JP3690023B2 - Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof - Google Patents

Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof Download PDF

Info

Publication number
JP3690023B2
JP3690023B2 JP34106096A JP34106096A JP3690023B2 JP 3690023 B2 JP3690023 B2 JP 3690023B2 JP 34106096 A JP34106096 A JP 34106096A JP 34106096 A JP34106096 A JP 34106096A JP 3690023 B2 JP3690023 B2 JP 3690023B2
Authority
JP
Japan
Prior art keywords
less
rolled steel
steel sheet
hot
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34106096A
Other languages
Japanese (ja)
Other versions
JPH10183240A (en
Inventor
金晴 奥田
昌利 荒谷
章男 登坂
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34106096A priority Critical patent/JP3690023B2/en
Publication of JPH10183240A publication Critical patent/JPH10183240A/en
Application granted granted Critical
Publication of JP3690023B2 publication Critical patent/JP3690023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面処理を施したのち、缶のほか自動車などのプレス加工製品に用いて好適な表面処理冷延鋼板用原板、およびこの表面処理冷延鋼板用原板の製造に適用される熱延鋼板に関し、特にプレス加工後の表面性状(耐肌荒れ性)と経済性に優れる、表面処理冷延鋼板用原板およびそれに用いる熱延鋼板、ならびにそれらの製造方法に関するものである。
【0002】
【従来の技術】
飲料缶、18リットル缶およびペール缶などの容器缶は、その製造工程から2ピース缶と3ピース缶に大別できる。
2ピース缶は、熱間圧延−冷間圧延−焼鈍の工程を経て製造された表面処理用原板に、すずめっき、クロムめっき、化成処理、塗油などの処理を施して表面処理鋼板とし、これに、浅絞り加工、DWI(Drawing and Wall Ironing )加工、DRD(Drawn and Redrawn )加工などの加工を施して、缶底と缶胴を一体成形し、これに蓋を取り付けた2部品からなる缶である。また、3ピース缶は、表面処理鋼板を円筒状または角筒状に曲げて端部同士を接合して、缶胴を成形したのち、これに天蓋と底蓋を取り付けた3部品からなる缶である。
【0003】
これらの缶は、いずれも缶コストに占める素材コストの割合が高いため、素材鋼板に対するコスト低減への要求が強い。このため、缶用鋼板の製造を、非効率的で材料の歩留りや表面品質が劣る箱焼鈍で行うのではなく、生産効率が高く、しかも歩留りや表面品質に優れた連続焼鈍で行うことが望まれる。
このような缶用鋼板の焼鈍において、再結晶完了温度を低下させることができれば、焼鈍時の熱量原単位の低下、炉寿命の向上が可能になり、一層のコストダウンを図ることができる。なお、缶用鋼板においては、焼鈍素材の厚みが一般に0.3 mm以下と薄いので、高温焼鈍を行うとヒートバックルなどのトラブルを生じ、歩止り低下を招く要因ともなる。この傾向は缶用素材の厚みが、缶コストの低減の上から、今後ますます薄くなれば、一層顕著になると考えられる。
一方、缶用素材には、絞り缶など加工の厳しい用途への適用には、優れた加工性が要求され、炭素量を低減した鋼板の開発も行われている。
しかしながら、極低炭素鋼板の場合、Nb、Tiなどの炭素や窒素を固着させる元素を添加するために、再結晶完了温度が高くなるという問題があった。
【0004】
ところで、一般の加工用鋼板の分野ではあるが、C等の添加元素量を低減した高純度鋼や超極低炭素鋼において、再結晶完了温度を低減する方法が幾つか提案されている。例えば、特開平2−285058号公報には、C,Al,N添加量を制御することにより、500 〜650 ℃の焼鈍において加工性を確保する技術が提案されている。
【0005】
【発明が解決しようとする課題】
しかし、この技術を、例えば缶用鋼板に適用しても、鋼板の結晶粒成長性が著しく大であり、焼鈍温度により粗大粒を抑制するのは実際には困難で、缶用鋼板における致命的な表面欠陥である肌荒れを防ぐことができないという問題が残っていた。このため、良好な加工性とともに、缶成形後に肌あれなどの問題を生じることのない表面処理冷延鋼板用原板の開発が望まれていた。そこで、本発明の目的は、厳しい条件下での加工に耐えうる良好な加工性と耐肌荒れ性とを具え、缶や自動車などのプレス加工用鋼板としての使用特性を満足するとともに、低温での連続焼鈍が可能な、表面処理冷延鋼板用原板、およびこの表面処理冷延鋼板用原板の製造に用いて好適な熱延鋼板、ならびにこれらの製造方法を提供することにある。また、本発明における鋼板具体的な目標としては、700℃未満、好ましくは650℃未満の低温度域で再結晶を完了させることにある。
【0006】
【課題を解決するための手段】
発明者らは、上記の目的を達成すべく、特に連続焼鈍における再結晶完了温度について着目して、鋼組成および製造条件などの面からの冶金的な検討を行った。その結果、再結晶完了温度は、従来よりいわれている結晶粒径、冷延圧下率のほかに、熱延鋼板の集合組織の影響が大きく、次いで析出物のサイズの影響も大きいことを見いだした。すなわち、缶用に供せられる表面処理冷延鋼板用原板は、熱延における仕上板厚が薄いため、仕上温度が低温になる傾向がある。発明者らの調査によれば、最近の低炭素化による変態温度の上昇のため、熱延後の変態が不十分となっており、かなりの板面(200)集合組織が残り、しかもその大部分はコロニー状に,すなわちほぼ同じ方位(本発明では差が15°以内と定義する)の結晶粒が一かたまりとなった状態で存在している。この現象を避けようとして高温加熱を採用すれば、均熱性の悪化による歩留低下を避けるこができなくなる。発明者らは、この熱延板の板面(200)方位, すなわち板面垂直方向に<200>方位を15°以内で有する集合組織の存在が冷延後の焼鈍の際に、再結晶を著しく抑制すること、したがってこの(200)集合組織、とくに(200)方位コロニーの制御が重要であることを見出した。
【0007】
一方、再結晶の核となるサイトを増やすためには、結晶粒径を細かくすること、冷延圧下率を高くして不均一な歪を導入させることが重要である。そして、その核が成長し、鋼板全体にわたって再結晶粒を存在させるためには、核の成長がある程度は容易である必要がある。その際に、鋼中の析出物はピン止め効果を有するので、そのサイズが小さいほど、また分布密度が高いほど、核の成長を抑制することになる。
【0008】
発明者らの調査では、一概に析出物といっても、その成分系により鋼中の存在の仕方が異なり、制御の考え方を変えなければならないことがわかった。
例えば、低炭素鋼板では制御すべき析出物はMnS,AlNであり、Ti,Nb添加鋼では、それらに加えてTiS,TiC,NbC, TiN、そしてこれら析出物が複合して存在する場合 (Ti4C2S2 など) もある。また、これらのサイズは生成する温度などによりかなり変化する。一方、再結晶完了温度は、それぞれの成分系において、もっとも粒径が小さく、分散密度が大きな析出物に支配されてしまう。
そして、調査の結果、低炭素鋼板においてはAlNが再結晶完了温度を支配し、Ti,Nb添加鋼においてはそれらの炭窒化物が主に支配することがわかった。さらに、Nb単独添加鋼ではNbCが単独で、しかも低温で析出するので、このことを加味して考慮する必要があることもわかった。
【0009】
本発明は、上述した基本的知見をもとに、完成したものであり、その要旨構成は下記のとおりである。
1)C:0.0005〜0.030wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。
【0010】
2)C:0.0005〜0.015wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下、Nb:0.003〜0.020wt%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。
【0011】
3)C:0.0005〜0.015wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下、Ti:0.003〜0.020wt%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。
【0012】
4)C:0.0005〜0.015wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下、Nb:0.003〜0.020wt%、Ti:0.003〜0.020wt%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。
【0014】
5)上記組織は、さらに析出AlNの平均寸法が0.030μm以上であることを特徴とする、上記1)に記載の表面処理冷延鋼板用原板に用いる熱延鋼板。
【0015】
6)上記組織は、さらに析出NbCの平均寸法が0.010μm以上であることを特徴とする上記2)に記載の表面処理冷延鋼板用原板に用いる熱延鋼板。
【0016】
7)上記組織は、さらに析出炭窒化物の平均寸法が0.030μm以上であることを特徴とする、上記3)または4)に記載の表面処理冷延鋼板用原板に用いる熱延鋼板。
【0017】
8)上記1)〜7)のいずれか1つにおいて、鋼成分としてさらにB:0.0002〜0.0020wt%を含む成分組成からなることを特徴とする表面処理冷延鋼板用原板に用いる熱延鋼板。
【0018】
9)上記1)〜8)のいずれかに記載の熱延鋼板の製造方法であって、C:0.0005〜0.030wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下を含有し、あるいはさらに、 Nb 0.003 0.020wt %、 Ti 0.003 0.020wt %およびB: 0.0002 0.0020wt %のうちのいずれか1種以上を含有し、残部が Fe および不可避的不純物からなる鋼スラブを1150℃以下に加熱し、粗圧延後、950℃以上の温度域で圧下率70%以上、かつ950℃〜Ar3の温度域で圧下率55%以上で仕上げ圧延して、950〜(Ar3−50℃)の温度域で熱間圧延を終了し、750〜550℃で巻き取ることを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板の製造方法。
【0019】
10 全圧下率80%以上、かつ最終パス圧下率20%以上で、粗圧延を行うことを特徴とする上記9)に記載の表面処理冷延鋼板用原板に用いる熱延鋼板の製造方法。
【0020】
11 上記1)〜8)のいずれか1つに記載の熱延鋼板を、圧下率80%以上で冷間圧延することにより、製缶時に肌荒れが生じない組織を有することを特徴とする、表面処理冷延鋼板用原板。
【0021】
12 上記1)〜8)のいずれか1つに記載の熱延鋼板を、圧下率80%以上で冷間圧延し、再結晶完了温度以上、再結晶完了温度+100℃以下で連続焼鈍することを特徴とする表面処理冷延鋼板用原板。
【0022】
13 )上記1)〜8)のいずれか1つに記載の熱延鋼板を用いて表面処理冷延鋼板用原板を製造する方法であって、C:0.0005〜0.030wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下を含有し、あるいはさらに、 Nb 0.003 0.020wt %、 Ti 0.003 0.020wt %およびB: 0.0002 0.0020wt %のうちのいずれか1種以上を含有し、残部が Fe および不可避的不純物からなる鋼スラブを、1150℃以下に加熱し、粗圧延後、950℃以上の温度域で圧下率70%以上、かつ950℃〜Ar3の温度域で圧下率55%以上で仕上げ圧延して、950〜(Ar3−50℃)の温度域で熱間圧延を終了し、750〜550℃で巻き取り、さらに圧下率80%以上で冷間圧延し、再結晶完了温度以上、再結晶完了温度+100℃以下で連続焼鈍することを特徴とする表面処理冷延鋼板用原板の製造方法。
【0023】
14 全圧下率80%以上、かつ最終パス圧下率20%以上で、粗圧延を行うことを特徴とする上記13 に記載の表面処理冷延鋼板用原板の製造方法。
【0024】
【発明の実施の形態】
前述したように、冷延後の焼鈍における鋼板の再結晶完了温度は、従来から知られている結晶粒径、冷延圧下率のほかに、熱延鋼板の集合組織や析出物のサイズも影響する。
熱延鋼板の板面における集合組織のうち、(200)は、(111)などに比べとくに再結晶を抑制する作用が大きい。この面の集積をなくす条件で熱間圧延を行う必要があり、(200)を抑制するためにはAr3変態点を大幅に下回るα域での圧延は避けるべきである。
また、再結晶の核となるサイトを増やすためには、結晶粒径を細かくすること、冷延圧下率を高くして歪を導入し、さらに、その発生核が成長しやすいように析出物のサイズを大きくする必要がある。この場合、核成長の抑制を支配する析出物は、その成分系においてサイズが小さく、分散密度の高いものである。この点から、再結晶過程に影響を及ぼす析出物は、低炭素鋼板ではAlNであり、Ti,Nb添加鋼では、それらの炭窒化物である。ただし、Nb単独添加鋼ではNbCが単独で、しかも低温で析出する。これらの析出物のサイズは、析出温度は異なるため、成分系により変化せざるをえない。
【0025】
以下に、本発明において集合組織、鋼中析出物、成分組成および製造条件等を上記要旨構成のとおりに限定した理由について説明する。
(1)板面(200)方位粒について
(a) 板面(200)方位粒の分率(面積率)
熱延板の板面(200)方位粒は、他の方位粒に比べて再結晶するのが遅いために、その絶対量を少なくする必要がある。ただし、熱延鋼板ではせいぜいランダムな組織にするのが可能な程度であり、板面(200)方位粒を皆無にすることは不可能である。そして、ある程度存在しても、他の再結晶性が早い粒の侵食により再結晶を全体的に早く終了させることは可能である。
図2に、表1におけるNb単独添加(Ti無添加)鋼(鋼8)について、熱延鋼板の板面における板面(200)方位粒の分率と冷延(圧下率:86%)後の焼鈍における再結晶完了温度との関係を示す。なお、再結晶温度はアルミナ流動層炉で種々の温度に10秒間加熱した後の硬さの変化により測定した。すなわち、図4は、硬さと温度の関係をプロットしたものである。図のように、接線の交点を再結晶開始および完了温度とした。
図2から、板面(200)方位粒の増加とともに再結晶完了温度が高くなっていくことが、また、この鋼で再結晶完了温度を700 ℃未満にするためには、板面(200)方位粒の面積率で20%以下とする必要があることがわかる。
また、Nbを添加しない鋼、Nbと共にTiを添加した鋼についても同様な実験を行ったところ、これらの場合には上記Nb単独添加の場合より低い温度で再結晶を完了することを確認した。これらの成分系の場合には、板面(200)方位粒の面積分率で20%以下とすることにより、再結晶完了温度を 650℃未満に低下させることができた。
以上のことから、熱延板の板面(200)方位粒は、面積率で20%以下とする。
【0026】
(b) 板面(200)方位コロニーのコロニー径
先に述べたように、板面(200)方位をなす粒の大部分は、ほぼ同じ方位の粒で集まりコロニーを形成する。すなわち鋳造、スラブ加熱、粗圧延後の空走時間等に成長する粗大γ粒がその方位を保ったままα粒に変態した結果である。この板面(200)方位粒の絶対量が低減できればもちろん有効であるが、前述したように熱延鋼板の集合組織は十分にランダムではないために、板面(200)方位粒を完全になくすことは不可能に近い。このため再結晶を完了させるためには、再結晶が早い他の粒からの侵食を待つしかない。この際に、板面(200)方位コロニーのコロニー径が小さくないと最後まで未再結晶領域が残る(再結晶が完了しない)ことになる。
図3に、鋼8について、板面(200)方位コロニーの平均コロニー径(直径)と再結晶完了温度との関係を示す。図3のように、板面(200)方位コロニーの平均コロニー径が増大するとともに再結晶完了温度が上昇すること、再結晶完了温度を700 ℃未満にするためにはこの平均コロニー径を100 μm以下にする必要があることがわかる。
Nbを添加しない鋼、Nbと共にTiを添加した鋼についても同様な実験を行い、上記板面(200)方位コロニーの平均コロニー径を100 μm以下にすれば、再結晶完了温度を 650℃未満に低下することを確認した。
以上のことから、熱延板の板面(200)方位コロニーの平均コロニー径は、100 μm以下とする。
なお、板面 (200) 方位粒・コロニーとも、断面における面積およびコロニー径とする。熱延板は厚み方向で組織の変化 (方位, 粒径等) が大きいため、板面または板面平行に測っても鋼板全体の評価が困難なためである。
【0027】
(2)鋼中析出物について
(a) Nb、Ti無添加鋼の場合
Nb、Ti無添加鋼の析出物は、MnSとAlNであり、析出温度の低いAlNが再結晶完了温度を律速する。十分に大きければ析出物による再結晶粒のピン止め作用が小さく、再結晶完了温度への影響は小さいが、本発明で目標とする650 ℃未満にするためには、この平均寸法を0.030 μm以上とする必要がある。このサイズに満たないと、再結晶粒の成長が遅れ、とくに連続焼鈍などの高速加熱プロセスでは、再結晶完了温度が高くなり、生焼けとよばれる未再結晶組織による材質(伸び)の低下を招くので好ましくない。
【0028】
(b) Nb単独添加鋼の場合
Nb添加鋼の場合には、NbCが最も析出温度が低いので、再結晶完了温度を決める析出物となる。また、NbCはTiS, TiC, AlN, MnS等に比べて低温で析出するため、他のケースのように析出物寸法を0.030 μmとすることも、またそれによって再結晶完了温度 650℃未満を達成するのも困難であるが、700 ℃以下にすることは可能である。
図1に、表1の鋼8について、NbC析出物の平均寸法と再結晶完了温度の関係を示す。図1から、析出物の寸法の低下とともに再結晶完了温度が高くなり、再結晶完了温度を700 ℃以下とするためには、この析出物の平均寸法を0.010 μm以上にする必要かあることがわかる。なお、NbC析出物の寸法の制御を行うためには、後述する巻き取り温度の調整が特に重要となる。
【0029】
(c) Nb、Tiの複合添加鋼の場合
Nb、Ti複合添加鋼の場合には、TiSやTiCの複合析出物が再結晶完了温度を決める析出物となる。再結晶温度を650 ℃未満とするためには、析出物の平均寸法を0.030 μm以上とする必要がある。これら析出物の析出温度はNbCよりもが高いので、析出物の寸法の制御をする上で、巻き取り温度よりもむしろスラブ加熱温度が特に重要な因子となる。ただし、十分な大きさの寸法にするためには、その後の工程にも留意する必要ある。
【0030】
(3)鋼成分について
C:0.0005〜0.030 wt%、0.0005〜0.0150wt%
Cは、その含有量が高いと結晶粒径が細かくなり、調質度の高いものが得られるが、0.030wt%を超えると、加工性が低下し、冷間圧延性が低下する。また、時効劣化の面からも、C量は0.030wt%以下にする必要がある。一方、成形性に優れた表面処理冷延鋼板用原板を得るためにはC量を低くすることが望ましいが、過度に低減すると、結晶粒径が粗大になり肌荒れが問題になること、また現在の精錬技術レベルを考慮して、C量の下限を0.0005wt%、好ましくは0.0012wt%にする。また、TiやNbを添加した鋼の場合には、固溶炭素量の低減により、加工性のさらなる向上を目指しているので、C量が多いと、効率的でないばかりか、炭素を全て固着させてもその析出物により再結晶が抑制されてしまう。したがって、Ti、Nb添加鋼の場合のC量の上限は0.0150wt%とする。
【0031】
Si:0.20wt%以下
Siは、多量に含むと、表面処理鋼板の表面性状を劣化させるばかりでなく、鋼を硬化させ、熱間圧延を困難にし、最終製品としての表面処理冷延鋼板用原板を硬化させる。これらの点よりSi量は、0.20wt%以下、特に高度な表面性状が必要な用途では0.050 wt%以下とすることが望ましい。
【0032】
Mn:0.05〜0.6 wt%
Mnは、Sによる熱延中の熱間脆性を防止するために必要な元素であり、低S量の場合でも、少なくとも0.05wt%のMn量を添加しないと表面割れなどの問題を生じる危険がある。一方、0.6 wt%超えて添加すると、変態点が低下し過ぎて、好ましい熱延鋼板を得ることが困難となる。したがって、Mn含有量は0.05〜0.6 wt%の範囲とする。
【0033】
P:0.02wt%以下
Pは、耐食性に悪影響を及ぼすので減少させることが望ましい。しかし、P量の過度の低減は、製造コストの増加につながるので、これらの兼ね合いから、P含有量を0.02wt%以下とする。なお、加工性を改善するためには、0.010 wt%以下に制限するのが好ましい。
【0034】
S:0.02wt%以下
Sは、MnS等の介在物を増加させ、伸びフランジ性に代表される局部延性を低下させる原因となり、全伸びを低下させる。この影響は0.02wt%を超えると顕著になるので、S量は0.02wt%以下に制限する必要がある。なお、加工性を改善するためには、0.010 wt%以下にすることが好ましい。
【0035】
Al:0.15wt%以下
Alは、脱酸に必要な元素であるが、0.15wt%を超えると脱酸効果が飽和するだけでなく、介在物起因による成形性の低下を招く。このため、Al(sol Al)含有量は0.15wt%以下とする。なお、安定した製造条件を確保するためには、0.030 〜0.10wt%の範囲にすることが好ましい。
【0036】
N:0.01wt%以下
Nは、析出物を形成し伸びを低下させるが、固溶状態で残存すると、鋼を適度に硬質化させ、強度と加工性のバランスを向上させる元素である。しかし、0.01wt%を超えると、伸びを著しく低下させること、またスラブ割れを招くことから、0.01wt%以下とする。なお、強度よりも加工性を重視する場合には、0.005 wt%以下にすることが好ましい。
【0037】
Nb:0.003 〜0.020 wt%
Nbは、炭素を固着して、時効性の低減、鋼の軟質化に有用な元素である。さらに、熱間圧延時のγ領域にて、再結晶を適度に抑制し、微細な組織をうることを可能にする。これらの効果を得るには、少なくとも0.003 wt%の添加が必要であるが、0.020 wt%を超えて添加すると、熱延鋼板に不均一な組織をもたらすばかりでなく、熱延時の負荷を大きくする。このため、Nbの含有量は0.003 〜0.020 wt%の範囲とする。なお、加工性を重視する場合には、0.003 〜0.015 wt%の範囲にすることが望ましい。
【0038】
Ti:0.003 〜0.020 wt%
Tiは、Nbと同様の効果をもたらし、またNbとの複合添加により、成形性を向上させる元素である。これらの効果は、0.003 wt%以上の添加で得られる。しかし、0.020 wt%超えて添加しても、その効果は飽和し、コスト的に不利となる。このため、Tiの含有量は0.003 〜0.020 wt%の範囲とする。
【0039】
B:0.0002〜0.0020wt%
Bは、熱延鋼板の組織の微細化のために有用な元素である。さらに、2次加工脆性を防止させる役目も果たす。しかし、過剰に添加すると、熱間圧延時にオーステナイトの再結晶を遅らせ、圧延時の負荷が大きくなり過ぎ、また、焼鈍後の材質、特に伸びを劣化させる。このため、B添加量は、0.0002〜0.0020wt%の範囲とする。
【0040】
(4)製造条件について
(a) スラブ加熱温度
スラブ加熱温度が高過ぎると、析出物が細かくなり、再結晶完了温度を上昇させる原因となるため好ましくない。そのため、スラブ加熱温度は1100℃以下の範囲として、析出物を十分に粗大化させることが望ましい。また、加熱温度が高過ぎると、結晶粒の粒成長により、最終的な熱延鋼板の粒径を大きくし、再結晶完了温度に悪影響を及ぼすので、この観点からもも1100℃以下とするべきである。なお、加熱温度の下限は、圧延終了温度を確保するため 950℃とするのが望ましい。
【0041】
(b) 熱間圧延
・圧延終了温度
上記加熱の後、粗圧延及び仕上げ圧延よりなる熱間圧延を行なう。熱延の終了温度は、熱延鋼板の組織、粒径を均一微細にするために、950 ℃以下、(Ar3−50℃)以上となるように終了する必要がある。圧延終了温度が(Ar3−50℃)未満では、板面(200)の集積が高くなり、再結晶完了温度に悪影響を与えるからである。また、巻き取り温度によっては、加工組織が残存して、冷間圧延性を悪化させ、加工性に悪影響を及ぼす再結晶集合組織を形成するので望ましくない。
一方、圧延終了温度が950 ℃を超えると、結晶粒径が大きくなるほか、析出物、とくに再結晶完了温度に影響を及ぼす低温生成物の析出を、加工により促進させる働きが低下するので好ましくない。
【0042】
・圧下率配分
熱間圧延における圧下率配分を制御することにより、均一で微細な組織と好ましい集合組織が可能となる。すなわち、粗圧延の工程では、全圧下率80%以上、その内、最終パスで20%以上の圧延を行う。これに続く仕上げ圧延では、950 ℃以上の領域で圧下率70%以上の圧下を行い、さらに950 ℃〜Ar3の領域で圧下率55%以上の圧延を行うことが望ましい。これらのうち、特に仕上げ圧延における圧下率配分が重要である。以下に、それそれについての作用、限定理由を述べる。
【0043】
粗圧延では、全圧下率80%以上、その内、最終パスで20%以上の圧下を行う。仕上げ圧延に入るまでに、ある程度粒径を揃えておくために、粗圧延での加工歪み量と、再結晶をを伴うある程度の加工歪み量が必要である。また、缶用鋼板としての表面処理冷延鋼板用原板は、自動車、家電製品への用途の場合と比較して薄いために、ある程度粗圧延の段階で薄くしておかないと、仕上げ圧延機の容量を上回ってしまう危険性がある。これらの事情を考慮して、全圧下率の下限を80%とする。また、粗圧延の最終パスを20%以上とするのは、20%未満では、仕上げ圧延機に入る段階で十分に整粒にならない(表層から中心部にいたる組織の不均一)からである。
【0044】
仕上げ圧延では、950 ℃以上の領域で圧下率70%以上の圧下とする。この温度域は、γ域でしかも、圧延歪により十分再結晶させうる領域であり、圧延歪→再結晶→圧延歪→再結晶を繰り返し、粒径が微細化する温度域である。しかし、圧下率が70%未満では、1)この細粒化が十分に進まないこと、2)圧延歪の不足のため、均一に再結晶せず、部分的に粒径が大きい領域が存在することとなり、これが変態後、大きな(200)方位粒増加の原因となるので好ましくない。
【0045】
引き続いて、950 ℃以下、Ar3以上の温度域で圧下率55%以上の圧延を行う。この温度域も、同様にγ域ではあるが、1)温度低下による、元素の拡散現象の遅延、2)析出物によるピン止め効果、3)固溶元素による再結晶抑制効果、が重なって、再結晶は十分に行えない領域である。従来の製造技術では、この領域を他の温度域、とくに上記の再結晶γ域と区別せずに製造していた。このために、成分によっては、加工性に望ましくない集合組織となったり、混粒となり、均一な組織に制御することが極めて困難であった。
以上の事柄を考慮した場合、この温度域の圧下率が55%未満であると、再結晶しにくいため、まったく再結晶しないで加工性に悪影響およぼす集合組織が残ったり、一部で再結晶を生じて混粒になって、(200)方位粒の形成を防ぐことが困難となる。また、Nbなどを含有して再結晶が遅れた場合でも、55%以上にすれば、歪により、変態の核が均一微細に析出可能である。これらのことから、950 ℃〜Ar3の温度域では、圧下率55%以上の圧下を行う必要がある。
【0046】
(c) 巻取温度
熱間圧延後の巻き取りは750 〜550 ℃の温度範囲で行う。この巻き取り温度が、750 ℃超になるとスケール厚みが顕著に増大し、酸洗時の脱スケール性が低下する。また、550 ℃未満の温度で巻き取ると、析出物が十分に析出せず、再結晶完了温度の上昇をまねく。このため、巻き取り温度は750 〜550 ℃の温度範囲とする。この温度は、特に、析出温度が低い析出物には有効であり、本発明におけるNbCがこれに相当する。
【0047】
(d) 冷間圧延
以上の熱間圧延を終えたあとに、必要に応じて酸洗を行ない、80%以上の圧下率で冷間圧延を行う。80%以上の圧下率で冷間圧延しないと再結晶の駆動力が少なく、再結晶完了温度が高くなりやすく、本発明で狙いとしている再結晶完了温度の低下が達成できない。また、低圧下率出は再結晶したとしても粒径が粗大となり、肌荒れの発生原因となる。
【0048】
(e) 連続焼鈍
冷間圧延後の焼鈍は、生産性の面から連続焼鈍とし、焼鈍温度は、成分組成に応じ、再結晶完了温度以上、再結晶完了温度+100 ℃以下で行うものとする。
すなわち、再結晶完了温度以上にしないと、加工組織が残り、伸びの低下やγ値の低下をまねいてしまう。また、再結晶完了温度+100 ℃程度までは、材質 (伸び, γ値, TS) が安定するが、それ以上になると粒成長により缶用鋼板で重要な硬さの調整ができなくなること、さらに加工後肌荒れが生じよくない。
以上より、焼鈍温度は、それぞれの成分について再結晶完了温度〜 (再結晶完了温度+100 ℃) の範囲とするのが好ましい。
【0049】
その後、目的の調質度に調整するとともに、ストレッチャーストレインを防止するために、スキンパス圧延または2次圧延を施す必要がある。これら圧延の圧下率は、その目標特性を考慮して30%以下の範囲で行う。圧下率が30%を超えると、高強度になり過ぎて、加工性と強度のバランスが維持できなくなること、面内異方性が悪化してしまうなどのためである。
【0050】
【実施例】
表1に示す化学成分の鋼を、表2に示す条件で、厚み2mmまで熱間圧延し、巻取り、酸洗したのち、冷間圧延を行い厚み0.28mm(No.15 0.6mm)の冷延鋼帯とした。続いて、連続焼鈍を行った。なお、再結晶完了温度は、同じ冷延鋼帯から、図2と同じ方法で別途測定した。また、上記熱間圧延を行ったあとの熱延鋼板については、鋼中析出物の種類と平均粒径、(200)方位粒の面積率と(200)方位コロニーの平均コロニー径を調査するとともに、上記連続焼鈍後の表面処理冷延鋼板用原板については、r値を測定するとともに、ビニール潤滑してポンチ径33φ,絞り比2のカップにプレス成形したあとの肌荒れ状況を観察した。ここに、熱延鋼板における、析出物の種類の同定は、抽出レプリカ法により、また平均寸法は、少なくとも10視野以上の電子顕微鏡観察より円形換算した寸法の平均を画像処理により算出した。また、(200)方位粒の面積率は、EBSP測定を行い、板面に垂直方向の結晶配向性を測定し、<200>方位に対し15°以内にある粒を(200)方位粒として画像処理により求めた。また、<200>方位に対し15°以内にある粒が2つ以上離接しているものを(200)方位コロニーとし、その平均コロニー径を円形換算により求めた。またr値は、次式により求めた。
r値=(r0 +r90+2r45)/4
ただし、
0 :圧延方向のr値
90:圧延方向と90度の傾きをなす方向のr値
45:圧延方向と45度の傾きをなす方向のr値
【0051】
【表1】

Figure 0003690023
【0052】
【表2】
Figure 0003690023
【0053】
表1および表2から、熱延後の鋼中の析出物および(200)方位粒を制御した本発明例は、優れた加工性、耐肌荒れ性を有しながら、従来にない低い再結晶完了温度をそなえていることがわかる。
【0054】
【発明の効果】
以上説明したように、本発明によれば、厳しい条件下での加工に耐えうる良好な加工性と耐肌荒れ性とを具えたうえ、低温での連続焼鈍が可能になるので、熱量原単位の低減、焼鈍設備の保守の容易化などの面で大きく寄与するとともに、表面処理冷延鋼板用原板およびそれに用いる熱延鋼板の低コスト化にも寄与する。
【図面の簡単な説明】
【図1】 NbCの平均寸法と再結晶完了温度との関係を示すグラフである。
【図2】(200)方位粒の面積率と再結晶完了温度との関係を示すグラフである。
【図3】(200)面コロニーの平均コロニー径と再結晶完了温度との関係を示すグラフである。
【図4】再結晶開始温度および再結晶完了温度の定義を説明するための図である。[0001]
BACKGROUND OF THE INVENTION
  The present invention is a surface treatment suitable for use in press products such as automobiles in addition to cans after surface treatment.Cold rolled steel sheetOriginal plate and surface treatment thereofCold rolled steel sheetApplied to the production ofHeatSurface treatment with excellent surface properties (skin roughness resistance) and economic efficiency, especially for rolled steel sheetsCold rolled steel sheetOriginal plate andUsed for itHot-rolled steel sheet, andThemIt is related with the manufacturing method.
[0002]
[Prior art]
Container cans such as beverage cans, 18 liter cans and pail cans can be roughly classified into 2-piece cans and 3-piece cans from the manufacturing process.
A two-piece can is a surface-treated steel sheet that has been subjected to processes such as tin plating, chrome plating, chemical conversion, and oil coating on a surface treatment original sheet produced through hot rolling, cold rolling, and annealing processes. The can bottom and can body are integrally molded by shallow drawing, DWI (Drawing and Wall Ironing), DRD (Drawn and Redrawn), etc. It is. A three-piece can is a three-piece can that is formed by bending a surface-treated steel sheet into a cylindrical shape or a rectangular tube shape, joining ends together to form a can body, and then attaching a canopy and a bottom lid to the can body. is there.
[0003]
Since all of these cans have a high ratio of material costs to can costs, there is a strong demand for cost reduction of the steel sheets. For this reason, it is desirable that the production of steel plates for cans be carried out by continuous annealing with high production efficiency and excellent yield and surface quality, rather than inefficient and box annealing with poor material yield and surface quality. It is.
In such annealing of steel sheets for cans, if the recrystallization completion temperature can be lowered, it becomes possible to lower the calorific value during annealing and to improve the furnace life, and to further reduce the cost. In steel sheets for cans, the thickness of the annealed material is generally as thin as 0.3 mm or less, so that high-temperature annealing causes troubles such as a heat buckle and causes a decrease in yield. This tendency is expected to become more prominent if the thickness of the can material becomes thinner and thinner in the future from the viewpoint of reducing the can cost.
On the other hand, for can materials, excellent workability is required for application to severe processing such as drawn cans, and steel sheets with reduced carbon content are being developed.
However, in the case of an ultra-low carbon steel plate, there is a problem that the recrystallization completion temperature becomes high because an element for fixing carbon and nitrogen such as Nb and Ti is added.
[0004]
By the way, although it is the field | area of the general steel plate for a process, several methods of reducing recrystallization completion temperature are proposed in the high purity steel and ultra-low carbon steel which reduced the amount of addition elements, such as C. For example, Japanese Patent Laid-Open No. 2-285058 proposes a technique for ensuring workability in annealing at 500 to 650 ° C. by controlling the amount of addition of C, Al, and N.
[0005]
[Problems to be solved by the invention]
  However, even if this technology is applied to a steel plate for cans, for example, the grain growth of the steel plate is remarkably large, and it is actually difficult to suppress coarse grains by the annealing temperature. The problem that the rough skin which is a surface defect cannot be prevented remains. For this reason, surface treatment that does not cause problems such as rough skin after can molding with good workabilityCold rolled steel sheetDevelopment of the original board was desired. Therefore, the object of the present invention is to provide good workability and rough skin resistance that can withstand processing under severe conditions, satisfy the use characteristics as a steel plate for press working such as cans and automobiles, and at low temperatures. Surface treatment capable of continuous annealingCold rolled steel sheetOriginal plate and surface treatment thereofCold rolled steel sheetSuitable for use in manufacturing original platesFeverAn object of the present invention is to provide a rolled steel sheet and a manufacturing method thereof. Further, a specific target of the steel sheet in the present invention is to complete recrystallization in a low temperature range of less than 700 ° C, preferably less than 650 ° C.
[0006]
[Means for Solving the Problems]
  In order to achieve the above-mentioned object, the inventors focused on the recrystallization completion temperature particularly in the continuous annealing, and conducted metallurgical studies from the aspects of steel composition and production conditions. As a result, it was found that the recrystallization completion temperature was largely influenced by the texture of the hot-rolled steel sheet, followed by the size of the precipitate, in addition to the crystal grain size and the cold rolling reduction ratio that were conventionally known. . That is, surface treatment provided for cansFor cold rolled steel sheetSince the original plate has a thin finish plate thickness in hot rolling, the finish temperature tends to be low. According to the investigation by the inventors, due to the recent increase in transformation temperature due to low carbonization, transformation after hot rolling is insufficient, and a considerable plate surface (200) texture remains, and its large size. The portion exists in a colony shape, that is, in a state in which crystal grains having almost the same orientation (the difference is defined as within 15 ° in the present invention) are gathered. If high-temperature heating is employed in order to avoid this phenomenon, it is impossible to avoid a decrease in yield due to deterioration in heat uniformity. The inventors recrystallized during the annealing after cold rolling that the presence of the texture having a <200> orientation within 15 ° in the plate surface (200) orientation of the hot-rolled plate, that is, in the plate surface vertical direction We have found that it is important to control significantly and thus control this (200) texture, especially the (200) orientation colony.
[0007]
On the other hand, in order to increase the number of sites serving as nuclei for recrystallization, it is important to make the crystal grain size fine and to increase the cold rolling reduction ratio to introduce non-uniform strain. And in order for the nucleus to grow and for a recrystallized grain to exist over the whole steel plate, the growth of a nucleus needs to be easy to some extent. At this time, the precipitates in the steel have a pinning effect, so that the smaller the size and the higher the distribution density, the more the growth of nuclei is suppressed.
[0008]
According to the inventors' investigation, it was found that even if it is generally a precipitate, the way it exists in steel differs depending on its component system, and the control concept must be changed.
For example, in a low carbon steel sheet, the precipitates to be controlled are MnS and AlN, and in Ti and Nb-added steel, TiS, TiC, NbC, TiN, and these precipitates are present in combination (TiFourC2S2Etc.). Also, these sizes vary considerably depending on the temperature at which they are generated. On the other hand, the recrystallization completion temperature is dominated by precipitates having the smallest particle size and a large dispersion density in each component system.
As a result of the investigation, it was found that AlN dominates the recrystallization completion temperature in the low-carbon steel sheet, and those carbonitrides mainly dominate in the Ti and Nb-added steel. Furthermore, it was also found that NbC alone and NbC precipitates at a low temperature, so that it is necessary to take this into consideration.
[0009]
  The present invention has been completed based on the basic knowledge described above, and the gist of the present invention is as follows.
1) C: 0.0005 to 0.030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt %, And the balance is composed of Fe and inevitable impurities, the plate surface (200) orientation grains are 20% or less in area ratio, and the average colony diameter of the plate surface (200) orientation colonies is 100 μm or less. Surface treatment characterized by having a tissue that isUsed for cold rolled steel sheetHot rolled steel sheet.
[0010]
2) C: 0.0005 to 0.015 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% % Or less, Nb: 0.003 to 0.020 wt%, the balance is composed of Fe and inevitable impurities, the plate surface (200) orientation grains are 20% or less in area ratio, and the plate surface (200) orientation Surface treatment characterized by having a tissue having an average colony diameter of 100 μm or lessUsed for cold rolled steel sheetHot rolled steel sheet.
[0011]
3) C: 0.0005 to 0.015 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt %, Ti: 0.003 to 0.020 wt%, the balance is composed of Fe and inevitable impurities, the plate surface (200) orientation grains are 20% or less in area ratio, and the plate surface (200) orientation Surface treatment characterized by having a tissue having an average colony diameter of 100 μm or lessUsed for cold rolled steel sheetHot rolled steel sheet.
[0012]
4) C: 0.0005 to 0.015 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt % Or less, Nb: 0.003 to 0.020 wt%, Ti: 0.003 to 0.020 wt%, the balance is composed of Fe and inevitable impurities, and the plate surface (200) orientation grains have an area ratio of 20% or less And the surface treatment characterized by having the structure | tissue whose average colony diameter of a plate surface (200) azimuth | direction colony is 100 micrometers or lessUsed for cold rolled steel sheetHot rolled steel sheet.
[0014]
5) The surface treatment according to 1) above, wherein the microstructure further has an average dimension of precipitated AlN of 0.030 μm or more.Used for cold rolled steel sheetHot rolled steel sheet.
[0015]
6) The surface treatment according to 2) above, wherein the microstructure further has an average size of precipitated NbC of 0.010 μm or more.Used for cold rolled steel sheetHot rolled steel sheet.
[0016]
7) The surface treatment according to 3) or 4) above, wherein the microstructure further has an average size of the precipitated carbonitride of 0.030 μm or more.Used for cold rolled steel sheetHot rolled steel sheet.
[0017]
8) The surface treatment according to any one of the above 1) to 7), wherein the steel composition further comprises a component composition containing B: 0.0002 to 0.0020 wt% as a steel component.Used for cold rolled steel sheetHot rolled steel sheet.
[0018]
9)The method for producing a hot-rolled steel sheet according to any one of 1) to 8) above,C: 0.0005 to 0.030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% or less ContainsOr even Nb : 0.003 ~ 0.020wt %, Ti : 0.003 ~ 0.020wt % And B: 0.0002 ~ 0.0020wt % Containing any one or more of the remaining Fe And inevitable impuritiesThe steel slab is heated to 1150 ° C or lower, and after rough rolling, the rolling reduction is 70% or higher in the temperature range of 950 ° C or higher, and 950 ° C to Ar.ThreeFinish rolling at a reduction rate of 55% or more in the temperature range of 950 ~ (ArThreeSurface treatment characterized by finishing hot rolling in a temperature range of −50 ° C. and winding up at 750 to 550 ° C.Used for cold rolled steel sheetManufacturing method of hot-rolled steel sheetLaw.
[0019]
Ten )The rough rolling is performed at a total rolling reduction of 80% or more and a final pass rolling reduction of 20% or more.9)Surface treatment described inUsed for cold rolled steel sheetA method for producing a hot-rolled steel sheet.
[0020]
11 )Surface treatment characterized by having a structure that does not cause rough skin during canning by cold rolling the hot-rolled steel sheet according to any one of 1) to 8) above at a reduction rate of 80% or more.Cold rolled steel sheetOriginal plate.
[0021]
12 )The hot-rolled steel sheet according to any one of the above 1) to 8) is cold-rolled at a reduction rate of 80% or more and continuously annealed at a recrystallization completion temperature or higher and a recrystallization completion temperature + 100 ° C or lower. Surface treatmentCold rolled steel sheetOriginal plate.
[0022]
13 ) A method for producing a surface-treated cold-rolled steel sheet using the hot-rolled steel sheet according to any one of 1) to 8) above,C: 0.0005 to 0.030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% or less ContainsOr even Nb : 0.003 ~ 0.020wt %, Ti : 0.003 ~ 0.020wt % And B: 0.0002 ~ 0.0020wt % Containing any one or more of the remaining Fe And inevitable impuritiesThe steel slab is heated to 1150 ° C or lower, and after rough rolling, the rolling reduction is 70% or higher in the temperature range of 950 ° C or higher, and 950 ° C to Ar.ThreeFinish rolling at a reduction rate of 55% or more in the temperature range of 950 ~ (ArThreeHot rolling is completed in the temperature range of -50 ° C, winding is performed at 750 to 550 ° C, and cold rolling is further performed at a reduction rate of 80% or more. Surface treatment characterized by annealingCold rolled steel sheetOf original plateLaw.
[0023]
14 )The rough rolling is performed at a total rolling reduction of 80% or more and a final pass rolling reduction of 20% or more.13 )Surface treatment described inCold rolled steel sheetA method for manufacturing an original plate.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the recrystallization completion temperature of the steel sheet during annealing after cold rolling is affected by the texture of the hot rolled steel sheet and the size of precipitates in addition to the conventionally known crystal grain size and cold rolling reduction ratio. To do.
Of the texture on the surface of the hot-rolled steel sheet, (200) is particularly effective in suppressing recrystallization compared to (111). In order to suppress (200), it is necessary to perform hot rolling under conditions that eliminate this surface accumulation.ThreeRolling in the α region, which is significantly below the transformation point, should be avoided.
In addition, in order to increase the number of sites serving as recrystallization nuclei, the crystal grain size must be reduced, the cold rolling reduction ratio should be increased to introduce strain, and the generated nuclei can be easily grown. It is necessary to increase the size. In this case, the precipitates that govern the suppression of the nucleus growth are small in size and high in dispersion density in the component system. From this point, the precipitate that affects the recrystallization process is AlN in the low-carbon steel sheet, and carbonitrides in the Ti and Nb-added steel. However, in Nb single addition steel, NbC precipitates alone and at a low temperature. Since the precipitation temperature differs, the size of these precipitates must be changed depending on the component system.
[0025]
The reason why the texture, precipitates in steel, composition of components, production conditions, and the like are limited as described in the above summary in the present invention will be described below.
(1) Plate surface (200) orientation grain
(a) Plate surface (200) orientation grain fraction (area ratio)
The plate surface (200) orientation grain of the hot-rolled sheet is slow to recrystallize compared to other orientation grains, and therefore the absolute amount thereof needs to be reduced. However, with hot-rolled steel sheets, it is possible to make a random structure at most, and it is impossible to eliminate plate surface (200) orientation grains. And even if it exists to some extent, it is possible to terminate the recrystallization as a whole quickly by erosion of other grains having a fast recrystallization property.
FIG. 2 shows the Nb-single-added (Ti-free) steel (steel 8) in Table 1 after the fraction of the grain (200) orientation on the plate surface of the hot-rolled steel plate and cold rolling (rolling rate: 86%). The relationship with the recrystallization completion temperature in annealing is shown. The recrystallization temperature was measured by the change in hardness after heating to various temperatures for 10 seconds in an alumina fluidized bed furnace. That is, FIG. 4 is a plot of the relationship between hardness and temperature. As shown in the figure, the intersection of tangent lines was set as the recrystallization start and completion temperatures.
From FIG. 2, it can be seen that the recrystallization completion temperature increases with the increase of grain on the plate surface (200), and in order to make the recrystallization completion temperature below 700 ° C. with this steel, the plate surface (200) It can be seen that the area ratio of orientation grains must be 20% or less.
In addition, similar experiments were performed on steel not added with Nb and steel added with Ti together with Nb. In these cases, it was confirmed that recrystallization was completed at a lower temperature than in the case of adding Nb alone. In the case of these component systems, the recrystallization completion temperature could be lowered to less than 650 ° C. by adjusting the area fraction of the plane (200) orientation grains to 20% or less.
From the above, the plate surface (200) orientation grain of the hot-rolled sheet is 20% or less in terms of area ratio.
[0026]
(b) Colony diameter of plate surface (200) orientation colony
As described above, most of the grains having the plate surface (200) orientation gather together with grains having substantially the same orientation to form colonies. That is, it is a result of the transformation of coarse γ grains growing during casting, slab heating, idle running time after rough rolling, etc. into α grains while maintaining their orientation. It is of course effective if the absolute amount of the grain (200) orientation grain can be reduced. However, as described above, the texture of the hot-rolled steel sheet is not sufficiently random, and hence the grain (200) orientation grain is completely eliminated. It is almost impossible. For this reason, in order to complete recrystallization, there is no choice but to wait for erosion from other grains that are recrystallized quickly. At this time, if the colony diameter of the plate surface (200) orientation colony is not small, an unrecrystallized region remains until the end (recrystallization is not completed).
FIG. 3 shows the relationship between the average colony diameter (diameter) of the plate surface (200) orientation colony and the recrystallization completion temperature for steel 8. As shown in FIG. 3, in order to increase the average colony diameter of the plate surface (200) -oriented colonies and increase the recrystallization completion temperature, and to reduce the recrystallization completion temperature to less than 700 ° C., the average colony diameter is set to 100 μm. It turns out that it is necessary to:
The same experiment was performed on steel without Nb and steel with Nb and Ti, and if the average colony diameter of the above plate (200) orientation colony was 100 μm or less, the recrystallization completion temperature would be less than 650 ° C. It was confirmed that it decreased.
From the above, the average colony diameter of the plate surface (200) orientation colonies of the hot-rolled sheet is set to 100 μm or less.
In addition, it is set as the area and colony diameter in a cross section with a plate | board surface (200) azimuth | direction grain and colony. This is because hot-rolled sheets have a large change in structure (direction, grain size, etc.) in the thickness direction, and it is difficult to evaluate the entire steel sheet even when measured in the plate surface or in parallel with the plate surface.
[0027]
(2) About precipitates in steel
(a) For Nb and Ti-free steel
The precipitates of Nb and Ti-free steel are MnS and AlN, and AlN having a low precipitation temperature determines the recrystallization completion temperature. If it is sufficiently large, the pinning action of the recrystallized grains due to the precipitate is small, and the influence on the recrystallization completion temperature is small. However, in order to achieve the target of less than 650 ° C. in the present invention, this average dimension is 0.030 μm or more. It is necessary to. If this size is not reached, the growth of recrystallized grains will be delayed. In particular, in high-speed heating processes such as continuous annealing, the recrystallization completion temperature will be high, leading to a decrease in material (elongation) due to an unrecrystallized structure called raw burning. Therefore, it is not preferable.
[0028]
(b) In the case of steel containing Nb alone
In the case of Nb-added steel, NbC has the lowest precipitation temperature, so it becomes a precipitate that determines the recrystallization completion temperature. In addition, NbC precipitates at a lower temperature than TiS, TiC, AlN, MnS, etc., so the precipitate size can be set to 0.030 μm as in other cases. Although it is difficult to do, it is possible to make it 700 ° C or lower.
FIG. 1 shows the relationship between the average size of NbC precipitates and the recrystallization completion temperature for steel 8 in Table 1. From Fig. 1, it can be seen that the average size of this precipitate needs to be 0.010 µm or more in order to increase the recrystallization completion temperature with the decrease in the size of the precipitate, and to keep the recrystallization completion temperature below 700 ° C. Understand. In order to control the size of the NbC precipitate, adjustment of the coiling temperature described later is particularly important.
[0029]
(c) In the case of Nb and Ti compound added steel
In the case of Nb and Ti composite added steel, composite precipitates of TiS and TiC become precipitates that determine the recrystallization completion temperature. In order to make the recrystallization temperature less than 650 ° C., the average size of the precipitates needs to be 0.030 μm or more. Since the precipitation temperature of these precipitates is higher than that of NbC, the slab heating temperature rather than the coiling temperature is a particularly important factor in controlling the size of the precipitates. However, in order to obtain a sufficiently large dimension, it is necessary to pay attention to subsequent processes.
[0030]
(3) Steel components
C: 0.0005 to 0.030 wt%, 0.0005 to 0.0150 wt%
  When the content of C is high, the crystal grain size becomes fine and a high tempering degree is obtained, but when it exceeds 0.030 wt%, the workability is lowered and the cold rolling property is lowered. Also, from the viewpoint of aging deterioration, the C amount needs to be 0.030 wt% or less. On the other hand, surface treatment with excellent moldabilityFor cold rolled steel sheetIn order to obtain an original plate, it is desirable to reduce the amount of C. However, if excessively reduced, the crystal grain size becomes coarse and rough skin becomes a problem, and the lower limit of the amount of C is considered in consideration of the current level of refining technology. Is 0.0005 wt%, preferably 0.0012 wt%. In addition, in the case of steel added with Ti or Nb, we aim to further improve workability by reducing the amount of dissolved carbon, so if the amount of C is large, not only is it not efficient, but all the carbon is fixed. However, recrystallization is suppressed by the precipitate. Therefore, the upper limit of the C content in the case of Ti and Nb added steel is 0.0150 wt%.
[0031]
Si: 0.20wt% or less
  When Si is contained in a large amount, it not only deteriorates the surface properties of the surface-treated steel sheet, but also hardens the steel, making hot rolling difficult, and surface treatment as the final product.For cold rolled steel sheetHarden the original plate. From these points, the Si content is 0.20 wt% or less, especially 0 for applications that require advanced surface properties..It is desirable to make it 050 wt% or less.
[0032]
Mn: 0.05-0.6 wt%
  Mn is an element necessary for preventing hot brittleness during hot rolling due to S. Even in the case of a low S content, there is a risk of causing problems such as surface cracks unless at least 0.05 wt% of Mn is added. is there. On the other hand, if added over 0.6 wt%, the transformation point is too low, and it becomes difficult to obtain a preferable hot-rolled steel sheet. Therefore, the Mn content is in the range of 0.05 to 0.6 wt%.
[0033]
P: 0.02wt% or less
P is desirably reduced because it adversely affects corrosion resistance. However, excessive reduction of the amount of P leads to an increase in manufacturing cost. Therefore, the P content is set to 0.02 wt% or less because of these factors. In order to improve workability, it is preferable to limit to 0.010 wt% or less.
[0034]
S: 0.02wt% or less
S increases inclusions such as MnS, and causes a decrease in local ductility typified by stretch flangeability, thereby reducing the total elongation. This effect becomes significant when it exceeds 0.02 wt%, so the amount of S must be limited to 0.02 wt% or less. In addition, in order to improve workability, it is preferable to make it 0.010 wt% or less.
[0035]
Al: 0.15wt% or less
Al is an element necessary for deoxidation, but if it exceeds 0.15 wt%, not only the deoxidation effect is saturated, but also moldability is reduced due to inclusions. For this reason, Al (sol Al) content shall be 0.15 wt% or less. In order to secure stable production conditions, it is preferable that the content be in the range of 0.030 to 0.10 wt%.
[0036]
N: 0.01wt% or less
N forms a precipitate and lowers the elongation, but if it remains in a solid solution state, N is an element that appropriately hardens the steel and improves the balance between strength and workability. However, if it exceeds 0.01 wt%, the elongation is remarkably reduced and slab cracking is caused. When workability is more important than strength, it is preferably 0.005 wt% or less.
[0037]
Nb: 0.003 to 0.020 wt%
  Nb is an element that fixes carbon and is useful for reducing aging and softening steel. Furthermore, recrystallization is moderately suppressed in the γ region during hot rolling, and a fine structure can be obtained. To obtain these effects, it is necessary to add at least 0.003 wt%. However, if it exceeds 0.020 wt%, not only a non-uniform structure is produced in the hot-rolled steel sheet, but also the load during hot-rolling is increased. . Therefore, the Nb content is in the range of 0.003 to 0.020 wt%. In addition, when workability is important, it is desirable to set it in the range of 0.003 to 0.015 wt%.
[0038]
Ti: 0.003 to 0.020 wt%
  Ti is an element that brings about the same effect as Nb and improves formability by the combined addition with Nb. These effects can be obtained by adding 0.003 wt% or more. However, even if added over 0.020 wt%, the effect is saturated and disadvantageous in cost. For this reason, content of Ti shall be the range of 0.003-0.020 wt%.
[0039]
B: 0.0002-0.0020wt%
B is an element useful for refining the structure of a hot-rolled steel sheet. Furthermore, it plays the role of preventing secondary processing brittleness. However, if added excessively, recrystallization of austenite is delayed at the time of hot rolling, the load at the time of rolling becomes excessive, and the material after annealing, particularly elongation, is deteriorated. For this reason, B addition amount shall be the range of 0.0002-0.0020 wt%.
[0040]
(4) Manufacturing conditions
(a) Slab heating temperature
If the slab heating temperature is too high, the precipitates become fine and cause the recrystallization completion temperature to rise, such being undesirable. Therefore, it is desirable that the slab heating temperature be in the range of 1100 ° C. or less to sufficiently coarsen the precipitate. In addition, if the heating temperature is too high, the grain size of the final hot-rolled steel sheet will be increased due to crystal grain growth, which will adversely affect the recrystallization completion temperature. It is. The lower limit of the heating temperature is preferably 950 ° C. in order to ensure the rolling end temperature.
[0041]
(b) Hot rolling
・ Rolling end temperature
After the heating, hot rolling consisting of rough rolling and finish rolling is performed. The end temperature of hot rolling is 950 ° C. or less in order to make the structure and grain size of the hot rolled steel sheet uniform and fine (ArThreeIt needs to be finished so that the temperature becomes −50 ° C.) or higher. Rolling end temperature is (ArThreeWhen the temperature is less than −50 ° C., the accumulation of the plate surface (200) becomes high, which adversely affects the recrystallization completion temperature. Further, depending on the winding temperature, the processed structure remains, which deteriorates the cold rolling property and forms a recrystallized texture that adversely affects the workability.
On the other hand, when the rolling end temperature exceeds 950 ° C., the crystal grain size increases, and the effect of promoting the precipitation of precipitates, particularly low-temperature products that affect the recrystallization completion temperature, is not preferable. .
[0042]
・ Rolling rate distribution
By controlling the reduction ratio distribution in hot rolling, a uniform and fine structure and a preferable texture can be obtained. That is, in the rough rolling step, rolling is performed at a total rolling reduction of 80% or more, of which 20% or more in the final pass. In the subsequent finish rolling, a rolling reduction of 70% or more is performed in a region of 950 ° C. or higher, and 950 ° C. to Ar.ThreeIt is desirable to perform rolling with a rolling reduction of 55% or more in the above region. Of these, the reduction ratio distribution in finish rolling is particularly important. The operation and the reason for limitation will be described below.
[0043]
  In rough rolling, the total rolling reduction is 80% or more, of which 20% or more is reduced in the final pass. In order to keep the grain sizes to a certain extent before the finish rolling, a processing strain amount in rough rolling and a certain processing strain amount accompanied by recrystallization are required. Surface treatment as steel plate for cansFor cold rolled steel sheetSince the original sheet is thinner than that for automobiles and home appliances, there is a risk that it will exceed the capacity of the finish rolling mill unless it is thinned to some extent during rough rolling. Considering these circumstances, the lower limit of the total rolling reduction is set to 80%. The reason why the final pass of rough rolling is set to 20% or more is that when it is less than 20%, the grain size is not sufficiently adjusted at the stage of entering the finish rolling mill (the structure is uneven from the surface layer to the center).
[0044]
In finish rolling, the rolling reduction is 70% or more in the region of 950 ° C or higher. This temperature region is a γ region and a region that can be sufficiently recrystallized by rolling strain, and is a temperature region in which the grain size is refined by repeating rolling strain → recrystallization → rolling strain → recrystallization. However, if the rolling reduction is less than 70%, 1) this refinement does not progress sufficiently, and 2) due to insufficient rolling strain, there is a region where the grain size is partially large and does not recrystallize uniformly. This is not preferable because it causes a large (200) orientation grain increase after transformation.
[0045]
Subsequently, 950 ° C or lower, ArThreeRolling at a reduction rate of 55% or more is performed in the above temperature range. This temperature range is also the γ range, but 1) delay of element diffusion due to temperature drop, 2) pinning effect due to precipitates, 3) recrystallization suppression effect due to solid solution elements, This is a region where recrystallization cannot be performed sufficiently. In the conventional manufacturing technique, this region is manufactured without being distinguished from other temperature regions, particularly the above-described recrystallization γ region. For this reason, depending on the component, it becomes extremely difficult to control to a uniform structure because it becomes a texture undesired for workability or a mixed grain.
Considering the above, if the rolling reduction in this temperature range is less than 55%, it is difficult to recrystallize, so a texture that adversely affects workability may remain without recrystallization at all, or some recrystallization may occur. As a result, it becomes difficult to prevent the formation of (200) oriented grains. Even when Nb is contained and recrystallization is delayed, if it is 55% or more, the nuclei of transformation can be uniformly and finely precipitated due to strain. From these, from 950 ° C to ArThreeIn the temperature range, it is necessary to perform a rolling reduction of 55% or more.
[0046]
(c) Winding temperature
Winding after hot rolling is performed in a temperature range of 750 to 550 ° C. When the coiling temperature exceeds 750 ° C., the scale thickness increases remarkably, and the descaling property during pickling decreases. In addition, if the coil is wound at a temperature of less than 550 ° C., the precipitate is not sufficiently precipitated, resulting in an increase in the recrystallization completion temperature. For this reason, the coiling temperature is set to a temperature range of 750 to 550 ° C. This temperature is particularly effective for precipitates having a low precipitation temperature, and this corresponds to NbC in the present invention.
[0047]
(d) Cold rolling
After finishing the above hot rolling, pickling is performed as necessary, and cold rolling is performed at a reduction rate of 80% or more. If cold rolling is not performed at a reduction rate of 80% or more, the driving force for recrystallization is small, the recrystallization completion temperature tends to be high, and the reduction of the recrystallization completion temperature targeted in the present invention cannot be achieved. Moreover, even when recrystallized under low pressure, the grain size becomes coarse, causing rough skin.
[0048]
(e) Continuous annealing
The annealing after cold rolling is continuous annealing from the viewpoint of productivity, and the annealing temperature is not less than the recrystallization completion temperature and not more than the recrystallization completion temperature + 100 ° C. or less according to the component composition.
In other words, if the temperature is not higher than the recrystallization completion temperature, a processed structure remains, which causes a decrease in elongation and a decrease in γ value. In addition, the material (elongation, γ value, TS) is stable up to the recrystallization completion temperature of about + 100 ° C, but if it exceeds that, the critical hardness cannot be adjusted in the steel plate for cans due to grain growth, and further processing After rough skin is not good.
From the above, the annealing temperature is preferably in the range of the recrystallization completion temperature to (recrystallization completion temperature + 100 ° C.) for each component.
[0049]
Thereafter, it is necessary to perform skin pass rolling or secondary rolling in order to adjust to the desired tempering degree and to prevent stretcher strain. The rolling reduction of these rollings is performed in a range of 30% or less in consideration of the target characteristics. This is because when the rolling reduction exceeds 30%, the strength becomes excessively high, the balance between workability and strength cannot be maintained, and in-plane anisotropy deteriorates.
[0050]
【Example】
  Steel of chemical composition shown in Table 1 is hot-rolled to a thickness of 2 mm under the conditions shown in Table 2, wound, pickled, then cold-rolled and cooled to a thickness of 0.28 mm (No. 15 0.6 mm). A steel strip was used. Subsequently, continuous annealing was performed. The recrystallization completion temperature was separately measured from the same cold-rolled steel strip by the same method as in FIG. Moreover, about the hot-rolled steel sheet after performing the said hot rolling, while investigating the kind and average particle diameter of the precipitate in steel, the area ratio of (200) orientation grain, and the average colony diameter of (200) orientation colony , Surface treatment after continuous annealingCold rolled steel sheetFor the original plate, the r value was measured, and the condition of rough skin was observed after press-molding into a cup having a punch diameter of 33φ and a draw ratio of 2 with vinyl lubrication. Here, the type of precipitates in the hot-rolled steel sheet was identified by the extraction replica method, and the average dimension was calculated by image processing as an average of dimensions converted into a circle from observation with an electron microscope of at least 10 fields of view. The area ratio of the (200) -oriented grains is measured by EBSP measurement, the crystal orientation in the direction perpendicular to the plate surface is measured, and the grains within 15 ° with respect to the <200> orientation are regarded as (200) -oriented grains. Determined by processing. Moreover, the thing which 2 or more of the grains which are within 15 degrees with respect to <200> azimuth | direction is made into the (200) azimuth | direction colony, The average colony diameter was calculated | required by circular conversion. The r value was determined by the following formula.
  r value = (r0+ R90+ 2r45) / 4
However,
  r0: R value in rolling direction
  r90: R value in a direction that makes an inclination of 90 degrees with the rolling direction
  r45: R value in a direction that makes an inclination of 45 degrees with the rolling direction
[0051]
[Table 1]
Figure 0003690023
[0052]
[Table 2]
Figure 0003690023
[0053]
From Table 1 and Table 2, the present invention example in which precipitates in steel after hot rolling and (200) -oriented grains are controlled has excellent workability and rough skin resistance, but has low recrystallization that has never been achieved in the past. You can see that it has the temperature.
[0054]
【The invention's effect】
  As described above, according to the present invention, it has good workability that can withstand processing under severe conditions and rough skin resistance, and can be continuously annealed at a low temperature. It contributes greatly in terms of reduction, easier maintenance of annealing equipment, and surface treatment.Cold rolled steel sheetOriginal plate andUsed for itContributes to cost reduction of hot-rolled steel sheets.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the average size of NbC and the recrystallization completion temperature.
FIG. 2 is a graph showing the relationship between the area ratio of (200) -oriented grains and the recrystallization completion temperature.
FIG. 3 is a graph showing the relationship between the average colony diameter of (200) plane colonies and the recrystallization completion temperature.
FIG. 4 is a diagram for explaining definitions of a recrystallization start temperature and a recrystallization completion temperature.

Claims (14)

C:0.0005〜0.030wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。C: 0.0005 to 0.030 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% or less In which the balance is composed of Fe and inevitable impurities, the plate surface (200) orientation grains are 20% or less in area ratio, and the average colony diameter of the plate surface (200) orientation colonies is 100 μm or less. A hot-rolled steel sheet used for a surface-treated cold-rolled steel sheet , characterized by having a structure. C:0.0005〜0.015wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下、Nb:0.003〜0.020wt%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。C: 0.0005 to 0.015 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% or less , Nb: 0.003 to 0.020 wt%, with the balance being composed of Fe and inevitable impurities, the plate surface (200) orientation grains are 20% or less in area ratio, and the plate surface (200) orientation colony A hot-rolled steel sheet used for an original sheet for a surface-treated cold-rolled steel sheet , having a structure having an average colony diameter of 100 µm or less. C:0.0005〜0.015wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下、Ti:0.003〜0.020wt%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。C: 0.0005 to 0.015 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% or less , Ti: 0.003 to 0.020 wt%, the balance is composed of Fe and inevitable impurities, the plate surface (200) orientation grains are 20% area ratio or less, and the plate surface (200) orientation colony A hot-rolled steel sheet used for an original sheet for a surface-treated cold-rolled steel sheet , having a structure having an average colony diameter of 100 µm or less. C:0.0005〜0.015wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下、Nb:0.003〜0.020wt%、Ti:0.003〜0.020wt%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板面(200)方位粒が面積率20%以下、かつ板面(200)方位コロニーの平均コロニー径が100μm以下である組織を有することを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板。C: 0.0005 to 0.015 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% or less Nb: 0.003 to 0.020 wt%, Ti: 0.003 to 0.020 wt%, the balance is composed of Fe and inevitable impurities, and the plate surface (200) orientation grains have an area ratio of 20% or less, and A hot-rolled steel sheet used for an original sheet for a surface-treated cold-rolled steel sheet , having a structure in which an average colony diameter of a plate surface (200) orientation colony is 100 µm or less. 上記組織は、さらに析出AlNの平均寸法が0.030μm以上であることを特徴とする、請求項1に記載の表面処理冷延鋼板用原板に用いる熱延鋼板。The hot-rolled steel sheet used for the surface-treated cold-rolled steel sheet according to claim 1, wherein the microstructure further has an average dimension of precipitated AlN of 0.030 µm or more. 上記組織は、さらに析出NbCの平均寸法が0.010μm以上であることを特徴とする、請求項2に記載の表面処理冷延鋼板用原板に用いる熱延鋼板。The hot-rolled steel sheet used for the surface-treated cold-rolled steel sheet according to claim 2, wherein the microstructure further has an average size of precipitated NbC of 0.010 µm or more. 上記組織は、さらに析出炭窒化物の平均寸法が0.030μm以上であることを特徴とする、請求項3または4に記載の表面処理冷延鋼板用原板に用いる熱延鋼板。The hot-rolled steel sheet used for the surface-treated cold-rolled steel sheet according to claim 3 or 4, wherein the microstructure further has an average size of precipitated carbonitride of 0.030 µm or more. 請求項1〜7のいずれか1項において、鋼成分としてさらにB:0.0002〜0.0020wt%を含む成分組成からなることを特徴とする表面処理冷延鋼板用原板に用いる熱延鋼板。The hot-rolled steel sheet used for the surface-treated cold-rolled steel sheet according to any one of claims 1 to 7, further comprising B: 0.0002 to 0.0020 wt% as a steel component. 請求項1〜8のいずれか1項に記載の熱延鋼板の製造方法であって、C:0.0005〜0.030wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下を含有し、あるいはさらに、 Nb 0.003 0.020wt %、 Ti 0.003 0.020wt %およびB: 0.0002 0.0020wt %のうちのいずれか1種以上を含有し、残部が Fe および不可避的不純物からなる鋼スラブを1150℃以下に加熱し、粗圧延後、950℃以上の温度域で圧下率70%以上、かつ950℃〜Ar3の温度域で圧下率55%以上で仕上げ圧延して、950〜(Ar3−50℃)の温度域で熱間圧延を終了し、750〜550℃で巻き取ることを特徴とする、表面処理冷延鋼板用原板に用いる熱延鋼板の製造方法。 It is a manufacturing method of the hot-rolled steel plate of any one of Claims 1-8, Comprising: C: 0.0005-0.030wt%, Si: 0.20wt% or less, Mn: 0.05-0.6wt%, P: 0.02wt % or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: contains less 0.01 wt%, or even, Nb: 0.003 ~ 0.020wt%, Ti: 0.003 ~ 0.020wt% and B: 0.0002 ~ A steel slab containing at least one of 0.0020wt %, with the balance being Fe and inevitable impurities is heated to 1150 ° C or lower, and after rough rolling, the rolling reduction is 70% or higher at a temperature range of 950 ° C or higher. And finish rolling at a reduction rate of 55% or more in the temperature range of 950 ° C. to Ar 3 , finishing the hot rolling in the temperature range of 950 to (Ar 3 −50 ° C.) and winding up at 750 to 550 ° C. A method for producing a hot-rolled steel sheet used for a surface-treated cold- rolled steel sheet. 全圧下率80%以上、かつ最終パス圧下率20%以上で、粗圧延を行うことを特徴とする請求項に記載の表面処理冷延鋼板用原板に用いる熱延鋼板の製造方法。The method for producing a hot-rolled steel sheet used for a surface-treated cold-rolled steel sheet according to claim 9 , wherein rough rolling is performed at a total rolling reduction of 80% or more and a final pass reduction of 20% or more. 請求項1〜8のいずれか1項に記載の熱延鋼板を、圧下率80%以上で冷間圧延することを特徴とする、表面処理冷延鋼板用原板。The hot-rolled steel sheet according to any one of claims 1-8, characterized by cold rolling at a reduction ratio of 80% or more, surface-treated cold rolled steel plate precursor. 請求項1〜8のいずれか1項に記載の熱延鋼板を、圧下率80%以上で冷間圧延し、再結晶完了温度以上、再結晶完了温度+100℃以下で連続焼鈍することを特徴とする表面処理冷延鋼板用原板。The hot-rolled steel sheet according to any one of claims 1 to 8, wherein the hot-rolled steel sheet is cold-rolled at a reduction rate of 80% or more and continuously annealed at a recrystallization completion temperature or higher and a recrystallization completion temperature + 100 ° C or lower. Surface treated cold rolled steel sheet . 請求項1〜8のいずれか1項に記載の熱延鋼板を用いて表面処理冷延鋼板用原板を製造する方法であって、C:0.0005〜0.030wt%、Si:0.20wt%以下、Mn:0.05〜0.6wt%、P:0.02wt%以下、S:0.02wt%以下、Al:0.15wt%以下、N:0.01wt%以下を含有し、あるいはさらに、 Nb 0.003 0.020wt %、 Ti 0.003 0.020wt %およびB: 0.0002 0.0020wt %のうちのいずれか1種以上を含有し、残部が Fe および不可避的不純物からなる鋼スラブを、1150℃以下に加熱し、粗圧延後、950℃以上の温度域で圧下率70%以上、かつ950℃〜Ar3の温度域で圧下率55%以上で仕上げ圧延して、950〜(Ar3−50℃)の温度域で熱間圧延を終了し、750〜550℃で巻き取り、さらに圧下率80%以上で冷間圧延し、再結晶完了温度以上、再結晶完了温度+100℃以下で連続焼鈍することを特徴とする表面処理冷延鋼板用原板の製造方法。 A method for producing an original sheet for surface-treated cold-rolled steel sheet using the hot-rolled steel sheet according to any one of claims 1 to 8, wherein C: 0.0005 to 0.030 wt%, Si: 0.20 wt% or less, Mn : 0.05 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.15 wt% or less, N: 0.01 wt% or less , or Nb : 0.003 to 0.020 wt %, Ti : A steel slab containing at least one of 0.003 to 0.020 wt % and B: 0.0002 to 0.0020 wt %, the balance being Fe and inevitable impurities , heated to 1150 ° C. or less, after rough rolling, 950 ° C. or higher temperature range at a reduction ratio of 70% or more, and then finish rolling at 950 ° C. to Ar reduction ratio of 55% or more in a temperature range of 3, hot-rolling in a temperature range of 950 to (Ar 3 -50 ° C.) , Finished at 750-550 ° C, cold-rolled at a reduction rate of 80% or higher, and continuously annealed at a recrystallization completion temperature above the recrystallization completion temperature + 100 ° C or below. Surface treatment method for manufacturing a cold rolled steel sheet plate precursor that. 全圧下率80%以上、かつ最終パス圧下率20%以上で、粗圧延を行うことを特徴とする請求項13に記載の表面処理冷延鋼板用原板の製造方法。14. The method for producing an original sheet for a surface-treated cold-rolled steel sheet according to claim 13 , wherein rough rolling is performed at a total rolling reduction of 80% or more and a final pass rolling reduction of 20% or more.
JP34106096A 1996-12-20 1996-12-20 Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof Expired - Fee Related JP3690023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34106096A JP3690023B2 (en) 1996-12-20 1996-12-20 Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34106096A JP3690023B2 (en) 1996-12-20 1996-12-20 Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof

Publications (2)

Publication Number Publication Date
JPH10183240A JPH10183240A (en) 1998-07-14
JP3690023B2 true JP3690023B2 (en) 2005-08-31

Family

ID=18342877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34106096A Expired - Fee Related JP3690023B2 (en) 1996-12-20 1996-12-20 Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof

Country Status (1)

Country Link
JP (1) JP3690023B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545086B1 (en) * 2001-12-19 2006-01-24 주식회사 포스코 Manufacturing method for high strength cold rolled and zinc coated steel sheets with good drawability and stretch flangability
KR100564885B1 (en) * 2003-12-30 2006-03-30 주식회사 포스코 Bake Hardenable Cold Rolled Steel Sheet With Improved Aging Property And Bake Hardenability, And Manufacturing Method Thereof
KR101324911B1 (en) 2009-05-18 2013-11-04 신닛테츠스미킨 카부시키카이샤 Ultra-thin steel sheet and process for production thereof

Also Published As

Publication number Publication date
JPH10183240A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
CN108441759B (en) A kind of 540MPa grades of hot rolling acid-cleaning steel plate and its manufacturing method
CN109898016A (en) 500MPa grades or more high reaming hot rolling acid-cleaning steel plate and its manufacturing method
CN112795731A (en) Cold-rolled steel plate for lampshade and production method thereof
JP2007197742A (en) Cold rolled steel sheet for welded can, and its manufacturing method
JP3726371B2 (en) Steel plate for cans with high age-hardening properties and excellent material stability and method for producing the same
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3690023B2 (en) Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof
CN101218363B (en) Steel sheet for deep drawing having excellent secondary work embrittlement resistance, fatigue properties and plating properties, and method for manufacturing the same
JP2000239786A (en) Base plate for cold rolling, cold rolled steel sheet for deep drawing with minimal plane anisotropy, and manufacture thereof
JP4045602B2 (en) Manufacturing method of steel sheet for cans with excellent drawability
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JPH09316543A (en) Production of steel sheet for can, excellent in formability
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP3997692B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent press-formability and less fluctuation of press-formability in the coil
JP3109388B2 (en) Manufacturing method of high workability cold rolled steel sheet with small in-plane anisotropy
JP2002088446A (en) Steel sheet for forming outer cylinder of battery having excellent anisotropy and its production method
JPH1046289A (en) Steel sheet excellent in external appearance of panel and dent resistance after panel working
EP2431490A1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JPH0776381B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPH07228921A (en) Production of starting sheet for surface treated steel sheet, excellent in workability
JPH0673498A (en) Cold rolled steel sheet excellent in baking hardenability in coating/baking at low temperature and its production
JP3951512B2 (en) Method for producing a high workability cold-rolled steel sheet that has excellent press formability and little variation in press formability
JP3292034B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees