JP3689871B2 - Alkaline cleaning solution for semiconductor substrates - Google Patents

Alkaline cleaning solution for semiconductor substrates Download PDF

Info

Publication number
JP3689871B2
JP3689871B2 JP08778295A JP8778295A JP3689871B2 JP 3689871 B2 JP3689871 B2 JP 3689871B2 JP 08778295 A JP08778295 A JP 08778295A JP 8778295 A JP8778295 A JP 8778295A JP 3689871 B2 JP3689871 B2 JP 3689871B2
Authority
JP
Japan
Prior art keywords
water
ammonium fluoride
concentration
weight
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08778295A
Other languages
Japanese (ja)
Other versions
JPH08250461A (en
Inventor
典夫 石川
清人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Original Assignee
Kanto Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc filed Critical Kanto Chemical Co Inc
Priority to JP08778295A priority Critical patent/JP3689871B2/en
Publication of JPH08250461A publication Critical patent/JPH08250461A/en
Application granted granted Critical
Publication of JP3689871B2 publication Critical patent/JP3689871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【産業上の技術分野】
本発明は半導体基板用の洗浄液に関するものであり、さらに詳しくはパーティクルの除去ならびに金属不純物の吸着防止及び洗浄力に優れた半導体基板用のアルカリ性洗浄液に関するものである。
【0002】
【背景技術】
近年、さらなる半導体素子の高集積化により半導体基板の清浄度に対する要求は益々厳しいものとなってきている。半導体基板の汚染原因となる物質としてはパーティクルや金属不純物、有機物等が挙げられるが、金属不純物については、高集積化半導体基板を得るためには金属原子として基板表面濃度で1010atms/cm以下でコントロールしなくてはならないといわれている。しかしながら、半導体装置の製造において用いられている洗浄液はいずれも一長一短があり、その除去しようとする汚染物質の種類毎にアルカリ性の洗浄液と酸性の洗浄液とを組み合わせて用いられているのが現状である。
【0003】
アンモニア水と過酸化水素及び水からなる洗浄液(SC−1洗浄液)に代表されるアルカリ性の洗浄液はパーティクルの除去に優れた効果を発揮するが、その反面、半導体基板に金属不純物が吸着するため、さらに希ふっ酸のような酸性の洗浄液で洗浄し、吸着した金属不純物を除去しなければならず、工程を煩雑なものとしている。
【0004】
このような問題点の解決のために、特公昭53−20377号公報、特開昭63−114131号公報、あるいは特開平3−219000号公報等にみられるように、洗浄液にキレート剤を添加し、金属不純物の吸着を防止する技術が提案されている。
【0005】
しかしながら、これらのキレート剤は、特定の金属に対しては有効であるが種々の金属の吸着防止には効果的ではなく、又洗浄効果の安定性においても欠けるという問題がある。
【0006】
更に、キレート剤は、それ自身有機物であるため、新たなコンタミネーションを引き起こす恐れがある。
【0007】
【発明の開示】
本発明者らは、上記従来技術の問題点を解決するために鋭意研究を行ったところ、パーティクル除去能力に優れ、基板への金属吸着防止能をも兼ね備えた新規なアルカリ性洗浄液を開発することに成功した。
【0008】
すなわち、本発明は、アンモニアとして0.2〜5重量%のアルカリ性成分、0.2〜4.5重量%のふっ化アンモニウム、0.2〜5重量%の過酸化水素、および水を含む半導体基板洗浄液組成物を提供するものである。
以下、本発明を詳細に説明する。
【0009】
SC−1洗浄液に代表されるアルカリ成分と過酸化水素とを組み合わせたアルカリ性洗浄液中において、金属不純物のほとんどは、金属水酸化物となり、一方、半導体基板表面には自然酸化により酸化シリコンの膜が形成される。そのため、金属水酸化物の水酸基と半導体基板表面の酸化膜上のシラノール基との間に水素結合による結合が生じ、金属不純物は半導体基板表面に吸着されると考えられる。
【0010】
キレート剤は、金属とキレート化合物を形成することにより、洗浄液中において金属水酸化物の生成を抑制するために、半導体基板表面への金属不純物の吸着を防止する作用を奏しているものと考えられている。
【0011】
本発明に係るアルカリ性洗浄液の成分であるふっ化アンモニウムが解離したふっ素イオンは、アルカリ性側において金属と錯体を形成し、その結果金属水酸化物の生成を抑制するというキレート剤と同様の働きをする。
【0012】
しかも、ふっ化アンモニウムは半導体基板のエッチング液の1成分として広く用いられているため、電子工業用薬品として、高純度のものが供給されており、不純物による逆汚染の心配もなく、安価に容易に入手できる薬品である。
【0013】
また、ふっ素イオンの導入薬品として電子工業用に市販されているふっ化水素酸の使用も考えられるが、ふっ化水素酸は、アンモニア水の様なアルカリ成分と中和反応を起こし、洗浄液の性能を低下させる傾向にあり、これを使用した場合、ふっ化水素酸の使用量に見合った量のアンモニア水を多めに加えなければならずコストの面からも不利となる。
【0014】
このように本発明に係るふっ化アンモニウムは、従来のアルカリ系洗浄液に添加されることにより、その洗浄能力を損なわずに基板への金属不純物の吸着を効果的に防止することができるものである。
【0015】
さらに本発明の半導体基板用アルカリ性洗浄液について詳細に説明する。
本発明に係る半導体基板用アルカリ性洗浄液としては、従来汎用されているアルカリ性成分と、過酸化水素とからなるアルカリ性洗浄液に、ふっ化アンモニウムの所望量を添加したものが最も好ましい使用態様である。
【0016】
アルカリ成分としては、アンモニア水や水酸化テトラメチルアンモニウム等が好ましく、その濃度は、使用目的によって異なるがアンモニア水については、通常アンンモニアとして0.2重量%〜5重量%が好ましい濃度である。過酸化水素の濃度は、アンモニアの濃度に応じて適宜決定されるが、通常、アンモニア濃度と同濃度〜10倍の濃度で用いるのが好ましく、通常は洗浄液中の濃度としてその全量に対し0.2〜5重量%程度である。
【0017】
ふっ化アンモニウムの濃度は、洗浄液中のアンモニアの濃度とのバランスで決定されるが、アンモニア濃度に対しその1/2から同濃度程度で使用するのが好ましい。ふっ化アンモニウムの濃度と金属吸着防止効果の関係から見てみると、その濃度が3.4重量%付近で飽和する傾向にあり、また6重量%以上の濃度になると洗浄能力が低下する傾向にあるので、6重量%以上の濃度で使用しても、それ以上の効果は期待できない。また、ふっ化アンモニウムの濃度と吸着防止効果は金属の種類によって異なり、例えば、Alの場合は濃度が高いほど吸着防止効果は高いが、Znの場合はAlと比べて低い濃度でも十分に効果を発揮する。
【0018】
以上の点を考慮してふっ化アンモニウムの濃度を決定する必要があるが、アンモニア、過酸化水素及び水を用いた洗浄液では、通常その配合比は体積比でアンモニア水:過酸化水素:純水が1:1:100(アンモニア濃度0.28重量%)から1:1:5(アンモニア濃度4.2重量%)比で用いられており、これに対して、ふっ化アンモニウムの濃度としては0.1〜5重量%、特に0.2〜4.5重量%の濃度範囲で添加して使用するのが好ましい。
【0019】
次に、本発明の実施例及び比較例を掲げ、さらに本発明を詳細に説明するが、本発明は、これらの実施例によって限定されるものではないことは勿論である。
【0020】
【比較例および実施例】
〔比較例1〕
29重量%アンモニア水、30%過酸化水素水と超純水を体積比1:1:6の割合で混合した洗浄液をAlが1ppbとなるように汚染し、この液にウェハ(4インチφ、CZ、N(100))を50℃で、10min.浸漬し、ついで水洗した後、ウェハ表面に吸着されたAlを希ふっ酸溶液で回収し、回収されたAlをフレームレス原子吸光法により定量し、その吸着量を調べた。
【0021】
〔比較例2〕
29重量%アンモニア水、30%過酸化水素水(キレート剤 3−アミノメチルホスホン酸 100ppm添加)と超純水を体積比1:1:6の割合で混合した洗浄液を用いて比較例1に記載の方法に準じてAlの吸着量を調べた。
【0022】
〔実施例1〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比0.25:1:1:6(ふっ化アンモニウム1.2重量%)の割合で混合した洗浄液を用いて比較例1記載の方法に準じてAlの吸着量を調べた。
【0023】
〔実施例2〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比0.5:1:1:6(ふっ化アンモニウム2.35重量%)の割合で混合した洗浄液を用いて比較例1記載の方法に準じてAlの吸着量を調べた。
【0024】
〔実施例3〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比0.75:1:1:6(ふっ化アンモニウム3.4重量%)の割合で混合した洗浄液を用いて比較例1記載の方法に準じてAlの吸着量を調べた。
【0025】
〔実施例4〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比1:1:1:6(ふっ化アンモニウム4.4重量%)の割合で混合した洗浄液を用いて比較例1記載の方法に準じてAlの吸着量を調べた。
以上、Alについて行った比較例1、2と実施例1〜4の結果を表1に示す。
【0026】
【表1】

Figure 0003689871
【0027】
表1から明らかなとおり、本発明に係る洗浄液には、明らかなAlの吸着防止効果がみられ、ふっ化アンモニウムの濃度とともにその吸着量が少なくなることが認められた。一方、ホスホン酸系のキレート剤には、Alの吸着防止効果はまったく認められなかった。
【0028】
〔比較例3〕
29重量%アンモニア水、30%過酸化水素水と超純水を体積比1:1:6の割合で混合した洗浄液をZnが1ppbとなるように汚染し、この液にウェハ(4インチφ、CZ、N(100))を50℃で10min.浸漬し、ついで水洗した後、ウェハ表面に吸着されたZnを希ふっ酸で回収し、回収されたZnをフレームレス原子吸光法により定量し、その吸着量を調べた。
【0029】
〔比較例4〕
29重量%アンモニア水、30%過酸化水素水(キレート剤 3−アミノメチルホスホン酸 100ppm添加)と超純水を体積比1:1:6の割合で混合した洗浄液を用いて比較例3に記載の方法に準じてZnの吸着量を調べた。
【0030】
〔実施例5〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比0.5:1:1:6(ふっ化アンモニウム2.35重量%)の割合で混合した洗浄液を用いて比較例3に記載の方法に準じてZnの吸着量を調べた。
【0031】
〔実施例6〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比0.75:1:1:6(ふっ化アンモニウム3.4重量%)の割合で混合した洗浄液を用いて比較例3に記載の方法に準じてZnの吸着量を調べた。以上、Znについて行った比較例3、4及び実施例5、6の結果を表2に示す。
【0032】
【表2】
Figure 0003689871
【0033】
表2に示した結果から、Znの場合は、Alよりも低濃度で効果が現れており、Alと同様にふっ化アンモニウムによって表面への吸着が効果的に抑えられていることが認められた。
【0034】
〔比較例5〕
29重量%アンモニア水、30%過酸化水素水と超純水を体積比1:1:6の割合で混合した洗浄液をCuが100ppbとなるように汚染し、この液にウェハ(4インチφ、CZ、N(100))を50℃で10min.浸漬し、ついで水洗した後、ウェハ表面に吸着されたCuをふっ酸−硝酸混合液で回収し、回収されたCuをフレームレス原子吸光法により定量し、その吸着量を調べた。
【0035】
〔実施例7〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比0.5:1:1:6の割合で混合した洗浄液を用いて比較例5に記載の方法に準じてCuの吸着量を調べた。
【0036】
〔実施例8〕
40%ふっ化アンモニウム、29%アンモニア水、30%過酸化水素水と超純水を体積比0.75:1:1:6の割合で混合した洗浄液を用いて比較例5に記載の方法に準じてCuの吸着量を調べた。
以上、Cuについて行った比較例5および実施例7、8の結果を表3に示す。
【0037】
【表3】
Figure 0003689871
【0038】
表3に示すとおり、Cuの場合は、Al、Znと比較してその効果が顕著ではないが約1/2量に吸着量か低減されることが認められた。
【0039】
以上の結果から明らかなように、洗浄液にホスホン酸系のキレート剤を添加してもはAlやZnの吸着防止には殆ど効果が認められないが、本発明に係るふっ化アンモニウムを成分として含有するアルカリ性洗浄液は、Al及びZnのいずれに対しても優れた洗浄力を発揮し、またキレート剤を添加する必要もないので新たなコンタミネーションの問題も生じることなく、半導体基板用洗浄液として極めて有用なものである。[0001]
[Industrial technical field]
The present invention relates to a cleaning solution for a semiconductor substrate, and more particularly to an alkaline cleaning solution for a semiconductor substrate which is excellent in removal of particles, adsorption of metal impurities, and cleaning power.
[0002]
[Background]
In recent years, the demand for cleanliness of a semiconductor substrate has become increasingly severe due to further high integration of semiconductor elements. Examples of substances that cause contamination of the semiconductor substrate include particles, metal impurities, organic substances, and the like. Regarding metal impurities, in order to obtain a highly integrated semiconductor substrate, the substrate surface concentration of 10 10 atms / cm 2 is used as metal atoms. It is said that it must be controlled below. However, all of the cleaning liquids used in the manufacture of semiconductor devices have their merits and demerits. Currently, alkaline cleaning liquids and acidic cleaning liquids are used in combination for each type of contaminant to be removed. .
[0003]
Alkaline cleaning liquids represented by a cleaning liquid (SC-1 cleaning liquid) composed of ammonia water, hydrogen peroxide and water exhibit an excellent effect in removing particles, but on the other hand, metal impurities are adsorbed on the semiconductor substrate. Furthermore, it must be washed with an acidic washing solution such as dilute hydrofluoric acid to remove the adsorbed metal impurities, making the process complicated.
[0004]
In order to solve such problems, a chelating agent is added to the cleaning solution as seen in JP-B-53-20377, JP-A-63-114131, or JP-A-3-219000. A technique for preventing the adsorption of metal impurities has been proposed.
[0005]
However, these chelating agents are effective for specific metals, but are not effective for preventing the adsorption of various metals, and also lack the stability of the cleaning effect.
[0006]
Furthermore, since the chelating agent itself is an organic substance, it may cause new contamination.
[0007]
DISCLOSURE OF THE INVENTION
The inventors of the present invention conducted extensive research to solve the above-described problems of the prior art, and as a result, developed a novel alkaline cleaning solution that has excellent particle removal capability and also has the ability to prevent metal adsorption on the substrate. Successful.
[0008]
That is, the present invention relates to a semiconductor containing 0.2 to 5% by weight of an alkaline component, 0.2 to 4.5% by weight of ammonium fluoride, 0.2 to 5% by weight of hydrogen peroxide, and water as ammonia. A substrate cleaning liquid composition is provided.
Hereinafter, the present invention will be described in detail.
[0009]
In an alkaline cleaning liquid in which an alkaline component typified by the SC-1 cleaning liquid and hydrogen peroxide are combined, most of the metal impurities are metal hydroxides, while a silicon oxide film is formed on the surface of the semiconductor substrate by natural oxidation. It is formed. Therefore, it is considered that a bond due to a hydrogen bond occurs between the hydroxyl group of the metal hydroxide and the silanol group on the oxide film on the surface of the semiconductor substrate, and the metal impurity is adsorbed on the surface of the semiconductor substrate.
[0010]
It is considered that the chelating agent has the effect of preventing the adsorption of metal impurities on the surface of the semiconductor substrate in order to suppress the formation of metal hydroxide in the cleaning liquid by forming a chelate compound with the metal. ing.
[0011]
Fluorine ions from which ammonium fluoride, which is a component of the alkaline cleaning liquid according to the present invention, is dissociated, form a complex with a metal on the alkaline side, and as a result, acts as a chelating agent that suppresses the formation of metal hydroxides. .
[0012]
Moreover, since ammonium fluoride is widely used as a component of an etching solution for semiconductor substrates, high purity chemicals are supplied as chemicals for the electronics industry. It is a medicine that can be obtained.
[0013]
In addition, hydrofluoric acid marketed for the electronics industry can be used as a chemical for introducing fluorine ions, but hydrofluoric acid causes a neutralization reaction with an alkaline component such as aqueous ammonia, and the performance of the cleaning solution. If this is used, a large amount of ammonia water corresponding to the amount of hydrofluoric acid used must be added, which is disadvantageous in terms of cost.
[0014]
As described above, the ammonium fluoride according to the present invention can effectively prevent the adsorption of metal impurities to the substrate without being impaired in the cleaning ability by being added to the conventional alkaline cleaning liquid. .
[0015]
Furthermore, the alkaline cleaning liquid for semiconductor substrates of the present invention will be described in detail.
As the alkaline cleaning solution for a semiconductor substrate according to the present invention, the most preferable usage mode is that a desired amount of ammonium fluoride is added to an alkaline cleaning solution composed of a conventionally used alkaline component and hydrogen peroxide.
[0016]
As the alkaline component, ammonia water, tetramethylammonium hydroxide, and the like are preferable, and the concentration thereof varies depending on the purpose of use, but the ammonia water is preferably a concentration of 0.2% by weight to 5% by weight as ammonia. The concentration of hydrogen peroxide is appropriately determined according to the concentration of ammonia, but it is usually preferable to use it at a concentration that is 10 to 10 times the concentration of ammonia. It is about 2 to 5% by weight.
[0017]
The concentration of ammonium fluoride is determined by the balance with the concentration of ammonia in the cleaning liquid, but it is preferable to use it at a concentration of about 1/2 to the same concentration as the ammonia concentration. Looking at the relationship between the concentration of ammonium fluoride and the metal adsorption prevention effect, the concentration tends to saturate around 3.4% by weight, and the cleaning ability tends to decrease when the concentration exceeds 6% by weight. Therefore, even if it is used at a concentration of 6% by weight or more, no further effect can be expected. In addition, the concentration of ammonium fluoride and the anti-adsorption effect differ depending on the type of metal. For example, the higher the concentration in the case of Al, the higher the anti-adsorption effect. Demonstrate.
[0018]
It is necessary to determine the concentration of ammonium fluoride in consideration of the above points. However, in a cleaning solution using ammonia, hydrogen peroxide and water, the mixing ratio is usually ammonia water: hydrogen peroxide: pure water in a volume ratio. Is used at a ratio of 1: 1: 100 (ammonia concentration 0.28% by weight) to 1: 1: 5 (ammonia concentration 4.2% by weight), whereas the concentration of ammonium fluoride is 0. It is preferable to add it in a concentration range of 1 to 5% by weight, particularly 0.2 to 4.5% by weight.
[0019]
Next, although the Example and comparative example of this invention are hung up and this invention is demonstrated further in detail, of course, this invention is not limited by these Examples.
[0020]
[Comparative Examples and Examples]
[Comparative Example 1]
A cleaning liquid in which 29% by weight ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed at a volume ratio of 1: 1: 6 was contaminated so that Al would be 1 ppb, and the wafer (4 inch φ, CZ, N (100)) at 50 ° C. for 10 min. After soaking and then washing with water, Al adsorbed on the wafer surface was recovered with a dilute hydrofluoric acid solution, and the recovered Al was quantified by flameless atomic absorption method to examine the adsorbed amount.
[0021]
[Comparative Example 2]
29% by weight ammonia water, 30% hydrogen peroxide water (chelating agent 3-aminomethylphosphonic acid added at 100 ppm) and ultrapure water mixed in a volume ratio of 1: 1: 6 as described in Comparative Example 1 The amount of adsorbed Al was examined according to the method.
[0022]
[Example 1]
A cleaning liquid in which 40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed at a volume ratio of 0.25: 1: 1: 6 (ammonium fluoride 1.2 wt%). In accordance with the method described in Comparative Example 1, the adsorption amount of Al was examined.
[0023]
[Example 2]
A cleaning solution in which 40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed at a volume ratio of 0.5: 1: 1: 6 (ammonium fluoride 2.35% by weight). In accordance with the method described in Comparative Example 1, the adsorption amount of Al was examined.
[0024]
Example 3
A cleaning liquid prepared by mixing 40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water in a volume ratio of 0.75: 1: 1: 6 (ammonium fluoride 3.4 wt%). In accordance with the method described in Comparative Example 1, the adsorption amount of Al was examined.
[0025]
Example 4
Using a cleaning liquid in which 40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed at a volume ratio of 1: 1: 1: 6 (ammonium fluoride 4.4 wt%). The amount of adsorbed Al was examined according to the method described in Comparative Example 1.
The results of Comparative Examples 1 and 2 and Examples 1 to 4 performed on Al are shown in Table 1.
[0026]
[Table 1]
Figure 0003689871
[0027]
As is clear from Table 1, the cleaning liquid according to the present invention has a clear effect of preventing the adsorption of Al, and it was recognized that the amount of adsorption decreases with the concentration of ammonium fluoride. On the other hand, phosphonic acid-based chelating agents did not show any effect of preventing Al adsorption.
[0028]
[Comparative Example 3]
A cleaning liquid in which 29 wt% ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed at a volume ratio of 1: 1: 6 was contaminated so that Zn would be 1 ppb, and the wafer (4 inch φ, CZ, N (100)) at 50 ° C. for 10 min. After immersion and then washing with water, Zn adsorbed on the wafer surface was recovered with dilute hydrofluoric acid, and the recovered Zn was quantified by flameless atomic absorption method to examine the amount of adsorption.
[0029]
[Comparative Example 4]
29% by weight ammonia water, 30% hydrogen peroxide water (chelating agent 3-aminomethylphosphonic acid added at 100 ppm) and ultrapure water mixed at a volume ratio of 1: 1: 6 described in Comparative Example 3 The amount of adsorbed Zn was examined according to the method.
[0030]
Example 5
A cleaning solution in which 40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed at a volume ratio of 0.5: 1: 1: 6 (ammonium fluoride 2.35% by weight). In accordance with the method described in Comparative Example 3, the adsorption amount of Zn was examined.
[0031]
Example 6
A cleaning liquid prepared by mixing 40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water in a volume ratio of 0.75: 1: 1: 6 (ammonium fluoride 3.4 wt%). In accordance with the method described in Comparative Example 3, the adsorption amount of Zn was examined. The results of Comparative Examples 3 and 4 and Examples 5 and 6 performed on Zn are shown in Table 2.
[0032]
[Table 2]
Figure 0003689871
[0033]
From the results shown in Table 2, in the case of Zn, the effect appeared at a lower concentration than Al, and it was recognized that the adsorption to the surface was effectively suppressed by ammonium fluoride as in the case of Al. .
[0034]
[Comparative Example 5]
A cleaning liquid in which 29% by weight ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed at a volume ratio of 1: 1: 6 was contaminated so that Cu would be 100 ppb. CZ, N (100)) at 50 ° C. for 10 min. After immersing and washing with water, Cu adsorbed on the wafer surface was recovered with a hydrofluoric acid-nitric acid mixture, and the recovered Cu was quantified by flameless atomic absorption method to examine the amount of adsorption.
[0035]
Example 7
40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed in the volume ratio of 0.5: 1: 1: 6 to the method described in Comparative Example 5. Similarly, the amount of Cu adsorbed was examined.
[0036]
Example 8
40% ammonium fluoride, 29% ammonia water, 30% hydrogen peroxide water and ultrapure water were mixed in the volume ratio of 0.75: 1: 1: 6 to the method described in Comparative Example 5. Similarly, the amount of Cu adsorbed was examined.
The results of Comparative Example 5 and Examples 7 and 8 performed on Cu are shown in Table 3.
[0037]
[Table 3]
Figure 0003689871
[0038]
As shown in Table 3, in the case of Cu, the effect was not as remarkable as that of Al and Zn, but it was recognized that the adsorption amount was reduced to about ½ amount.
[0039]
As is clear from the above results, even if a phosphonic acid-based chelating agent is added to the cleaning solution, there is almost no effect in preventing the adsorption of Al and Zn, but the ammonium fluoride according to the present invention is contained as a component. The alkaline cleaning solution that exhibits excellent detergency for both Al and Zn, and it is not necessary to add a chelating agent, so there is no problem of new contamination and it is extremely useful as a cleaning solution for semiconductor substrates. It is a thing.

Claims (1)

アンモニアとして0.2〜5重量%のアルカリ性成分、0.2〜4.5重量%のふっ化アンモニウム、0.2〜5重量%の過酸化水素、および水を含む半導体基板洗浄液組成物。A semiconductor substrate cleaning liquid composition comprising, as ammonia, 0.2 to 5% by weight of an alkaline component, 0.2 to 4.5% by weight of ammonium fluoride, 0.2 to 5% by weight of hydrogen peroxide, and water.
JP08778295A 1995-03-09 1995-03-09 Alkaline cleaning solution for semiconductor substrates Expired - Fee Related JP3689871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08778295A JP3689871B2 (en) 1995-03-09 1995-03-09 Alkaline cleaning solution for semiconductor substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08778295A JP3689871B2 (en) 1995-03-09 1995-03-09 Alkaline cleaning solution for semiconductor substrates

Publications (2)

Publication Number Publication Date
JPH08250461A JPH08250461A (en) 1996-09-27
JP3689871B2 true JP3689871B2 (en) 2005-08-31

Family

ID=13924556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08778295A Expired - Fee Related JP3689871B2 (en) 1995-03-09 1995-03-09 Alkaline cleaning solution for semiconductor substrates

Country Status (1)

Country Link
JP (1) JP3689871B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896826B2 (en) 1997-01-09 2005-05-24 Advanced Technology Materials, Inc. Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrate
US6755989B2 (en) 1997-01-09 2004-06-29 Advanced Technology Materials, Inc. Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrate
JP2001508239A (en) * 1997-01-09 2001-06-19 アドバンスド ケミカル システムズ インターナショナル,インコーポレイテッド Semiconductor wafer cleaning composition and method using aqueous ammonium fluoride and amine
WO1998044542A1 (en) * 1997-03-28 1998-10-08 Tokyo Electron Limited Method and device for treating substrate
JP2000091289A (en) 1998-09-10 2000-03-31 Hitachi Ltd Manufacture of semiconductor integrated circuit device
US6471735B1 (en) * 1999-08-17 2002-10-29 Air Liquide America Corporation Compositions for use in a chemical-mechanical planarization process
JP4285649B2 (en) 2001-07-25 2009-06-24 チョン ヨウン カンパニー リミテッド Surface treatment composition and treatment method for removing silicon component and reducing metal salt generated during etching of aluminum die casting material
JP5493302B2 (en) * 2007-07-19 2014-05-14 三菱化学株式会社 Group III nitride semiconductor substrate and cleaning method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661242A (en) * 1991-03-14 1994-03-04 Nippon Telegr & Teleph Corp <Ntt> Production of semiconductor device
JP3169024B2 (en) * 1991-07-12 2001-05-21 三菱瓦斯化学株式会社 Cleaning liquid for silicon wafers and semiconductor devices
JPH06208989A (en) * 1993-01-08 1994-07-26 Fujitsu Ltd Manufacture of semiconductor device
JP2743823B2 (en) * 1994-03-25 1998-04-22 日本電気株式会社 Semiconductor substrate wet treatment method

Also Published As

Publication number Publication date
JPH08250461A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
JP3075290B2 (en) Cleaning liquid for semiconductor substrates
JP5379441B2 (en) Alkaline aqueous solution composition for substrate processing
JP4752270B2 (en) Cleaning liquid and cleaning method using the same
KR19990063592A (en) Wafer treatment liquid and its manufacturing method
JPH07216392A (en) Detergent and cleaning method
JP3689871B2 (en) Alkaline cleaning solution for semiconductor substrates
EP1648991B1 (en) Semiconductor cleaning solution
TWI333975B (en) Semiconductor surface treatment and mixture used therein
US6147042A (en) Detergent for processes for producing semiconductor devices or producing liquid crystal devices
JPS63274149A (en) Semiconductor treatment
KR100784938B1 (en) Composition for cleaning semiconductor device
JP2003173998A (en) Method for cleaning semiconductor substrate
JPH07161672A (en) Substrate surface cleaning method and surface cleaning agent
JP3887846B2 (en) High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same
JP2569574B2 (en) Semiconductor processing agent
JP2749938B2 (en) Cleaning method for semiconductor wafer
JP2839615B2 (en) Cleaning solution for semiconductor substrate and method for manufacturing semiconductor device
JPH03208899A (en) Washing method for silicon wafer
JPH0583520B2 (en)
JPH11340182A (en) Cleaning agent for semiconductor surface, and method for cleaning
JP3503326B2 (en) Semiconductor surface treatment solution
JP3198878B2 (en) Surface treatment composition and substrate surface treatment method using the same
JP3186914B2 (en) Surface treatment agent for silicon dioxide and silicon nitride based films
JPH08306651A (en) Alkaline cleaning composition and cleaning method using the composition
JP2001244228A (en) Liquid and method for washing semiconductor substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees