently advancing the hydrogen generation reaction were studied, the elution amount of the Ni-based powder by the immersion treatment was 0.05 to 50 g / m. 2 / H, preferably 0.1-20 g / m 2 The hydrogen content in the resulting Ni-based powder is set to 1 if the immersion time is 1 minute or more and 10,000 minutes or less, more preferably 5 minutes or more and 2,000 minutes or less under these conditions. It can be controlled within a range of ˜10,000 ppm.
[0039]
The elution rate of the Ni-based powder during the immersion treatment can be obtained by dividing the weight loss before and after the treatment by the treatment time and the surface area of the entire powder. Further, the surface area of the whole powder is obtained by calculating the surface area per powder from the average particle diameter of the powder, the number of powders obtained from the mass or density / volume of the powder and the mass of the whole powder, and per powder. What is necessary is just to obtain | require by integrating | accumulating the surface area of. And if the elution rate per unit mass and the immersion time as a whole of the Ni-based powder are out of the preferred range, the resulting Ni-based powder may be excessively or deficient in hydrogen content, and may not be suitable for the purpose of the present invention.
[0040]
The components in the aqueous solution used for the immersion treatment are not particularly limited. 2 SO Four , HCl, HF, H Three PO Four Various acids such as, and alkalis such as NaOH; H 2 O 2 , FeCl Three , Fe 2 (SO Four ) Three Various oxidizing agents are exemplified. H as a treatment solution 2 SO Four , H Three PO Four , H Three PO Three When an acid aqueous solution such as, for example, is used, it can also be used as a treatment agent for attaching a P and / or S-containing compound to the surface of the Ni-based powder.
[0041]
The average particle size and shape of the Ni-based powder used in the present invention are not particularly limited, but it is preferably 0.01 to 100 μm in view of practicality as a metal powder for imparting antibacterial and antifungal properties, More preferably, it has a particle diameter of 0.1 to 10 μm, and the shape having a complex shape with irregularities on the surface increases the dispersibility when used in a surface treatment film and is actually used. Since the elution property of Ni ion at the time can be improved, it is preferable.
[0042]
The Ni-based powder subjected to the hydrogen-containing treatment and the treatment liquid may be separated by a filtration method using a filter paper or a filter, a centrifugal separation method, a separation method using an electromagnet, or the like. Then, in order to remove the acid or alkaline water adhering to the surface, it is desirable to wash with water or neutralize with a weak acid or weak alkali.
[0043]
In addition, when heated after the hydrogen-containing treatment, the diffusion coefficient of hydrogen in the Ni-based powder is increased and the introduced hydrogen may be reduced. Therefore, drying is preferably performed at a low temperature around room temperature.
[0044]
The present invention is configured as described above, and a Ni-based powder having an excellent antibacterial activity can be efficiently produced at low cost simply by subjecting the Ni-based powder to a simple treatment as described above.
[0045]
And if the powder which provided this antibacterial and antifungal property is contained in about 1-30 mass% in well-known various inorganic substance, organic substance, or those mixtures, they can be given antibacterial and antifungal property. . As the substance to which the antibacterial / antifungal powder is blended, various coating resins, metal and alloy plating, anodized metal materials, ceramics, concrete, plastics, etc. can be widely applied. The compounding can give excellent antibacterial and antifungal properties to all of these substances.
[0046]
Specific examples of the coating resin include alkyd resin, nitrocellulose resin, butyral resin, polyurethane resin, epoxy resin, tar epoxy resin, melamine resin, acrylic resin, vinyl chloride resin, silicone resin. Resins, fluorine resins, vinylidene fluoride resins, polyamide resins, polycarbonate resins, glass fiber reinforced polyester resins, and the like may be used, and an appropriate amount of the antibacterial / antifungal powder may be added thereto.
[0047]
Considering the wide range of application, dispersibility of Ni-based powder, adhesion between resin and Ni-based powder, processability and scratch resistance of resin, vinylidene fluoride resin, acrylic resin, epoxy resin Silicone resins and mixed resins thereof are recommended as preferred coating resin materials.
[0048]
If the amount of Ni-based powder is less than 1% by mass, the effect of imparting antibacterial and antifungal properties is insufficient, and it is difficult to obtain the effect of the intended level in the present invention. If it is too much, depending on the type of resin to be blended, the mechanical strength may be adversely affected, and the workability and scratch resistance may deteriorate. Therefore, the blending amount of the Ni-based powder is desirably adjusted to 1% by mass or more and 30% by mass or less, more preferably 1% by mass or more and 10% by mass or less.
[0049]
The method for coating various members using the above coating resin is not particularly limited, but representative methods include spray coating, electrostatic coating, immersion coating, powder coating, electrodeposition coating, roll coater coating, etc. Is exemplified.
[0050]
Examples of the plating include zinc plating, chromium plating, nickel plating, and tin plating. The Ni-based powder may be contained in the plating material by a dispersion plating method or the like. As the plating method, wet plating methods such as electroplating and electroless plating and various vapor phase plating methods can be arbitrarily selected and applied.
[0051]
Further, after the anodizing treatment, if the pore portion in the porous anodizing treatment layer is sealed with a resin or metal salt containing the Ni-based powder, the anodizing treatment layer has antibacterial / antifungal properties. Can give sex. As the metal salt used in this case, for example, acetates such as nickel, cobalt, zinc, aluminum, copper and lead, nitrates, sulfates and the like can be used. Can be used.
[0052]
As ceramics, various oxides such as silicon oxide, lead oxide, boron oxide, titania, zirconia, and alumina, as well as various carbides, nitrides, borides, etc. can be used. What is necessary is just to mix | blend powder. As a method for forming these ceramic layers on a metal, an alloy or other inorganic substance, a known method such as enamel or sol-gel method may be employed.
[0053]
The concrete that can be given antibacterial and fungicidal properties with the powder includes pastes, mortar, concrete, coal tar enamel, asphalt, etc., which are made by mixing various cements and aggregates with water and solidified. What is necessary is just to coat | cover them on the base-material surface by the coating method.
[0054]
Furthermore, the plastics that can be mixed with the antibacterial / antifungal powder include vinyl chloride resins, epoxy resins, tar epoxy resins, polyolefin resins such as polyethylene and polypropylene, polyester resins, polyurethane resins, acrylics. Resin, fluororesin, vinylidene fluoride resin, etc., and by adding an appropriate amount of the antibacterial / antifungal powder to these, the resin molding itself can be given antibacterial / antifungal properties, so various moldings In addition to being effectively used as a material, it can also be used as a laminate or lining material for imparting antibacterial and antifungal properties.
[0055]
【Example】
Hereinafter, the present invention will be described in more detail with reference to experimental examples.However, the present invention is not limited to the following experimental examples, and appropriate modifications are made within a range that can meet the purpose described above and below. It is also possible to carry out and they are all included in the technical scope of the present invention.
[0056]
Experimental example
As examples and comparative examples, test materials were prepared under the conditions shown below, and antibacterial and antifungal properties were evaluated.
[0057]
The Ni-based powder used in the test was used after being melted and pulverized so that the average particle size was about 1 μm. The surface of the powder was subjected to P, S-containing compound adhesion treatment. The adhesion treatment was performed according to the following (A) to (D).
[0058]
(A) Palladium chloride: 0.01 mol / dm Three , Ethylenediamine: 0.08 mol / dm Three , Sodium phosphinate: 0.06 mol / dm Three Thiodiglycolic acid: 30 mg / dm Three Surface adhesion treatment of Pd-5 mass% P using an aqueous liquid containing
(B) 10 mass% Na 2 SO Four Surface adhesion treatment of S oxide by immersion in solution,
(C) 10% by mass H Three PO Four Surface adhesion treatment of P oxide by immersion in solution,
(D) Surface adhesion of zinc phosphate, iron phosphate, calcium phosphate, or manganese phosphate by immersion in a treatment bath in which zinc ion, iron ion, calcium ion, or manganese ion is appropriately added to a commercially available phosphate treatment solution processing.
[0059]
The powder was then subjected to a hydrogen-containing treatment. The hydrogen-containing treatment was performed according to the following (E) to (F).
[0060]
(E) Hydrogen-containing treatment by exposure in a hydrogen gas atmosphere at 800 ° C. and 1 atm.
(F) Hydrogen-containing treatment by immersion in an aqueous solution containing NaCl; 50 g / l, HCl; 0.0001 to 17% by mass, HF; 0 to 10% by mass.
[0061]
Then, after washing with water and drying, with respect to some of the treated powders, a commercially available 2,4,6-vinylidene fluoride copolymer and a commercially available acrylic resin are mixed at a mass ratio of 7: 3 to obtain a solvent. Ni-based powder was added to the mixture, and dispersed with a paint shaker for 30 minutes to produce a paint. Next, a stainless steel plate was coated with a roll coater and baked and cured. For some of the treated powders, silica fine powder and CH Three Si (OCH Three ) Three After mixing and dispersing in the sol prepared from dip coating, dip coating was performed, and heat treatment was performed at 500 ° C. to obtain 10 μm SiO. 2 A film was formed.
[0062]
The antibacterial and antifungal properties of the obtained treated powders and coated stainless steel plates were evaluated by the following methods. The Ni, P and S contents of each powder are confirmed by ICP emission spectroscopic analysis after eluting each powder into nitric acid or nitric hydrofluoric acid, and the hydrogen content is measured using a temperature rising gas analyzer. I went.
[0063]
For the evaluation of antibacterial properties, Staphylococcus aureus and Escherichia coli are used as the bacterial species, and the concentration of each cell after culturing is 2 × 10. Five ~ 1x10 6 0.5 ml of the liquid adjusted to be (CFU / ml) was dropped onto each Ni-based powder or coated stainless steel plate, and a polyethylene film was placed on the Ni-based powder or adhered to the Ni-based powder.
[0064]
After maintaining this at 35 ° C. and a relative humidity of 90% or more for 2 hours, the viable cell count (bacterial survival rate:%) was measured by a plate dilution method and converted to one sample. Average the survival rate in the test using each bacterium, and evaluate if the average survival rate is less than 5% ○ If 5% or more and less than 20% ◇ If 20-50%, evaluate △, In the case of 50% or more, it was expressed as evaluation x.
[0065]
For the fungicidal investigation, black mold was used as the bacterial species, and 2.0 ml of the spore suspension was added to 400 ml of PD medium to obtain a culture stock solution. To this undiluted solution, 1.0% by mass of each Ni-based powder obtained above was added, or the coated stainless steel plate obtained above was inoculated and cultured for 1 week. Evaluate if hyphae growth is not observed. Evaluate if hyphae growth is observed ◇. Evaluate if no hyphae are formed but cover the whole hyphae. Evaluate if black spores are formed. did.
[0066]
Moreover, what gave the lowest evaluation result in said three types of evaluation was made into antibacterial and antifungal comprehensive evaluation.
[0067]
Table 1 collectively shows the processing results, the amount of adhesion of P and S-containing compounds, the amount of adhesion in terms of P and S, the amount of hydrogen, the antibacterial properties, and the antifungal properties of the powders treated according to the examples. Moreover, the result of having investigated the influence which the immersion time and elution amount of Ni-type powder at the time of a hydrogen containing process (F) have on antibacterial and antifungal comprehensive evaluation is shown in FIG. Test No. 1 in Table 1 Resin mixed with 17 powder and SiO 2 FIG. 2 shows the results of examining the relationship between the Ni-based powder mixing ratio and the antibacterial / antifungal comprehensive evaluation in the film.
[0068]
[Table 1]
Figure 0003691004
[0069]
As is clear from Table 1, the Ni-based powder satisfying the Ni content and the hydrogen amount specified in the present invention and having a predetermined amount of a compound containing one or more of P and S on the surface is antibacterial. It can be seen that it has an excellent effect on both the property and the antifungal property. As is clear from FIG. 1, if the Ni-based powder is immersed in a treatment solution exhibiting an appropriate amount of elution with respect to the Ni-based powder for a predetermined time, the Ni-based powder has excellent antibacterial and antifungal properties. it can. As is clear from FIG. 2, a resin or SiO in which the Ni-based powder is mixed at an appropriate ratio. 2 The membrane has excellent antibacterial and antifungal properties.
[0070]
【The invention's effect】
The Ni-based powder of the present invention is configured as described above, and in addition to the elution of Ni ions, the surface activation effect by the contained hydrogen, and also the action of the P and S-containing compounds attached to the surface, Because of its excellent antibacterial and antifungal activity, it is used for the surface treatment of devices and parts that require antibacterial and antifungal properties in various fields including the food processing and medical fields where antibacterial and antifungal properties are desired. Widely and effectively used as an additive. Moreover, if the manufacturing method of this invention is utilized, the Ni-type powder provided with the said outstanding antibacterial and antifungal property can be obtained easily. Further, by blending the Ni powder into various materials as an antibacterial / antifungal property-imparting agent, antibacterial / antifungal properties can be imparted to various materials, and members having excellent antibacterial / antifungal properties can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the immersion time and elution amount of Ni-based powder in the hydrogen-containing treatment (F) employed in the experiment on the overall evaluation of antibacterial and antifungal properties.
Fig. 2 Resin or SiO 2 It is a graph which shows the relationship between the mixing | blending ratio of the antibacterial and antifungal powder to a film | membrane, and an antibacterial and antifungal comprehensive evaluation result.

Claims (8)

NiまたはNi合金部分のNi含量が20質量%以上であり、水素含量が1〜10,000ppmであるNiまたはNi合金粉末の表面に、Pおよび/またはS含有化合物が付着しており、該Pおよび/またはS含有化合物の付着量が粉末全体中に占める比率で1質量%以下であり、且つ該化合物中のPおよび/またはSの合計含量が、粉末全体中に占める比率で0.001質量%以上であることを特徴とする抗菌・防かび性に優れたNi系粉末。P and / or S-containing compounds are attached to the surface of the Ni or Ni alloy powder having a Ni content of Ni or Ni alloy portion of 20 mass% or more and a hydrogen content of 1 to 10,000 ppm. And / or the adhesion amount of the S-containing compound is 1% by mass or less in the proportion of the whole powder, and the total content of P and / or S in the compound is 0.001 mass in the proportion of the whole powder. % Ni-based powder with excellent antibacterial and antifungal properties, characterized by being at least%. NiまたはNi合金部分のNi含量が50質量%以上である請求項1に記載の抗菌・防かび性に優れたNi系粉末。The Ni-based powder having excellent antibacterial and antifungal properties according to claim 1, wherein the Ni content of the Ni or Ni alloy part is 50% by mass or more. 前記Pおよび/またはS含有化合物が、Pおよび/またはSの酸化物もしくは複合酸化物を含むものである請求項1または2に記載の抗菌・防かび性に優れたNi系粉末。The Ni-based powder excellent in antibacterial and antifungal properties according to claim 1 or 2, wherein the P and / or S-containing compound contains an oxide or composite oxide of P and / or S. 前記Pおよび/またはS含有化合物が、リン酸亜鉛、リン酸カルシウム、リン酸鉄およびリン酸マンガンから選ばれる1種以上を含むものである請求項1または2に記載の抗菌・防かび性に優れたNi系粉末。3. The Ni-based antibacterial / antifungal property according to claim 1, wherein the P and / or S-containing compound contains at least one selected from zinc phosphate, calcium phosphate, iron phosphate and manganese phosphate. Powder. 前記請求項1〜4のいずれかに記載のNi系粉末を製造する方法であって、NiまたはNi合金粉末を、該粉末の溶出量が0.05〜50g/m2/h以上となる水溶液に1〜10,000分間浸漬させる処理を含むことを特徴とする抗菌・防かび性に優れたNi系粉末の製法。A method for producing the Ni-based powder according to any one of claims 1 to 4, wherein the Ni or Ni alloy powder is an aqueous solution in which the elution amount of the powder is 0.05 to 50 g / m 2 / h or more. The manufacturing method of Ni type powder excellent in antibacterial and antifungal property characterized by including the process to immerse in 1 to 10,000 minutes. 前記請求項1〜4のいずれかに記載のNi系粉末を無機物質、有機物質またはそれらの混合物に1〜30質量%含有せしめてなることを特徴とする抗菌・防かび性に優れた材料。A material excellent in antibacterial and antifungal properties, comprising 1 to 30% by mass of the Ni-based powder according to any one of claims 1 to 4 in an inorganic substance, an organic substance or a mixture thereof. 前記請求項6に記載の有機物質が、ふっ化ビニリデン系樹脂、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂またはそれらの混合樹脂である請求項6に記載の材料。The material according to claim 6, wherein the organic substance according to claim 6 is a vinylidene fluoride resin, an acrylic resin, an epoxy resin, a silicone resin, or a mixed resin thereof. 無機質部材または有機質部材が、上記請求項6または7に記載の材料により被覆されていることを特徴とする抗菌・防かび性に優れた部材。A member excellent in antibacterial and antifungal properties, wherein an inorganic member or an organic member is coated with the material according to claim 6 or 7.
JP2001252944A 2001-08-23 2001-08-23 Ni-based powder having excellent antibacterial and antifungal properties, its production method, and an antibacterial and antifungal material, resin and member containing the Ni-based powder Expired - Fee Related JP3691004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252944A JP3691004B2 (en) 2001-08-23 2001-08-23 Ni-based powder having excellent antibacterial and antifungal properties, its production method, and an antibacterial and antifungal material, resin and member containing the Ni-based powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252944A JP3691004B2 (en) 2001-08-23 2001-08-23 Ni-based powder having excellent antibacterial and antifungal properties, its production method, and an antibacterial and antifungal material, resin and member containing the Ni-based powder

Publications (2)

Publication Number Publication Date
JP2003064401A JP2003064401A (en) 2003-03-05
JP3691004B2 true JP3691004B2 (en) 2005-08-31

Family

ID=19081338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252944A Expired - Fee Related JP3691004B2 (en) 2001-08-23 2001-08-23 Ni-based powder having excellent antibacterial and antifungal properties, its production method, and an antibacterial and antifungal material, resin and member containing the Ni-based powder

Country Status (1)

Country Link
JP (1) JP3691004B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844589B2 (en) * 2008-05-08 2011-12-28 住友金属鉱山株式会社 Nickel powder with excellent sinterability
JP5278980B2 (en) * 2011-05-27 2013-09-04 寿産業株式会社 MICROGEN GENERATION PREVENTIVE POWDER, PROCESS FOR PRODUCING THE SAME, MICROGEN GENERATION PREVENTIVE FIBER AND MICROGEN GENERATION PREVENTIVE SHEET
KR20230123518A (en) * 2021-03-31 2023-08-23 가부시키가이샤 고베 세이코쇼 iron powder for antibacterial
WO2023195349A1 (en) * 2022-04-07 2023-10-12 株式会社神戸製鋼所 Antimicrobial powder, method for producing antimicrobial powder, antimicrobial coating, antimicrobial resin composition, antimicrobial member, and antimicrobial resin molded article

Also Published As

Publication number Publication date
JP2003064401A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US8394494B2 (en) Antimicrobial substrates and uses thereof
Lu et al. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition
US20090136742A1 (en) Ag-containing solution, antibacterial resin composition comprising the solution and antibacterial resin coated steel plate
JP2021101042A (en) Method for applying superfine phosphate chemical conversion crystalline coating
WO2018144823A1 (en) Functionalized fullerene metal nanocomposites
AU2014292022B2 (en) Composite coatings of oxidized and/or phosphorous copper
JP3691004B2 (en) Ni-based powder having excellent antibacterial and antifungal properties, its production method, and an antibacterial and antifungal material, resin and member containing the Ni-based powder
JPH01268764A (en) Antimicrobial pigment powder
Fu et al. Sol–gel derived antibacterial Ag-containing ZnO films on biomedical titanium
Zhang et al. One-step synthesis of silver nanoparticles in self-assembled multilayered films based on a Keggin structure compound
JP2013216596A (en) Antimicrobial agent, antimicrobial agent dispersion, and antimicrobial-treated product using the same
JP3598349B2 (en) Manufacturing method of composite ceramic material
CN1326777C (en) Preparation method of titanium oxide and its application
Alajmi et al. Ag-enhanced antibacterial property of MgO film
JPH04231062A (en) Antimicrobial medical product
JPH05214262A (en) Antifungal colored powder
JP2998061B2 (en) Porous calcium carbonate supporting antimicrobial metal fine particles
JP3695965B2 (en) Antibacterial powder and antibacterial member for surface treatment
CN108677171A (en) A kind of preparation method of antibacterial aluminium product
JP7074556B2 (en) Coating film and water-based composition
DE102007048107A1 (en) Antibiotically active substrate for inoculation purposes for producing materials like e.g. dyes and papers, comprises an antibiotically active nano-particular arrangement made from a continuous metal coating with a highly porous surface
JPH0578218A (en) Germicidal and rust proof composition and mixture containing the same composition
Soliman et al. Comparing three strategies for surface treatment of Mg coated by hexamethylene diamine tetra methylene phosphonic acid for corrosion protection
CN113463158B (en) Surface antibacterial anodic oxidation process of aluminum alloy
Wu et al. Long-Term Antibacterial Coatings with Core–Shell Ag@ SiO2 Colloid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R150 Certificate of patent or registration of utility model

Ref document number: 3691004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees