JP3690537B2 - Intermittent aeration - Google Patents

Intermittent aeration Download PDF

Info

Publication number
JP3690537B2
JP3690537B2 JP33873795A JP33873795A JP3690537B2 JP 3690537 B2 JP3690537 B2 JP 3690537B2 JP 33873795 A JP33873795 A JP 33873795A JP 33873795 A JP33873795 A JP 33873795A JP 3690537 B2 JP3690537 B2 JP 3690537B2
Authority
JP
Japan
Prior art keywords
time
aeration
value
tank
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33873795A
Other languages
Japanese (ja)
Other versions
JPH09174083A (en
Inventor
敏正 梅原
康弘 石井
Original Assignee
株式会社日立ハウステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハウステック filed Critical 株式会社日立ハウステック
Priority to JP33873795A priority Critical patent/JP3690537B2/en
Publication of JPH09174083A publication Critical patent/JPH09174083A/en
Application granted granted Critical
Publication of JP3690537B2 publication Critical patent/JP3690537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少なくともばっ気槽を設けた汚水浄化槽特に、ばっ気時間及び撹拌時間を設定する方法に関するものである。
【0002】
【従来の技術】
汚水中の窒素は、ばっ気槽中においてばっ気装置により供給される空気中の酸素と硝化菌により、酸化され硝酸性窒素或は亜硝酸性窒素に転換される。更に、ばっ気装置を停止し、ばっ気槽内の溶存酸素(以下DOという)をゼロに近い値とすると、脱窒菌の作用により硝酸性窒素或は亜硝酸性窒素の原子状酸素が消費され、窒素ガスに還元される。
【0003】
通常、前述したような脱窒工程を行なうための、ばっ気装置のばっ気及び停止時間の設定を、タイマーにって行い、ばっ気停止時のばっ気槽内の微生物と硝酸性窒素或は亜硝酸性窒素との接触、即ち反応効率を高めるため、撹拌機により混合したり、インバータにより低速撹拌を行なっている。
【0004】
また、特公平4−48520号公報には、好気性雰囲気を形成するDO値の上限と下限をを設定し、上限値でばっ気装置の運転をONからOFFに切替へ、下限値以下ではOFF状態を一定時間保持した後、OFFからONへ切替て窒素の除去を行うことが開示されている。
【0005】
特開平4−358598号公報では、予め硝化速度、脱窒速度、酸素移動総括係数を演算式に書き込んでおき、水温、MLSS濃度、酸素利用速度の測定値を前記演算式に代入し、ばっ気停止時間に対するばっ気時間の比率を設定し、窒素除去を行うことが開示されている。
【0006】
更に、特開昭63−69595号公報には、ばっ気槽内のDO値を連続的に計測し、該計測値から活性汚泥の必要酸素量を計算し、ばっ気時間を制御して脱窒除去を行なうことを開示している。
【0007】
【発明が解決しようとする課題】
しかしながら、ばっ気時間及びばっ気停止時間をタイマーにより設定する方法では、流入汚水量が少ない場合に必要以上のばっ気運転を行なっていしまい、結果としてDO値が高い状態の時間が長いために脱窒時間が不足し、窒素除去率が低下してしてしまう。
【0008】
最適な硝化時間θN、脱窒時間θDNは、以下のようにして求めることが可能である。即ち、建築用途を住宅とした場合、流入総窒素(T−N)は50mg/lで、このうち10mg/lが微生物の細胞合成に使用されるため、初期T−N濃度は40mg/lとなる。処理水目標T−N濃度を15mg/lとし、硝化率100パーセントとするならば、40mg/lを硝酸性窒素に酸化しなければならない。またこのうち25mg/lを窒素ガスに転換する必要がある。
【0009】
硝化速度をKN、脱窒速度をKDNとすると、各々は下記の式1、式2によって表され、硝化時間θN、脱窒時間θDN、硝化速度をKN、脱窒速度をKDNの間には式3が成立する。
【0010】
【式1】

Figure 0003690537
【0011】
【式2】
Figure 0003690537
【0012】
【式3】
Figure 0003690537
【0013】
ここで、硝化時間と脱窒時間を合わせた1サイクルの時間を120分と設定すると、θN+θDN=120となり、これらの式から最適な硝化時間θN、脱窒時間θDNを求めることが可能となる。
【0014】
但し、図1に示すように、硝化時間はθNは、ばっ気時間θAにばっ気停止からDO値が0.2mg/lになるまでの時間t1を加え、更にばっ気開始からDO値が0.2mg/lに達するまでの時間t2を差し引いた値となる。同様に脱窒時間θDNも、ばっ気停止時間θBからt1を差引き、t2を加えた値となる。望ましくは、前述したような硝化時間と脱窒時間を得られるようにばっ気時間及びばっ気停止時間を設定しなければならないが、汚水の流入量は常に一定ではなく、変化するものであり、図1破線に示すように流入汚水量が少ない場合には時間を変更しなければならない。しかし、このような変更は、一般的な維持管理者に要求することが難しく現実不可能なことである。
【0015】
そのような問題点から、タイマーを改良した特公平4−48520号公報が開示している技術が見出されたが、これでも最適な硝化時間と脱窒時間を得ることは難しい。尚図2は、DOの上限値2.5mg/l、下限値0.2mg/l、一定時間50分としたときのばっ気槽内DO値変化を示している。
【0016】
特開平4−358598号公報では、前述したようにMLSS濃度の値が必要となり、高価なMLSS計を使用するかサンプリングにより手分析に因らなければならない。特開昭63−69595号公報によって開示されているのは、DO計により必要酸素量を求め、ばっ気必要時間を算出し省エネを図るもので、積極的に窒素除去を行なう方法ではない。
【0017】
本発明は、前記問題点に鑑み、汚水流入量が変化しても最適な硝化時間及び脱窒時間を得られるように、ばっ気時間及びばっ気停止時間を設定する方法を提供することを目的としている。
【0018】
【課題を解決するための手段】
本発明は、少なくともばっ気槽を有した浄化槽において、前記ばっ気槽内にばっ気装置、撹拌装置、DO計、温度計を設け、前記温度計から得られるばっ気槽内水温Tから、硝化速度K、脱窒速度KDNを算出し、予め設定する1サイクル時間(ばっ気時間と撹拌時間を合わせた時間)を前記K及びKDNによってばっ気時間及び撹拌時間各々の時間割当てを行い、該時間割当てに従い1回目の浄化槽運転を行い、その際ばっ気開始からばっ気槽内のDO値が所定値まで上昇する時間をt、ばっ気停止から撹拌によりDO値が前記所定値まで下降するまでの時間をtとし、1回目に使用したばっ気時間にt −t の時間を加算した時間を2回目のばっ気時間とし、1回目に使用した撹拌時間からt +t の時間を減じた時間を2回目の撹拌時間として、2回目の浄化槽運転を行い、以後順次前記時間設定を繰り返すことにより最適な硝化時間及び脱窒時間を得られるばっ気時間及びばっ気停止時間を算出している。
【0019】
【発明の実施の形態】
硝化速度KN、脱窒速度KDNの算出は、ばっ気槽内水温Tより式1及び式2を使用することによって求められる。1サイクルの時間は、適宜決定されるものであるが、通常1時間から6時間の間から選択することが好ましい。DO値についても所定値を決定しなければならないが、これは0.5mg/l以下であることが好ましい。
【0020】
本発明におけるばっ気時間と撹拌時間(ばっ気停止時間)は、予め設定されている1サイクルの時間とDO値により決定される。前述したように、ばっ気槽内水温Tより硝化速度KN、脱窒速度KDNを算出し、1サイクルの時間をばっ気時間及び撹拌時間各々に割当て、ここで算出された時間通りに1回目の運転を行う。そして、設定されているDO値を超えるまでの時間(ばっ気開始からみて)を計測し、ばっ気停止から設定されているDO値を下回るまでの時間を計測し、各々計測した時間を再度ばっ気槽内の温度Tから求められるばっ気時間と撹拌時間に加減することにより最適な運転時間を求めている。その後は順次この作業を繰り返すこととなる。
【0021】
時間の加減は、ばっ気開始からばっ気槽内のDO値が所定値まで上昇する時間をt1、ばっ気停止から撹拌によりDO値が前記所定値まで下降するまでの時間をt2とすると、ばっ気時間θ1は式4により、撹拌時間θ2は式5により示される。
【0022】
【式4】
θ1=θN+t1−t2
【0023】
【式5】
θ2=θDN−t1+t2
【0024】
即ち、図3に示すように、ばっ気停止或いは撹拌時間が保持されθ2時間後、再びばっ気装置がθ1時間運転され、同様の操作が繰り返される。勿論、前記θ1及びθ2の時間が流入汚水によって変化していくのは言うまでもない。図4は、1サイクル120分、DOの所定値を0.2mg/lとした場合のフローチャートを示したものである。
【0025】
【実施例】
次に本発明の実施例を説明する
図5は、本発明の1実施例を示すばっ気槽5を有した汚水浄化槽を示すものである。汚水13は、流量調整槽1に流入し、流量調整ポンプ2により微細目スクリーン3に送水され、夾雑物が除去された後、間欠ばっ気槽5に流入する。間欠ばっ気槽5内には、ブロワ6と連結された散気筒7及び水中撹拌機8が設置してある。
【0026】
1サイクルを120分、DOの所定値を0.2mg/lとすると、間欠ばっ気槽5の水温が摂氏20度の時、式1及び2から導きだされる硝化速度は、0.98、脱窒速度は1.15となり、式3及び1サイクル120分より、必要な硝化時間78分、脱窒時間42分が導きだされる。従って、まず78分間ブロワー6を稼働し、その後ブロワ6を停止させて水中撹拌機8を稼働させる。この時の間欠ばっ気槽5内のDO値変化を図6に示す。図6から、DO値が0.2mg/lまで上昇する時間t1は10分、ブロワ6停止からDO値が0.2mg/lまで下降する時間は22分となるため、水中撹拌機8の運転時間θ2は42−10+22=54となり54分間、ブロワ6の運転時間は78+10−22=66となり66分と算出される。
【0027】
ブロワ6の運転時にばっ気槽内水温を測定すると今度は21と計測され、この水温から硝化速度は、1.07、脱窒速度は1.23となり、必要な硝化及び脱窒時間がそれぞれ77分、43分となる。図6に示すように、t’2は18分となるから、水中撹拌機8の運転時間θ’2は43−9+18=52(分)、一方ブロワ6のばっ気時間θ’1は、77+9−18=68(分)となる。この様な一連の計算を繰返し、1サイクル2時間毎のブロワ6の運転時間及び水中撹拌機8の運転時間を決定する。
【0028】
上記間欠ばっ気槽5にて処理されたばっ気液は、沈殿槽10に流入し固液分離された上澄み液が消毒槽11で消毒された後、放流ポンプ槽12から放流される。一方固液分離された活性汚泥は、間欠ばっ気槽5へ汚泥マス9を介して戻され、一部余剰汚泥は、汚泥マス9から汚泥濃縮貯留槽4へ移送される。
【0029】
この時の流入汚水及び放流水の水質は、表1に示すとおりである。この表からも本発明を適用することにより、放流水のBOD、T−N共に10mg/l以下となり、phも中性域となったことがわかる。
【0030】
【表1】
Figure 0003690537
【0031】
別の実施例として、流入負荷が極端に低い場合、即ち、ばっ気開始時にばっ気槽DO値が飽和値に近づく場合には、図7に示すようになる。この場合でも本発明のブロワ運転時間と水中撹拌機の運転時間は成立するものであり、表2に示すようにBOD、T−N共に10mg/l以下で安定した水質が得られる。尚ここで述べてきた計算は、全て浄化槽に設置されたマイコンによって計算制御されるものであり、管理者は面倒な計算を行う必要はない。
【0032】
【表2】
Figure 0003690537
【0033】
これまでの実施例は、ばっ気停止後撹拌開始からDOの値が0.2mg/lまで下降する時間t2が所定時間内に入る、換言すれば図4中のθN−t2がマイナスにならない範囲の実施例である。ここでは、θN−t2がマイナスになる実施例を示す。
【0034】
流入負荷が極端に低い場合には、ばっ気後のばっ気槽5内DO値がなかなか下降せず、t2が硝化時間θNより大きな値をとる場合がある。この場合、図4に示すフローチャートではばっ気時間及び撹拌時間を算出することができないため、図8に示すフローチャートを適用する。
【0035】
図8に示すフローチャートは、演算式の中でDO値が0.2mg/lになるまでの時間t2を求め、ブロワ6の運転時間T1が5分より小さいか、或いは115分より大きいときは、それぞれブロワ運転時間T15分、水中撹拌機運転時間T2115分、或いはブロワ運転時間T1115分、水中撹拌機運転時間T25分としたものである。
【0036】
流入負荷が極端に低い場合のばっ気槽5内のDO値変化を図9に示す。水温摂氏20度のとき、必要硝化時間77分、脱窒時間43分、t15分、t235分からばっ気時間47分、撹拌時間73分となる。次の1サイクルでは、t2時間はDO値が0.2mg/lになるまで更に10分間稼働するため83分となり、ブロワ運転時間T1は77+3−83=−3となり5分以下となってしまう。従って、ブロワ運転時間5分、撹拌時間115分となる。尚、表3に示す低負荷時の処理水質から明らかなように、良質な水質を得られることが理解できる。
【0037】
【表3】
Figure 0003690537
【0038】
【発明の効果】
以上説明したとおり本発明による方法は、流入する汚水の質、量等が変化しても、それに対応し安定した処理を行ない、BOD、T−N共に低い値を示すものである。また、ばっ気時間及び撹拌時間は、図4に示すフローチャートにより自動的に設定されるため維持管理時間が省略できる。
【図面の簡単な説明】
【図1】ばっ気時間、ばっ気停止時間を固定した場合のばっ気槽内DO値変化を、流入汚水量が設計値通りと設計値より少ない場合に分けて示してあるグラフである。
【図2】上限DO値を2.5mg/l、下限DO値を0.2mg/lとした場合のばっ気槽内DO値変化を示したグラフである。
【図3】本発明によるばっ気槽内のDO値変化を示すグラフである。
【図4】本発明のばっ気装置及び撹拌機の運転時間設定用フローチャートを示す。
【図5】本発明を実施するための、浄化槽システム例を示す。
【図6】本発明によるばっ気槽内のDO値変化を示すグラフである。
【図7】本発明による、低負荷時のばっ気槽内のDO値変化を示すグラフである。
【図8】t2が硝化時間θNより大きな値をとる場合の、ばっ気装置及び撹拌機の運転時間設定用フローチャートを示す。
【図9】本発明による、超低負荷時のばっ気槽内のDO値変化を示すグラフである。
【符号の説明】
1.流量調整槽 2.流量調整ポンプ 3.微細目スクリーン 4.汚泥濃縮貯留槽 5.間欠ばっ気槽 6.ブロワ 7.散気筒 8.水中撹拌機 9.汚泥マス 10.沈澱槽 11.消毒槽 12.放流ポンプ槽 13.汚水 14.放流水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sewage septic tank provided with at least an aeration tank, and more particularly to a method for setting an aeration time and an agitation time.
[0002]
[Prior art]
Nitrogen in the sewage is oxidized and converted into nitrate nitrogen or nitrite nitrogen by oxygen and nitrifying bacteria in the air supplied by the aeration apparatus in the aeration tank. Furthermore, when the aeration apparatus is stopped and the dissolved oxygen (hereinafter referred to as DO) in the aeration tank is set to a value close to zero, nitrate nitrogen or nitrite nitrogen atomic oxygen is consumed by the action of denitrifying bacteria. Reduced to nitrogen gas.
[0003]
Usually, the aeration and stop time of the aeration apparatus for performing the denitrification process as described above are set by a timer, and microorganisms in the aeration tank at the time of aeration stop and nitrate nitrogen or In order to improve contact with nitrite nitrogen, that is, reaction efficiency, mixing is performed by a stirrer or low-speed stirring is performed by an inverter.
[0004]
In Japanese Patent Publication No. 4-48520, an upper limit and a lower limit of a DO value forming an aerobic atmosphere are set, and the operation of the aeration apparatus is switched from ON to OFF at the upper limit value. Is held for a certain period of time and then switched from OFF to ON to remove nitrogen.
[0005]
In JP-A-4-358598, the nitrification rate, the denitrification rate, and the oxygen transfer overall coefficient are written in advance in the calculation formula, and the measured values of the water temperature, MLSS concentration, and oxygen utilization rate are substituted into the calculation formula. It is disclosed that nitrogen is removed by setting a ratio of aeration time to stop time.
[0006]
Further, in JP-A-63-69595, the DO value in the aeration tank is continuously measured, the required oxygen amount of the activated sludge is calculated from the measured value, and the aeration time is controlled to denitrify. It is disclosed to perform the removal.
[0007]
[Problems to be solved by the invention]
However, in the method in which the aeration time and the aeration stop time are set by the timer, the aeration operation is performed more than necessary when the amount of inflow sewage is small, and as a result, the period of time during which the DO value is high is long, and the aeration is not performed. Nitrogen time is insufficient and the nitrogen removal rate decreases.
[0008]
The optimum nitrification time θ N and denitrification time θ DN can be determined as follows. That is, when the building is used as a house, the total inflow nitrogen (TN) is 50 mg / l, and 10 mg / l is used for microbial cell synthesis, so the initial TN concentration is 40 mg / l. Become. If the treated water target TN concentration is 15 mg / l and the nitrification rate is 100 percent, 40 mg / l must be oxidized to nitrate nitrogen. Of these, 25 mg / l needs to be converted to nitrogen gas.
[0009]
Assuming that the nitrification rate is K N and the denitrification rate is K DN , each is expressed by the following formulas 1 and 2. The nitrification time θ N , the denitrification time θ DN , the nitrification rate is K N , and the denitrification rate is K Equation 3 holds between DNs .
[0010]
[Formula 1]
Figure 0003690537
[0011]
[Formula 2]
Figure 0003690537
[0012]
[Formula 3]
Figure 0003690537
[0013]
Here, if the time of one cycle including the nitrification time and the denitrification time is set to 120 minutes, θ N + θ DN = 120, and the optimum nitrification time θ N and denitrification time θ DN are obtained from these equations. Is possible.
[0014]
However, as shown in FIG. 1, the nitrification time θ N is the aeration time θ A and the time t 1 from the aeration stop to the DO value of 0.2 mg / l is added to the aeration time θ A. It is a value obtained by subtracting the time t 2 until the value reaches 0.2 mg / l. Similarly, the denitrification time θ DN is a value obtained by subtracting t 1 from the aeration stop time θ B and adding t 2 . Desirably, the aeration time and the aeration stop time must be set so that the nitrification time and the denitrification time as described above can be obtained, but the inflow amount of sewage is not always constant and varies. As shown by the broken line in FIG. 1, the time must be changed when the amount of inflow sewage is small. However, such a change is difficult and impossible to request from a general maintenance manager.
[0015]
From such a problem, a technique disclosed in Japanese Examined Patent Publication No. 4-48520 improved the timer has been found, but it is still difficult to obtain the optimum nitrification time and denitrification time. FIG. 2 shows the change in DO value in the aeration tank when the upper limit value of DO is 2.5 mg / l, the lower limit value is 0.2 mg / l, and the fixed time is 50 minutes.
[0016]
In Japanese Patent Laid-Open No. 4-358598, the value of the MLSS concentration is required as described above, and it is necessary to use an expensive MLSS meter or rely on manual analysis by sampling. Japanese Patent Laid-Open No. 63-69595 discloses a method for obtaining a required oxygen amount by a DO meter, calculating an aeration required time to save energy, and is not a method of positively removing nitrogen.
[0017]
In view of the above problems, an object of the present invention is to provide a method for setting an aeration time and an aeration stop time so that optimum nitrification time and denitrification time can be obtained even if the amount of inflow of sewage changes. It is said.
[0018]
[Means for Solving the Problems]
In the septic tank having at least an aeration tank, the present invention is provided with an aeration apparatus, a stirrer, a DO meter, and a thermometer in the aeration tank, and from the water temperature T in the aeration tank obtained from the thermometer, nitrification Calculate the speed K N and the denitrification speed K DN, and assign a preset one cycle time (a total time of the aeration time and the agitation time) to each of the aeration time and the agitation time by the K N and K DN . In accordance with the time allocation, the first septic tank operation is performed. At that time, the time for the DO value in the aeration tank to rise to a predetermined value from the start of the aeration is t 1 , and the DO value by the stirring from the aeration stop is the predetermined value. the time to descend to the t 2, the time obtained by adding the time t 1 -t 2 the aeration time used in the first and second aeration time, t 1 from the stirring time used for the first time Decrease time + t 2 The aeration time and the aeration stop time for obtaining the optimum nitrification time and denitrification time are calculated by repeating the above-mentioned time setting sequentially after the second septic tank operation is performed with the second stirring time as the second stirring time. Yes.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The calculation of the nitrification rate K N and the denitrification rate K DN can be obtained by using Equations 1 and 2 from the water temperature T in the aeration tank. The time for one cycle is appropriately determined, but it is usually preferable to select from 1 hour to 6 hours. Although a predetermined value must be determined for the DO value, it is preferably 0.5 mg / l or less.
[0020]
The aeration time and agitation time (aeration stop time) in the present invention are determined by a preset time of one cycle and a DO value. As described above, the nitrification rate K N and the denitrification rate K DN are calculated from the water temperature T in the aeration tank, and one cycle time is assigned to each of the aeration time and the agitation time, and 1 according to the calculated time. Do the second operation. Then, the time until the set DO value is exceeded (as viewed from the start of aeration) is measured, the time from the aeration stop to the set DO value is measured, and each measured time is again measured. The optimum operation time is obtained by adjusting the aeration time and the stirring time obtained from the temperature T in the air tank. Thereafter, this operation is repeated sequentially.
[0021]
The time adjustment is defined as t 1 when the DO value in the aeration tank rises to a predetermined value from the start of aeration, and t 2 when the DO value falls to the predetermined value due to agitation after stirring. The aeration time θ 1 is expressed by Equation 4, and the stirring time θ 2 is expressed by Equation 5.
[0022]
[Formula 4]
θ 1 = θ N + t 1 −t 2
[0023]
[Formula 5]
θ 2 = θ DN −t 1 + t 2
[0024]
That is, as shown in FIG. 3, the aeration apparatus is operated again for θ 1 hour after the aeration stop or stirring time is maintained and θ 2 hours, and the same operation is repeated. Of course, it goes without saying that the times θ 1 and θ 2 change depending on the inflowing sewage. FIG. 4 shows a flowchart when the predetermined value of DO is 0.2 mg / l for 120 minutes per cycle.
[0025]
【Example】
Next, FIG. 5 for explaining an embodiment of the present invention shows a sewage septic tank having an aeration tank 5 showing one embodiment of the present invention. The sewage 13 flows into the flow rate adjusting tank 1, is sent to the fine screen 3 by the flow rate adjusting pump 2, and after impurities are removed, flows into the intermittent aeration tank 5. In the intermittent aeration tank 5, a dust cylinder 7 and an underwater agitator 8 connected to the blower 6 are installed.
[0026]
When one cycle is 120 minutes and the predetermined value of DO is 0.2 mg / l, when the water temperature of the intermittent aeration tank 5 is 20 degrees Celsius, the nitrification rate derived from Equations 1 and 2 is 0.98, The denitrification rate is 1.15, and a necessary nitrification time of 78 minutes and a denitrification time of 42 minutes are derived from Equation 3 and 120 minutes per cycle. Therefore, the blower 6 is first operated for 78 minutes, and then the blower 6 is stopped and the underwater agitator 8 is operated. The DO value change in the intermittent aeration tank 5 at this time is shown in FIG. From FIG. 6, the time t 1 for increasing the DO value to 0.2 mg / l is 10 minutes, and the time for the DO value to decrease to 0.2 mg / l after stopping the blower 6 is 22 minutes. The operation time θ 2 is calculated as 42−10 + 22 = 54 and 54 minutes, and the operation time of the blower 6 is calculated as 78 + 10−22 = 66 and 66 minutes.
[0027]
When the water temperature in the aeration tank is measured during the operation of the blower 6, it is measured to be 21. From this water temperature, the nitrification rate is 1.07, the denitrification rate is 1.23, and the necessary nitrification and denitrification times are 77 respectively. Minutes, 43 minutes. As shown in FIG. 6, since t ′ 2 is 18 minutes, the operation time θ ′ 2 of the underwater agitator 8 is 43−9 + 18 = 52 (minutes), while the aeration time θ ′ 1 of the blower 6 is 77 + 9. −18 = 68 (minutes). Such a series of calculations are repeated, and the operation time of the blower 6 and the operation time of the underwater agitator 8 are determined every two hours in one cycle.
[0028]
The aeration liquid treated in the intermittent aeration tank 5 flows into the sedimentation tank 10, and the supernatant liquid separated into solid and liquid is sterilized in the sterilization tank 11 and then discharged from the discharge pump tank 12. On the other hand, the activated sludge separated into solid and liquid is returned to the intermittent aeration tank 5 via the sludge mass 9, and a part of the excess sludge is transferred from the sludge mass 9 to the sludge concentration storage tank 4.
[0029]
The quality of the incoming sewage and discharge water at this time is as shown in Table 1. From this table, it can be seen that by applying the present invention, both BOD and TN of the discharged water were 10 mg / l or less, and ph was also in the neutral range.
[0030]
[Table 1]
Figure 0003690537
[0031]
As another embodiment, when the inflow load is extremely low, that is, when the aeration tank DO value approaches the saturation value at the start of aeration, the result is as shown in FIG. Even in this case, the blower operation time and the operation time of the submerged stirrer of the present invention are established, and as shown in Table 2, stable water quality is obtained when both BOD and TN are 10 mg / l or less. The calculations described here are all calculated and controlled by a microcomputer installed in the septic tank, and the administrator does not need to perform troublesome calculations.
[0032]
[Table 2]
Figure 0003690537
[0033]
In the examples so far, after the start of aeration, the time t 2 when the DO value decreases to 0.2 mg / l after the start of agitation falls within the predetermined time, in other words, θ N −t 2 in FIG. 4 is negative. This is an example of a range that does not become. Here, an example in which θ N −t 2 is negative is shown.
[0034]
When the inflow load is extremely low, the DO value in the aeration tank 5 after aeration is not easily lowered, and t 2 may take a value larger than the nitrification time θ N. In this case, since the aeration time and the stirring time cannot be calculated in the flowchart shown in FIG. 4, the flowchart shown in FIG. 8 is applied.
[0035]
In the flowchart shown in FIG. 8, the time t 2 until the DO value reaches 0.2 mg / l is obtained in the arithmetic expression, and the operation time T 1 of the blower 6 is less than 5 minutes or greater than 115 minutes. Are respectively the blower operation time T 1 5 minutes, the underwater agitator operation time T 2 115 minutes, the blower operation time T 1 115 minutes, and the underwater agitator operation time T 2 5 minutes.
[0036]
FIG. 9 shows the DO value change in the aeration tank 5 when the inflow load is extremely low. When the water temperature is 20 degrees Celsius, the necessary nitrification time is 77 minutes, the denitrification time is 43 minutes, t 1 is 5 minutes, t 2 is 35 minutes, the aeration time is 47 minutes, and the stirring time is 73 minutes. In the next one cycle, the t 2 time is 83 minutes because the operation continues for another 10 minutes until the DO value reaches 0.2 mg / l, and the blower operation time T 1 becomes 77 + 3-83 = −3, which is less than 5 minutes. End up. Accordingly, the blower operation time is 5 minutes and the stirring time is 115 minutes. As can be seen from the quality of treated water at low load shown in Table 3, it can be understood that good quality water can be obtained.
[0037]
[Table 3]
Figure 0003690537
[0038]
【The invention's effect】
As described above, the method according to the present invention performs stable treatment corresponding to changes in the quality and amount of sewage flowing in, and shows low values for both BOD and TN. The aeration time and the stirring time are automatically set according to the flowchart shown in FIG.
[Brief description of the drawings]
FIG. 1 is a graph showing a change in DO value in an aeration tank when an aeration time and an aeration stop time are fixed, divided into cases where the amount of inflow sewage is less than the design value as designed.
FIG. 2 is a graph showing changes in DO value in the aeration tank when the upper limit DO value is 2.5 mg / l and the lower limit DO value is 0.2 mg / l.
FIG. 3 is a graph showing a change in DO value in an aeration tank according to the present invention.
FIG. 4 is a flowchart for setting an operation time of the aeration apparatus and the agitator according to the present invention.
FIG. 5 shows an example of a septic tank system for carrying out the present invention.
FIG. 6 is a graph showing a change in DO value in the aeration tank according to the present invention.
FIG. 7 is a graph showing a change in DO value in the aeration tank at low load according to the present invention.
FIG. 8 is a flowchart for setting the operating time of the aeration apparatus and the stirrer when t 2 takes a value larger than the nitrification time θ N.
FIG. 9 is a graph showing a change in DO value in an aeration tank at an ultra-low load according to the present invention.
[Explanation of symbols]
1. 1. Flow adjustment tank 2. Flow adjustment pump Fine screen 4. 4. Sludge concentration storage tank Intermittent aeration tank 6. Blower 7 Spiral cylinder 8. 8. Underwater stirrer Sludge mass 10. Precipitation tank 11. Disinfection tank 12. Release pump tank 13. Wastewater 14. Discharged water

Claims (1)

少なくともばっ気槽を有した浄化槽において、前記ばっ気槽内にばっ気装置、撹拌装置、DO計、温度計を設け、前記温度計から得られるばっ気槽内水温Tから、硝化速度K、脱窒速度KDNを算出し、予め設定する1サイクル時間(ばっ気時間と撹拌時間を合わせた時間)を前記K及びKDNによってばっ気時間及び撹拌時間各々の時間割当てを行い、該時間割当てに従い1回目の浄化槽運転を行い、
その際ばっ気開始からばっ気槽内のDO値が所定値まで上昇する時間をt、ばっ気停止から撹拌によりDO値が前記所定値まで下降するまでの時間をtとし、1回目に使用したばっ気時間にt −t の時間を加算した時間を2回目のばっ気時間とし、1回目に使用した撹拌時間からt +t の時間を減じた時間を2回目の撹拌時間として、2回目の浄化槽運転を行い、以後順次前記時間設定を繰り返す間欠ばっ気法。
In a septic tank having at least an aeration tank, an aeration apparatus, a stirrer, a DO meter, and a thermometer are provided in the aeration tank. From the water temperature T in the aeration tank obtained from the thermometer, the nitrification rate K N , The denitrification rate K DN is calculated, and a preset one cycle time (a time obtained by combining the aeration time and the agitation time) is assigned to each of the aeration time and the agitation time by the K N and K DN . Perform the first septic tank operation according to the allocation,
At that time, the time from the start of aeration to the DO value in the aeration tank rising to a predetermined value is t 1 , the time from the aeration stop until the DO value is lowered to the predetermined value by stirring is t 2 , The time obtained by adding the time of t 1 -t 2 to the aeration time used is the second aeration time, and the time obtained by subtracting the time of t 1 + t 2 from the stirring time used for the first time is the second stirring time. As an intermittent aeration method , the second septic tank operation is performed, and the time setting is sequentially repeated thereafter.
JP33873795A 1995-12-26 1995-12-26 Intermittent aeration Expired - Fee Related JP3690537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33873795A JP3690537B2 (en) 1995-12-26 1995-12-26 Intermittent aeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33873795A JP3690537B2 (en) 1995-12-26 1995-12-26 Intermittent aeration

Publications (2)

Publication Number Publication Date
JPH09174083A JPH09174083A (en) 1997-07-08
JP3690537B2 true JP3690537B2 (en) 2005-08-31

Family

ID=18320991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33873795A Expired - Fee Related JP3690537B2 (en) 1995-12-26 1995-12-26 Intermittent aeration

Country Status (1)

Country Link
JP (1) JP3690537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837267B2 (en) * 2004-08-02 2011-12-14 住友重機械エンバイロメント株式会社 Oxidation ditch operation control method and oxidation ditch operation control apparatus
JP2011230069A (en) * 2010-04-28 2011-11-17 Kiyomi Yamaura Aeration operation control system and aeration operation control method for sewage treatment apparatus

Also Published As

Publication number Publication date
JPH09174083A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
Ekama et al. Nitrogen removal
WO2016203675A1 (en) Method for controlling amount of aeration in activated sludge
JP2020006341A (en) Sewage treatment method and apparatus
JP3690537B2 (en) Intermittent aeration
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP3397102B2 (en) Control method of intermittent aeration type activated sludge method
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP4579450B2 (en) Operation control method of oxidation ditch
JP3707526B2 (en) Waste water nitrification method and apparatus
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH0938683A (en) Biological water treating device
JP2003266096A (en) Wastewater treatment apparatus
JP2987103B2 (en) Intermittent aeration
JP2001009497A (en) Biological water treatment and equipment therefor
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP2000051892A (en) Method and apparatus for nitrating waste water and activity detector
JP4837267B2 (en) Oxidation ditch operation control method and oxidation ditch operation control apparatus
JP2001121187A (en) Waste water treatment method and apparatus for the same
JP2004025051A (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP6883992B2 (en) Wastewater treatment method and wastewater treatment equipment
JP4837266B2 (en) Operation method of oxidation ditch

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees