JP3686542B2 - Viscoelastic brace - Google Patents

Viscoelastic brace Download PDF

Info

Publication number
JP3686542B2
JP3686542B2 JP02067599A JP2067599A JP3686542B2 JP 3686542 B2 JP3686542 B2 JP 3686542B2 JP 02067599 A JP02067599 A JP 02067599A JP 2067599 A JP2067599 A JP 2067599A JP 3686542 B2 JP3686542 B2 JP 3686542B2
Authority
JP
Japan
Prior art keywords
core material
viscoelastic
steel
shaped
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02067599A
Other languages
Japanese (ja)
Other versions
JPH11280294A (en
Inventor
徹 竹内
博志 中村
衛 岩田
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02067599A priority Critical patent/JP3686542B2/en
Publication of JPH11280294A publication Critical patent/JPH11280294A/en
Application granted granted Critical
Publication of JP3686542B2 publication Critical patent/JP3686542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物その他の構造物において、地震力や風などの外力に対して減衰効果を与える粘弾性ブレースに関するものである。
【0002】
【従来技術】
従来の技術としては、図7に示すようにブレース101の端部に、鋼板103と粘弾性体104を積層状に固着させた制振装置102(日本建築学会大会学術講演梗概集、九州、1989年10月P629〜P630)や、図8に示すように鋼製外側筋かい材111の内周面と鋼製内側筋かい材112の外周面との間に粘弾性材層113を介在させた建造物の振動抑制装置115、又は鋼製外側筋かい材111である管体内にセメント系硬化材114を固定し、このセメント系硬化材114の内周面と鋼製内側筋かい材112の外周面との間に粘弾性材層113を介在させて固着させた建造物の振動抑制装置116(特許第2583801号)がある。
【0003】
さらに、特開平9−133169号や、特開平1−187271号が知られている。特開平9−133169号の構成は、図9に示されており、建物117の柱118及び梁119に用いられた粘弾性ダンパー120は、一方の筋違い121に固定された外筒122と他方の筋違い121に固定された内筒124とが嵌合しており、この内筒124と外筒122の間にエラストマー125を介在させ接着した構成である。
【0004】
特開平1−187271号の構成は、図10に示されており、建物における上階の梁126と下階床127から突設されたそれぞれのガセットプレート128,129に内管130と外管131のそれぞれの端部に設けたブラケットが接合され、前記内管130と外管131が羽根状のプレート132を介して粘弾性体133を挟み接着して制震装置が構成されている。
【0005】
【発明が解決しようとする課題】
高層建築物等のように建物の幅に比べて高さの高い構造物において、地震力や風等による振動が構造体に大きな影響を与える可能性がある。この振動に対して、従来のブレース端部に制振装置を取り付けたものや、鋼製外側筋かい材の内周面と鋼製内側筋かい材の外周面との間に粘弾性材層を介在させた振動抑制装置では、振動エネルギーを吸収する部分がブレース端部に限られたり、粘弾性材層が1層しか挿入することができないことから、介在させることができる粘弾性体の総面積が制限され、ブレースのエネルギー吸収能力を上げることが困難であった。 また図7や図8の従来技術による方式をブレース長全体に延長し粘弾性体の総面積を増加させようとした場合、粘弾性体の間に積層された平鋼板が圧縮力により座屈する可能性があったり、最外層の粘弾性材層と平鋼板が外側に剥離する等の間題点があった。
【0006】
また、図9の従来技術にあっては、(1)外筒と内筒の間に粘弾性体を固着させる構造であるが、この構造を実現するためには、液体状の粘弾性体をこれらの間に流し込んで固着させなければならず、粘弾性体シートのような固体状のものは固着させることができない。(2)粘弾性体の層を一層しか構成できず、複層にして振動エネルギー吸収能力を向上させることができないという問題点があった。
【0007】
さらに、図10の従来技術にあっては、(1)内管の表面に粘弾性体を固着させ、これを外管で挟み込んで固着するものであるため、粘弾性体を複層にして振動エネルギー吸収能力を向上させることができない。(2)分離された外管と内管で粘弾性体を挟むようになっているが、分離された外管同士が接しており外管、内管及び粘弾性体を粘着させることができない。外管を十分に圧着させるためには、分離された互いの外管は一定間隔をおいて配置されなければならない。したがって、従来技術によると十分に密着させて粘着させることは不可能であるという問題点があった。
【0008】
【課題を解決するための手段】
本発明は、前記の課題を解決するためになされたものであり、下記のように構成される。
請求項1の発明は、H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を前記第2心材に固着して粘弾性ブレースを構成する。
請求項2の発明は、H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を交互に前記第2心材または前記第1芯材端部近傍に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は、該ウエブ側面に配置した前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結して粘弾性ブレースを構成する。
請求項3の発明は、H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を交互に前記第2心材または前記第1心材端部近傍に固着し、前記第1心材と前記第2心材は、該ウエブ側面に配置した前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結して粘弾性ブレースを構成する。
請求項4の発明は、H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を交互に前記第2心材または前記第1芯材端部近傍に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性 体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を交互に前記第2心材または前記第1心材端部近傍に固着し、前記第1心材と前記第2心材は、該ウエブ側面に配置した前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結して粘弾性ブレースを構成する。
請求項5の発明は、対向配置した最も外側の一方の溝形鋼の側面と、対向配置した最も外側の他方の前記溝形鋼の側面を互いに連結する蓋を固着させて請求項1〜4のいずれかに記載の粘弾性ブレースを構成する。
請求項6の発明は、対向配置した前記溝形鋼側面の対向端部は、互いに所定の間隔を設けて設置して請求項1〜5のいずれかに記載の粘弾性ブレースを構成する。
請求項7の発明は、H形鋼、I形鋼、H形組み立て材、またはI形組み立て材からなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のウェブ側面には、対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結した粘弾性ブレースを構成する。
請求項8の発明は、H形鋼、I形鋼、H形組み立て材、またはI形組み立て材からなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のウェブ側面には、対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部は交互に前記第2心材または前記第1芯材端部近傍に固着され、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結した粘弾性ブレースを構成する。
請求項9の発明は、対向配置した前記1組又は複数組の溝形鋼と粘弾性体シートの組のうち、少なくとも一組は片側のみの配置とした請求項1〜8のいずれか1項に記載の粘弾性ブレースを構成する。
【0009】
【発明の実施の形態】
なお、形鋼とは、通常のH形鋼、I形鋼、C(溝)形鋼等の形鋼の他、組み立てH形鋼、組み立てI形鋼や組み立て溝形鋼をも含むものである。
本発明または参考形態において、第1心材の側面に、前記第1心材を包囲して対向配置した溝形鋼又は半円形鋼板と粘弾性体シートを交互に単層又は複層で積層粘着し、前記溝形鋼又は半円形鋼板の端部を交互に前記第1心材の端部と第2心材に固着し、前記第1心材と前記第2心材は伸縮用間隙を介在させて前記溝形鋼又は前記半円形鋼板と前記粘弾性体シートにより連結して構成することにより、振動エネルギーが粘弾性ブレースに入力される場合には粘弾性体シートのせん断変形によってこの振動エネルギーを吸収し減衰させる。
【0010】
この際、粘弾性体シートを積層する溝形鋼又は半円形鋼板は全て断面2次半径の大きなものとなっているため、圧縮時にも座屈を生じず、安定した応力伝達が成される。また、対向配置した最も外側の前記溝形鋼又は前記半円形鋼板の側面に蓋を固着して互いに連結することにより積層構造全体が囲い込まれて拘束され、前記溝形鋼又は前記半円形鋼板と前記粘弾性体シートは剥離を生じない。
これにより、高層建築物のような水平振動を伴う構造物の水平方向の変形及びせん断力を軽減させ、速やかに振動を減衰させることができる。
【0011】
本発明または参考形態の粘弾性ブレースは、かかる構成によるものであり、従来の技術の場合には制振装置構成材が圧縮力の下で座屈する可能性があったという問題点を解決し、また対向配置した最も外側の溝形鋼または半円形鋼板の側面に蓋を固着して互いに連結することにより、粘弾性体シートと鋼板の剥離の問題点を解決し、さらに従来より飛躍的に多くの断面の粘弾性体シートを介在させ得ることによって性能の高い粘弾性ブレースを可能とした点で新規の発明となっている。
【0012】
第1参考形態
粘弾性ブレースの第1参考形態を、図1,図2を参照しつつ説明する。
図1(イ)、(ロ)及び(ハ)には、例えば高層建物のブレースに本発明の粘弾性ブレースを適用した例が示されている。
第1参考形態による粘弾性ブレース2は、図1、図2(イ)、(ロ)のH形断面をした第1心材3の側面に、前記第1心材3を包囲して対向配置した第1粘弾性体シート9及び第1溝形鋼6を交互に積層粘着し、前記第1溝形鋼6の端部をH形断面をした第2心材4に第1溝形鋼固定材13を介在させて固着し、前記第1心材3と前記第2心材4には、図1に示す建築物の骨組み1に固定するための第1心材連結用穴15と第2心材連結用穴16をあけ、対向配置した前記第1溝形鋼6の側面上に蓋17を固着し、前記第1心材3と前記第2心材4は伸縮用間隙30を介在させて前記第1粘弾性体シート9及び、前記第1溝形鋼6により連結したものである。
また、前記第1心材3及び、前記第2心材4の断面形状は、図2(ハ)、(ニ)に示すように角形鋼管、円形鋼管としてもよく、円形鋼管の場合には前記第1溝形鋼6に代わり第1半円形鋼板27を用いる。
【0013】
前記伸縮用間隙30は、前記第1心材3と前記第2心材4の間に介在させることで、前記粘弾性ブレース2に入力された振動エネルギーに対して前記第1心材3、前記第2心材4及び前記第1溝形鋼6には変形を生じさせず、前記第1粘弾性体シート9にのみせん断変形を生じさせることができる。
また図11(イ)、(ロ)及び(ハ)に示すように前記第1溝形鋼6、前記第1半円形鋼板27及び第1平鋼31の厚さtと幅Bをそれぞれ同じにしたとき、前記第1溝形鋼6と前記第1半円形鋼板27の中立軸X−Xまわりの断面2次モーメントI1、I2が前記第1平鋼31の断面2次モーメントI3のおよそ150倍〜160倍となるため、前記第1溝形鋼6及び前記第1半円形鋼板27の断面2次半径i1,i2が前記第1平鋼31の断面2次半径i3に対して9倍〜10倍となり、圧縮軸方向力が作用したときに座屈が生じない。また、前記蓋17を対向配置して前記第1溝形鋼6の側面を固着することで、前記第1溝形鋼6、前記第1粘弾性体シート9及び第1心材3を拘束し、互いの剥離を防止することができ、安定して応力を伝達することができる。
【0014】
図1に示すように、前記粘弾性ブレース2を建築物の骨組み1に前記第1心材連結用穴15及び、前記第2心材連結用穴16を使ってボルト等で固定することにより、建築物の骨組み1に入力された振動エネルギーは、前記第1粘弾性体シート9のせん断変形により吸収するように作用する。
例えば、前記第1心材3の側面に粘着させた前記粘弾性体シート9の粘着長さを連結部を除く心材の全長にすれば、前記粘弾性体シート9のせん断断面積は、例えば図8に示す、端部に1層の粘弾性体シートを有する制振装置115(116)を取り付けた従来技術の5倍になり、振動エネルギー吸収能力も5倍となる。これにより前記建築物の骨組み1の振動は速やかに減衰し、前記粘弾性ブレース2は優れた制振効果を発揮することができる。
【0015】
【第2参考形態】
粘弾性ブレースの第2参考形態を図3を、参照しつつ説明する。
第2参考形態における粘弾性ブレース2は、図3(イ)、(ロ)に示すようにH形断面をした第1心材3の側面に、前記第1心材3を包囲して対向配置した第1粘弾性体シート9、第1溝形鋼6、第2粘弾性体シート10、第2溝形鋼7、第3粘弾性体シート11及び第3溝形鋼8を交互に積層粘着し、前記第1溝形鋼6の端部を第1溝形鋼固定材13を介在させ、さらに前記第3溝形鋼8の端部を第3溝形鋼固定材14を介在させてH形断面をした前記第2心材4に固着し、前記第2溝形鋼7の端部を第2溝形鋼固定材12を介在させてH形断面をした前記第1心材3に固着し、前記第1心材3と前記第2心材4は前記第1粘弾性体シート9、前記第1溝形鋼6、前記第2粘弾性体シート10、前記第2溝形鋼7、前記第3粘弾性体シート11及び前記第3溝形鋼8により連結し、対向配置した前記第3溝形鋼8の側面に蓋17を固着した点が、図2に示す第1参考形態の粘弾性ブレース2とは異なっている。
【0016】
つまり、図2の粘弾性ブレース2は、第1粘弾性体シート9と第1溝形鋼6の組が1層構造であるのに対して、図3の粘弾性ブレース2は、前記第1粘弾性体シート9と前記第1溝形鋼6、前記第2粘弾性体シート10と前記第2溝形鋼7及び前記第3粘弾性体シート11と前記第3溝形鋼8の組の3層構造としている。
こうした構造は勿論3層だけでなく、粘弾性体シートと溝形鋼を組み合わせてさらに層を増やして設けるようにしてもよい。
また、前記第1心材3及び前記第2心材4の断面形状は、図3(ハ)、(ニ)に示すように角形鋼管、円形鋼管としてもよく、円形鋼管の場合には前記第1溝形鋼6、前記第2溝形鋼7及び前記第3溝形鋼8に代わり第1半円形鋼板27、第2半円形鋼板28及び第3半円形鋼板29を用いる。
【0017】
このとき、図12(イ)、(ロ)及び(ハ)に示すように前記第1溝形鋼6、前記第1半円形鋼板27及び第1平鋼31の厚さtと幅Bをそれぞれ同じにしたとき、前記第1溝形鋼6と前記第1半円形鋼板27の中立軸X1−X1まわりの断面2次モーメントI1,I2が、前記第1平鋼31の断面2次モーメントI3のおよそ150倍〜160倍となるため、前記第1溝形鋼6及び前記第1半円形鋼板27の断面2次半径i1,i2が前記第1平鋼31の断面2次半径i3に対して9倍〜10倍となり、圧縮軸方向力が作用したときに座屈が生じない。
【0018】
同様に前記第2溝形鋼7、前記第3溝形鋼8、前記第2円形鋼板28及び前記第3円形鏑板29の断面2次半径が、第2平鋼32及び第3平鋼33より大きく圧縮力に対して座屈が生じない。
また、積層構造全体が最外層鋼板8又は29と蓋17により拘束されているため、粘弾性体シートと溝形鋼の剥離が生じず、安定して応力を伝達することができる。
第2参考形態では、前記第1心材3の側面に粘着させた粘弾性体シートが3層に積層粘着されており、単層で積層粘着した第1実施形態と比べると、同じ各粘弾性体シートの厚さと体積に対し振動エネルギー吸収能力も3倍となる。これにより建築物の骨組み1に入力された振動エネルギーは、粘弾性体シートのせん断変形により吸収させることができる大容量の粘弾性ブレース2を形成することができ、減衰効果を第1実施形態よりさらに効果的に得ることができる。
【0019】
【第3実施形態】
本発明による粘弾性ブレースの実施形態を、図4、図5を参照しつつ説明する。
実施形態における粘弾性ブレース2は図4(イ)、(ロ)、図5(イ)に示すように、H形断面をした第1心材3のウェブ側面に、前記第1心材3のウェブを挟んで対向配置した第1内部粘弾性体シート21、第1内部溝形鋼19、第2内部粘弾性体シート22、第2内部溝形鋼20を交互に積層粘着し、前記第1内部溝形鋼19の端部をH形断面をした第2心材4に第1内部溝形鋼固定材23を介在させて固着し、旦つ前記第2内部溝形鋼20の端部をH形断面をした前記第1心材3に第2内部溝形鋼固定材24を介在させて固着し、前記第1心材3と前記第2心材4は第1粘弾性体シート9、第1溝形鋼6、第2粘弾性体シート10、第2溝形鋼7、第3粘弾性体シート11及び第3溝形鋼8さらに前記第1内部粘弾性体シート21、前記第1内部溝形鋼19、前記第2内部粘弾性体シート22及び前記第2内部溝形鋼20により連結した点が図3(イ)、(ロ)に示す第2参考形態の粘弾性ブレース2とは異なっている。
【0020】
つまり、図4、図5(イ)に示す実施形態における粘弾性ブレース2は、図3(イ)、(ロ)に示す第2参考形態における粘弾性ブレース2の前記第1心材3のウェブ両側面に粘弾性体シートと溝形鋼の積層構造を付加したものである。
【0021】
なお、本発明においては、変形例として図5(ロ)に示すように、対向配置した一組または複数組の溝形鋼または半円形鋼板と粘弾性体シートの組のうち、少なくとも一組は片側のみ配置される粘弾性ブレース2の構造としてもよい。
こうした積層構造は勿論、粘弾性体シートと溝形鋼を組み合わせてさらに層を増やして設けるようにしてもよい。
【0022】
実施形態では、第2参考形態と比べると前記第1心材3のウェブ側面に積層粘着させた粘弾性体シートが4層分付加されており、この付加した4層の粘弾性体シートのせん断断面積に応じて振動エネルギー吸収能力が増加する。
【0023】
さらに、本発明による粘弾性ブレース2は、その変形として図6に示したように、H形鋼、I形鋼、H形組み立て材、またはI形組み立て材からなる第1心材3及び第2心材4は伸縮用間隙を介して直列に配列され、前記第1心材3のウェブ側面には、対向配置した一組の溝形鋼と粘弾性体シートをそれぞれ単層で積層粘着し、前記溝形鋼の端部を前記第2心材4に固着し、前記第1心材3と前記第2心材4は前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結した粘弾性ブレース2の構成としてもよく、また、この粘弾性ブレース2の溝形鋼と粘弾性体シートの単層の構成に代えて、ウェブ側面に対向配置した溝形鋼と粘弾性シートは複数組からなり、それぞれ交互に積層粘着され、前記溝形鋼の端部は交互に前記第2心材4または前記第1心材3端部近傍に固着されている粘弾性ブレース2の構成としてもよく、前述したような、図2(ロ)に示す第1参考形態における粘弾性ブレース2や、図3(ロ)に示す第2参考形態における粘弾性ブレース2等と比較して、より簡便な構造とした粘弾性ブレース2でも十分使用に耐え得る。
このように、H形断面をした前記第1心材3のウェブ両側面に粘弾性体シートと溝形鋼を積層粘着させることによってもさらに大容量の粘弾性ブレース2を形成することができる。
【0024】
これにより、建築物の骨組み1に入力された振動エネルギーを粘弾性体シートのせん断変形により第2実施形態よりさらに吸収することができ、高い減衰効果を得ることができる。本発明により建築物の骨組み1の振動は速やかに減衰し、前記粘弾性ブレース2は優れた制振効果を発揮することができる。
【0025】
【発明の効果】
以上説明したように本発明によると、粘弾性体シートを積層する溝形鋼は全て断面2次半径の大きなものとなっているため、圧縮時にも座屈を生じず、安定した応力伝達が成され、また、対向配置した最も外側の前記溝形鋼の側面に蓋を固着して互いに連結することにより積層構造全体が囲い込まれて拘束され、前記溝形鋼と前記粘弾性体シートは剥離を生じない。さらに、前記溝形鋼を分離して対向配置しているため、前記粘弾性体シートと前記溝形鋼を積層に圧着して製造することが可能となり、粘弾性体を流し込む必要がなくなり(流し込むことができない粘弾性体にたいしても有効に製造を行うことができ)、これにより、高層建築物のように建物の幅に比べて高さの高い構造物において、地震や風による水平方向の変形及びせん断力を軽減させ、速やかに振動を減衰させることができる。
また、特に本発明では、H形断面をした前記第1心材のウェブ両側面に粘弾性体シートと溝形鋼を積層粘着させることによっても粘弾性ブレースを形成することができる。
【図面の簡単な説明】
【図1】 本発明における粘弾性ブレースの適用例を示す図で、(イ)は一つの例、(ロ)は別の例、(ハ)はもう一つ別の例である。
【図2】 本発明における粘弾性ブレースの第1参考形態を示す図で、(イ)は縦断面図、(ロ)は同図(イ)のA−A断面図(第1心材3及び第2心材4がH形鋼)の一例、(ハ)は同じくA−A断面図(第1心材3及び第2心材4が角形鋼管)の別の例、(ニ)は同じくA−A断面図(第1心材3及び第2心材4が円形鋼管)のもう一つ別の例である。
【図3】 本発明における粘弾性ブレースの第2参考形態を示す図で、(イ)は縦断面図、(ロ)は同図(イ)のB−B断面図(第1心材3及び第2心材4がH形鋼)の一例、(ハ)は同じくB−B断面図(第1心材3及び第2心材4が角形鋼管)の別の例、(ニ)は同じくB−B断面図(第1心材3及び第2心材4が円形鋼管)のもう一つ別の例である。
【図4】 本発明における粘弾性ブレースの実施形態を示す図で、(イ)は縦断面図、(ロ)は同図(イ)のD−D断面図(第1心材3及び第2心材4がH形鋼)の例である。
【図5】 図(イ)は、図4(イ)のC−C断面図、図(ロ)は実施形態の第1変形例の断面図である。
【図6】 実施形態の第2変形例の断面図である。
【図7】 従来の技術例を示す図で、(イ)は装置取り付け概念図、(ロ)は制振装置の概念図及び断面図である。
【図8】 従来の技術の他例を示す図で、(イ)は装置取り付け概念図、(ロ)及び(ハ)は建造物の振動抑制装置の異なる2例の断面図である。
【図9】 従来の技術のさらに他例を示す図で、(イ)は装置取り付け概念図、(ロ)は粘弾性ダンパーの断面図である。
【図10】 従来の技術のさらに他例を示す図で、(イ)は装置取り付け概念図、(ロ)は制震装置の断面図である。
【図11】 第1参考形態における断面2次半径の大きさの比較を示す図で、(イ)は溝形鋼、(ロ)は半円形鋼板、(ハ)は平鋼の断面2次半径を示す図である。
【図12】 第2参考形態における断面2次半径の大きさの比較を示す図で、(イ)は溝形鋼、(ロ)は半円形鋼板、(ハ)は平鋼の断面2次半径を示す図である。
【符号の説明】
1 建築物の骨組
2 粘弾性ブレース
3 第1心材
4 第2心材
6 第1溝形鋼
7 第2溝形鋼
8 第3溝形鋼
9 第1粘弾性体シート
10 第2粘弾性体シート
11 第3粘弾性体シート
12 第2溝形鋼固定材
13 第1溝形鋼固定材
14 第3溝形鋼固定材
15 第1心材連結用穴
16 第2心材連結用穴
17 蓋
19 第1内部溝形鋼
20 第2内部溝形鋼
21 第1内部粘弾性体シート
22 第2内部粘弾性体シート
23 第1内部溝形鋼固定材
24 第2内部溝形鋼固定材
27 第1半円形鋼板
28 第2半円形鋼板
29 第3半円形鋼板
30 伸縮用間隙
31 第1平鋼
32 第2平鋼
33 第3平鋼
101 ブレース
102 制振装置
103 鋼板
104 粘弾性体
111 鋼製外側筋かい材
112 鋼製内側筋かい材
113 粘弾性材層
114 セメント系硬化材
115 建造物の振動抑制装置
116 建造物の振動抑制装置
117 建物
118 柱
119 梁
120 粘弾性体ダンパー
121 筋違い
122 外筒
124 内筒
125 エラストマー
126 梁
127 下階床
128 ガセットプレート
129 ガセットプレート
130 内筒
131 外筒
132 プレート
133 粘弾性体
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a viscoelastic brace that gives a damping effect to external forces such as seismic force and wind in buildings and other structures.
[0002]
[Prior art]
  As a conventional technique, as shown in FIG. 7, a vibration damping device 102 in which a steel plate 103 and a viscoelastic body 104 are fixed to the end of a brace 101 in a laminated manner (Abstracts of Architectural Institute of Japan Conference, Kyushu, 1989). P629-P630) in October, and as shown in FIG. 8, a viscoelastic material layer 113 was interposed between the inner peripheral surface of the steel outer brace material 111 and the outer peripheral surface of the steel inner brace member 112. The cement-based hardened material 114 is fixed in the pipe body which is the vibration suppressing device 115 of the building or the steel outer brace material 111, and the inner peripheral surface of the cement-type hardened material 114 and the outer periphery of the steel inner brace material 112. There is a vibration suppressing device 116 (Japanese Patent No. 2583801) for a building in which a viscoelastic material layer 113 is interposed between the surface and the surface.
[0003]
  Further, JP-A-9-133169 and JP-A-1-187271 are known. The configuration of Japanese Patent Application Laid-Open No. 9-133169 is shown in FIG. 9, and the viscoelastic damper 120 used for the pillar 118 and the beam 119 of the building 117 is composed of an outer cylinder 122 fixed to one streak 121 and the other. An inner cylinder 124 fixed to the streak 121 is fitted, and an elastomer 125 is interposed between the inner cylinder 124 and the outer cylinder 122 and bonded together.
[0004]
    The configuration of Japanese Patent Laid-Open No. 1-187271 is shown in FIG. 10, and an inner pipe 130 and an outer pipe 131 are provided on the gusset plates 128 and 129 protruding from the upper floor beam 126 and the lower floor 127 in the building. Brackets provided at the respective end portions are joined, and the inner tube 130 and the outer tube 131 are bonded by sandwiching the viscoelastic body 133 via the blade-like plate 132 to constitute a vibration control device.
[0005]
[Problems to be solved by the invention]
  In a structure having a height that is higher than the width of the building, such as a high-rise building, vibration due to seismic force, wind, or the like may greatly affect the structure. In response to this vibration, a viscoelastic material layer is provided between the inner peripheral surface of the steel outer brace and the inner peripheral surface of the steel outer brace, and a conventional brace end attached to the brace end. In the interposed vibration suppression device, the portion that absorbs vibration energy is limited to the end of the brace or only one viscoelastic material layer can be inserted, so the total area of the viscoelastic body that can be interposed However, it was difficult to increase the energy absorption capacity of the brace. 7 and 8 can be extended to the entire length of the brace to increase the total area of the viscoelastic body, the flat steel plates stacked between the viscoelastic bodies can be buckled by compressive force. There are some problems such as that the outermost viscoelastic material layer and the flat steel plate are peeled outside.
[0006]
  Further, in the prior art of FIG. 9, (1) the viscoelastic body is fixed between the outer cylinder and the inner cylinder. In order to realize this structure, a liquid viscoelastic body is used. It has to be poured and fixed between them, and a solid material such as a viscoelastic sheet cannot be fixed. (2) There is a problem that only one layer of the viscoelastic body can be formed, and the vibrational energy absorption ability cannot be improved by forming multiple layers.
[0007]
  Furthermore, in the prior art of FIG. 10, (1) a viscoelastic body is fixed to the surface of the inner tube, and this is sandwiched and fixed by the outer tube. Energy absorption capacity cannot be improved. (2) Although the separated outer tube and inner tube sandwich the viscoelastic body, the separated outer tubes are in contact with each other and the outer tube, the inner tube, and the viscoelastic body cannot be adhered. In order to sufficiently crimp the outer tube, the separated outer tubes must be arranged at regular intervals. Therefore, according to the prior art, there is a problem that it is impossible to make it adhere and adhere sufficiently.
[0008]
[Means for Solving the Problems]
  The present invention has been made to solve the above-described problems, and is configured as follows.
  According to the first aspect of the present invention, the first core material and the second core material made of any one of the H-shaped steel, the I-shaped steel, the H-shaped assembly material, or the I-shaped assembly material are arranged in series via an expansion / contraction gap, Of the first coreFlangeA pair of channel steel and a viscoelastic sheet that are disposed opposite to each other so as to surround the first core material on the side surfaces.AlternatelyLaminate adhesion and grooved steelLongitudinalAn end is fixed to the second core material, the first core material and the second core material are viscoelastically connected to each other through the grooved steel and the viscoelastic body sheet, and on the web side surface of the first core material , One pair of channel steel and viscoelastic sheet facing each otherAlternatelyOf laminated steel that is laminated and adhered to the side of the webLongitudinalAn end is fixed to the second core material to constitute a viscoelastic brace.
According to a second aspect of the present invention, the first core material and the second core material made of any one of H-shaped steel, I-shaped steel, H-shaped assembly material, or I-shaped assembly material are arranged in series via an expansion / contraction gap, A plurality of sets of groove steels and viscoelastic sheets, which surround and face the first core material, are alternately laminated and adhered to the flange side surface of the first core material, and the end portions in the longitudinal direction of the groove steel are alternately provided. The first core material and the second core material are viscoelastically connected to each other through the grooved steel and the viscoelastic body sheet, A pair of groove steels and viscoelastic body sheets arranged opposite to each other are laminated and adhered alternately to the web side surface of one core material, and the longitudinal ends of the groove steels arranged opposite to the web side surfaces are the second. The first core material and the second core material are fixed to a core material, and the channel steel disposed on the side surface of the web Serial constituting the viscoelastic brace with viscoelastic coupled via the viscoelastic sheet.
According to a third aspect of the present invention, the first core material and the second core material made of any one of H-shaped steel, I-shaped steel, H-shaped assembly material, or I-shaped assembly material are arranged in series via an expansion / contraction gap, A pair of groove steels and viscoelastic sheets surrounding and surrounding the first core material are alternately laminated and adhered to the flange side surface of the first core material, and the longitudinal ends of the channel steel are Adhering to the second core material, the first core material and the second core material are viscoelastically connected to each other through the grooved steel and the viscoelastic body sheet, and are arranged opposite to the web side surface of the first core material. A plurality of sets of grooved steel and viscoelastic sheet are alternately laminated and adhered, and the end of the longitudinal direction of the grooved steel arranged opposite to the side surface of the web is alternately arranged in the vicinity of the end of the second core or the first core The first core material and the second core material are fixed to the grooved steel disposed on the side surface of the web. Serial constituting the viscoelastic brace with viscoelastic coupled via the viscoelastic sheet.
According to a fourth aspect of the present invention, the first core material and the second core material made of any one of H-shaped steel, I-shaped steel, H-shaped assembly material, or I-shaped assembly material are arranged in series via an expansion / contraction gap, A plurality of sets of groove steels and viscoelastic sheets, which surround and face the first core material, are alternately laminated and adhered to the flange side surface of the first core material, and the end portions in the longitudinal direction of the groove steel are alternately provided. The first core material and the second core material are fixed to the grooved steel and the viscoelasticity. A plurality of sets of grooved steel and viscoelastic sheet are alternately laminated and adhered to the web side surface of the first core material, and arranged opposite to the web side surface. The end portions of the grooved steel in the longitudinal direction are alternately fixed to the second core material or the vicinity of the end of the first core material, and the first core material and the second core material are disposed on the side surface of the web. And the viscoelastic sheet to form a viscoelastic brace.
  The invention of claim 5One of the outermostChannel steelAnd the other outermost opposite sideChannel steelSecure the lid that connects the sides of each otherClaims 1-4The viscoelastic brace described in any of the above is configured.
  The invention of claim 6OpposedThe channel steelofSide facingThe end portions are installed at a predetermined interval from each other to constitute the viscoelastic brace according to any one of claims 1 to 5.
  According to a seventh aspect of the present invention, a first core material and a second core material made of an H-shaped steel, an I-shaped steel, an H-shaped assembly material, or an I-shaped assembly material are arranged in series via an expansion / contraction gap, and the first core material A pair of channel steel and viscoelastic sheet facing each other is placed on the web sideAlternatelyLaminate adhesion and the grooved steelLongitudinalAn end portion is fixed to the second core material, and the first core material and the second core material constitute a viscoelastic brace that is viscoelastically connected to the grooved steel via the viscoelastic sheet.
According to an eighth aspect of the present invention, the first core material and the second core material made of H-shaped steel, I-shaped steel, H-shaped assembly material, or I-shaped assembly material are arranged in series via an expansion / contraction gap, and the first core material A plurality of sets of grooved steel and viscoelastic sheet that are arranged opposite to each other are laminated and adhered alternately to the web side surface of the web, and the ends of the grooved steel in the longitudinal direction are alternately placed on the second core material or the first core. The first core material and the second core material are fixed in the vicinity of the end of the material, and constitute a viscoelastic brace that is viscoelastically connected to the channel steel via the viscoelastic sheet.
  The invention of claim 9The one or a plurality of sets arranged opposite to each otherChannel steelThe viscoelastic brace according to any one of claims 1 to 8, wherein at least one of the pair of the viscoelastic sheet and the viscoelastic body sheet is arranged on only one side.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The shape steel includes not only ordinary H-shaped steel, I-shaped steel, C (groove) shaped steel, but also assembled H-shaped steel, assembled I-shaped steel, and assembled grooved steel.
  Invention or reference formThe grooved steel or semi-circular steel plate and the viscoelastic sheet, which are disposed opposite to each other so as to surround the first core material, are laminated and adhered to the side surface of the first core material alternately in a single layer or multiple layers, and the grooved steel or The end portions of the semicircular steel plate are alternately fixed to the end portions of the first core material and the second core material, and the grooved steel or the semicircular steel plate is interposed between the first core material and the second core material with a gap for expansion and contraction. When the vibration energy is input to the viscoelastic brace, the vibration energy is absorbed and attenuated by the shear deformation of the viscoelastic sheet.
[0010]
  At this time, since the grooved steel or the semicircular steel plate on which the viscoelastic sheet is laminated has a large cross-sectional secondary radius, it does not buckle even during compression and stable stress transmission is achieved. Further, the entire laminated structure is enclosed and restrained by fixing a lid to the side surface of the outermost grooved steel or the semicircular steel plate opposed to each other and connecting them together, and the grooved steel or the semicircular steel plate And the viscoelastic sheet does not peel.
  Thereby, the horizontal deformation | transformation and shearing force of a structure with a horizontal vibration like a high-rise building can be reduced, and a vibration can be damped rapidly.
[0011]
  The present inventionOr reference formThe viscoelastic brace of this type is based on such a configuration, and in the case of the conventional technology, the problem that the vibration damping device component could buckle under compressive force was solved, and the most By fixing the lid to the side of the outer channel steel or semi-circular steel plate and connecting them together, the problem of peeling of the viscoelastic sheet and the steel plate is solved, and viscoelasticity of a vast number of cross sections has been dramatically improved It is a novel invention in that a viscoelastic brace with high performance is made possible by interposing a body sheet.
[0012]
[First reference form]
  The first reference form of viscoelastic braceThis will be described with reference to FIGS.
  FIGS. 1A, 1B and 1C show examples in which the viscoelastic brace of the present invention is applied to a brace of a high-rise building, for example.
  First reference formThe viscoelastic brace 2 is a first viscoelastic body in which the first core material 3 is surrounded and opposed to the side surface of the first core material 3 having the H-shaped cross section of FIGS. 1, 2A and 2B. The sheet 9 and the first channel steel 6 are alternately laminated and adhered, and the end of the first channel steel 6 is fixed to the second core material 4 having an H-shaped cross section with the first channel steel fixing material 13 interposed therebetween. The first core material 3 and the second core material 4 are provided with a first core material connection hole 15 and a second core material connection hole 16 for fixing to the framework 1 of the building shown in FIG. A lid 17 is fixed on the side surface of the first channel steel 6, and the first core material 3 and the second core material 4 have the first viscoelastic sheet 9 and the second core material 4 interposed with an expansion / contraction gap 30 interposed therebetween. These are connected by a single groove steel 6.
  Moreover, the cross-sectional shape of the first core material 3 and the second core material 4 may be a square steel pipe or a circular steel pipe as shown in FIGS. 2 (c) and 2 (d). A first semicircular steel plate 27 is used in place of the channel steel 6.
[0013]
  The expansion / contraction gap 30 is interposed between the first core material 3 and the second core material 4, so that the first core material 3 and the second core material against vibration energy input to the viscoelastic brace 2. 4 and the first channel steel 6 are not deformed, and only the first viscoelastic sheet 9 can be sheared.
  Further, as shown in FIGS. 11 (a), (b) and (c), the thickness t and the width B of the first grooved steel 6, the first semicircular steel plate 27 and the first flat steel 31 are the same. Then, the sectional secondary moments I1 and I2 around the neutral axis XX of the first grooved steel 6 and the first semicircular steel plate 27 are approximately 150 times the sectional secondary moment I3 of the first flat bar 31. Since the cross sectional secondary radii i1 and i2 of the first grooved steel 6 and the first semicircular steel plate 27 are 9 to 10 times the secondary secondary radius i3 of the first flat steel 31. The buckling does not occur when the compression axial force is applied. Further, the first grooved steel 6, the first viscoelastic sheet 9, and the first core material 3 are constrained by fixing the side face of the first grooved steel 6 by arranging the lid 17 to face each other. Separation of each other can be prevented, and stress can be transmitted stably.
[0014]
  As shown in FIG. 1, the viscoelastic brace 2 is fixed to a building framework 1 with bolts or the like using the first core material connection holes 15 and the second core material connection holes 16. The vibrational energy input to the framework 1 of the above acts so as to be absorbed by the shear deformation of the first viscoelastic sheet 9.
  For example, if the adhesion length of the viscoelastic body sheet 9 adhered to the side surface of the first core material 3 is the full length of the core material excluding the connecting portion, the shear cross-sectional area of the viscoelastic body sheet 9 is, for example, FIG. The vibration damping device 115 (116) having a single layer of viscoelastic material sheet is attached to the end portion, and the vibration energy absorption capacity is also five times that of the prior art. Thereby, the vibration of the framework 1 of the building is quickly attenuated, and the viscoelastic brace 2 can exhibit an excellent vibration damping effect.
[0015]
[SecondreferenceForm]
  2nd viscoelastic bracereferenceThe form will be described with reference to FIG.
SecondreferenceThe viscoelastic brace 2 in the form is a first viscoelasticity in which the first core material 3 is surrounded and opposed to the side surface of the first core material 3 having an H-shaped cross section as shown in FIGS. The body sheet 9, the first grooved steel 6, the second viscoelastic sheet 10, the second grooved steel 7, the third viscoelastic sheet 11, and the third grooved steel 8 are alternately laminated and adhered, and the first The end portion of the channel steel 6 has the first channel steel fixing material 13 interposed, and the end of the third channel steel 8 has the H-shaped cross section with the third channel steel fixing material 14 interposed. The first core material 3 is fixed to the second core material 4, and the end of the second channel steel 7 is fixed to the first core material 3 having an H-shaped cross section with the second channel steel fixing material 12 interposed therebetween. And the second core material 4 includes the first viscoelastic sheet 9, the first grooved steel 6, the second viscoelastic sheet 10, the second grooved steel 7, the third viscoelastic sheet 11, and Connected by serial third Mizokatachiko 8, point fixing a lid 17 on a side surface of the third Mizokatachiko 8 facing arrangement, first shown in FIG. 2 1referenceIt differs from the viscoelastic brace 2 in the form.
[0016]
  That is, the viscoelastic brace 2 in FIG. 2 has a one-layer structure of the first viscoelastic body sheet 9 and the first grooved steel 6, whereas the viscoelastic brace 2 in FIG. A set of a viscoelastic sheet 9 and the first grooved steel 6, the second viscoelastic sheet 10 and the second grooved steel 7, and the third viscoelastic sheet 11 and the third grooved steel 8. It has a three-layer structure.
  Of course, such a structure is not limited to three layers, and a viscoelastic sheet and channel steel may be combined to further increase the number of layers.
  Moreover, the cross-sectional shape of the said 1st core material 3 and the said 2nd core material 4 is good also as a square steel pipe and a round steel pipe, as shown to FIG. 3 (c), (d), and in the case of a round steel pipe, it is said 1st groove | channel. A first semicircular steel plate 27, a second semicircular steel plate 28, and a third semicircular steel plate 29 are used instead of the structural steel 6, the second groove steel 7, and the third groove steel 8.
[0017]
  At this time, as shown in FIGS. 12A, 12B, and 12C, the thickness t and the width B of the first grooved steel 6, the first semicircular steel plate 27, and the first flat steel 31 are respectively set. When the same, the sectional secondary moments I1 and I2 around the neutral axis X1-X1 of the first grooved steel 6 and the first semicircular steel plate 27 are equal to the sectional secondary moment I3 of the first flat steel 31. Since the cross section secondary radii i1 and i2 of the first grooved steel 6 and the first semicircular steel plate 27 are about 150 times to 160 times, the secondary secondary radii i3 of the first flat steel 31 is 9 times. When the compression axial force is applied, buckling does not occur.
[0018]
  Similarly, the secondary secondary radii 32, the third grooved steel 8, the second circular steel plate 28, and the third circular steel plate 29 have secondary secondary radii 32 and third flat steel 33. Larger and no buckling occurs against compressive force.
  Further, since the entire laminated structure is restrained by the outermost steel plate 8 or 29 and the lid 17, the viscoelastic sheet and the groove steel are not peeled off, and the stress can be transmitted stably.
  SecondreferenceIn the embodiment, the viscoelastic body sheet adhered to the side surface of the first core material 3 is laminated and adhered to three layers, and the thickness of each viscoelastic body sheet is the same as that of the first embodiment in which a single layer is laminated and adhered. The vibration energy absorption capacity is also tripled with respect to the volume. Thereby, the vibration energy input to the building framework 1 can form a large-capacity viscoelastic brace 2 that can be absorbed by the shear deformation of the viscoelastic sheet, and the damping effect can be obtained from the first embodiment. It can be obtained more effectively.
[0019]
[Third Embodiment]
  Of the viscoelastic brace according to the inventionEmbodimentWill be described with reference to FIGS. 4 and 5. FIG.
  EmbodimentAs shown in FIGS. 4A, 4B, and 5A, the viscoelastic brace 2 in FIG. 4 sandwiches the web of the first core material 3 on the side surface of the first core material 3 having an H-shaped cross section. The first internal viscoelastic steel sheet 21, the first internal channel steel 19, the second internal viscoelastic material sheet 22, and the second internal channel steel 20 that are arranged to face each other are alternately laminated and adhered, and the first internal channel steel An end portion of 19 is fixed to a second core material 4 having an H-shaped cross section with a first internal groove steel fixing member 23 interposed, and an end portion of the second internal groove-shaped steel 20 is made an H-shaped cross section. The first core material 3 is fixed to the first core material 3 with a second internal channel steel fixing material 24 interposed therebetween. The first core material 3 and the second core material 4 are composed of a first viscoelastic sheet 9, a first channel steel 6, 2 viscoelastic body sheet 10, second grooved steel 7, third viscoelastic body sheet 11 and third grooved steel 8, further, first internal viscoelastic body sheet 21, first inner Mizokatachiko 19, the second inner viscoelastic sheet 22 and the point linked by the second inner interposition steel 20 in FIG. 3 (b), the second as shown in (b)referenceUnlike the viscoelastic brace 2 in the formYes.
[0020]
  That is, as shown in FIG. 4 and FIG.ImplementationThe viscoelastic brace 2 in the form is the second shown in FIGS.referenceA laminated structure of a viscoelastic sheet and channel steel is added to both sides of the web of the first core material 3 of the viscoelastic brace 2 in the form.
[0021]
  In addition, in this invention, as shown in FIG.5 (b) as a modification, at least 1 set is among the set of one set or several sets of grooved steel or semicircular steel plate and viscoelastic sheet | seat which were opposingly arranged. It is good also as a structure of the viscoelastic brace 2 arrange | positioned only at one side.
  Of course, such a laminated structure may be provided by further adding layers by combining a viscoelastic sheet and channel steel.
[0022]
  EmbodimentThen, the secondreferenceCompared with the form, four layers of viscoelastic sheets laminated and adhered to the web side surface of the first core material 3 are added, and vibration energy absorption is performed according to the shear cross-sectional area of the added four-layer viscoelastic sheets. Ability increases.
[0023]
  Further, as shown in FIG. 6, the viscoelastic brace 2 according to the present invention has a first core material 3 and a second core material made of H-shaped steel, I-shaped steel, H-shaped assembled material, or I-shaped assembled material. 4 are arranged in series via a gap for expansion and contraction, and a pair of grooved steel and a viscoelastic sheet arranged opposite to each other are laminated and adhered to the side surface of the web of the first core material 3, respectively. An end portion of steel is fixed to the second core material 4, and the first core material 3 and the second core material 4 are viscoelastically connected to the grooved steel via the viscoelastic sheet. In addition, instead of the single-layer configuration of the grooved steel and the viscoelastic sheet of the viscoelastic brace 2, the grooved steel and the viscoelastic sheet arranged opposite to the side surface of the web are composed of a plurality of sets, each of which is alternately The end of the channel steel is alternately laminated to the second core material 4 or the front It may be configured of a viscoelastic brace 2 which is fixed to the vicinity of the first core 3 end, as described above, first shown in FIG. 2 (b)referenceViscoelastic brace 2 in the form or second shown in FIG.referenceCompared with the viscoelastic brace 2 etc. in the form, the viscoelastic brace 2 having a simpler structure can sufficiently withstand use.
  As described above, the viscoelastic brace 2 having a larger capacity can be formed by laminating and adhering the viscoelastic sheet and the grooved steel to both sides of the web of the first core material 3 having an H-shaped cross section.
[0024]
  Thereby, the vibration energy input into the framework 1 of the building can be further absorbed by the shear deformation of the viscoelastic material sheet, and a high damping effect can be obtained. According to the present invention, the vibration of the building framework 1 is quickly attenuated, and the viscoelastic brace 2 can exhibit an excellent vibration damping effect.
[0025]
【The invention's effect】
  As described above, according to the present invention, the viscoelastic sheet is laminated.Channel steelAll have a large secondary radius of cross section, so that they do not buckle even during compression, provide stable stress transmission, and are arranged on the outermost side facing each other.Channel steelThe entire laminated structure is enclosed and restrained by fixing the lid to the side surfaces of the grooves and connecting them to each other.Shape steelAnd the viscoelastic sheet does not peel. In addition,Channel steelAre separated from each other so that the viscoelastic sheet and theChannel steelCan be manufactured by pressure bonding to the laminate, and there is no need to pour a viscoelastic body (the viscoelastic body that cannot be poured can also be produced effectively). In a structure that is taller than the width of the building, horizontal deformation and shearing force due to earthquakes and winds can be reduced, and vibrations can be quickly damped.
  In particular, in the present invention, a viscoelastic brace can also be formed by laminating and adhering a viscoelastic sheet and channel steel to both sides of the web of the first core material having an H-shaped cross section.
[Brief description of the drawings]
FIG. 1 is a diagram showing an application example of a viscoelastic brace according to the present invention, in which (A) is one example, (B) is another example, and (C) is another example.
FIG. 2 shows a first viscoelastic brace according to the present invention.referenceIt is a figure which shows a form, (A) is a longitudinal cross-sectional view, (B) is an example of the AA cross-section (the 1st core material 3 and the 2nd core material 4 are H-section steel) of the same figure (A), (C) Is another example of the AA cross section (the first core material 3 and the second core material 4 are square steel pipes), and (d) is the same AA cross section (the first core material 3 and the second core material 4 are circular steel pipes). This is another example.
FIG. 3 shows a second viscoelastic brace according to the present invention.referenceIt is a figure which shows a form, (a) is a longitudinal cross-sectional view, (b) is an example of the BB cross-sectional view of the same figure (a) (the 1st core material 3 and the 2nd core material 4 are H-section steel), (c) Is another example of the BB sectional view (the first core material 3 and the second core material 4 are square steel pipes), and (d) is the same BB sectional view (the first core material 3 and the second core material 4 are circular steel pipes). This is another example.
FIG. 4 shows a viscoelastic brace according to the present invention.Embodiment(A) is a longitudinal cross-sectional view, (B) is an example of a DD cross-sectional view (the first core material 3 and the second core material 4 are H-section steel) in FIG.
FIG. 5 (a) is a cross-sectional view taken along the line CC of FIG. 4 (b), and FIG.EmbodimentIt is sectional drawing of the 1st modification of this.
[Fig. 6]EmbodimentIt is sectional drawing of this 2nd modification.
7A and 7B are diagrams showing a conventional technical example, in which FIG. 7A is a conceptual diagram of device installation, and FIG.
FIGS. 8A and 8B are diagrams showing another example of the prior art, in which FIG. 8A is a conceptual view of device attachment, and FIGS. 8B and 8C are cross-sectional views of two different examples of building vibration suppression devices.
FIGS. 9A and 9B are diagrams showing still another example of the prior art, in which FIG. 9A is a conceptual view of device attachment, and FIG. 9B is a cross-sectional view of a viscoelastic damper.
10A and 10B are diagrams showing still another example of the prior art, in which FIG. 10A is a conceptual view of device installation, and FIG.
FIG. 11referenceIt is a figure which shows the comparison of the magnitude | size of the cross-sectional secondary radius in a form, (A) is a channel steel, (B) is a semicircle steel plate, (C) is a figure which shows the cross-sectional secondary radius of a flat steel.
FIG. 12referenceIt is a figure which shows the comparison of the magnitude | size of the cross-sectional secondary radius in a form, (A) is a channel steel, (B) is a semicircle steel plate, (C) is a figure which shows the cross-sectional secondary radius of a flat steel.
[Explanation of symbols]
  Frame of 1 building
  2 Viscoelastic braces
  3 First core
  4 Second core material
  6 First channel steel
  7 Second channel steel
  8 Third channel steel
  9 First viscoelastic sheet
  10 Second viscoelastic sheet
  11 Third viscoelastic sheet
  12 Second channel steel fixing material
  13 First channel steel fixing material
  14 Third channel steel fixing material
  15 1st core material connection hole
  16 Second core connection hole
  17 Lid
  19 First internal channel steel
  20 Second internal channel steel
  21. First internal viscoelastic sheet
  22 Second internal viscoelastic sheet
  23 First internal channel steel fixing material
  24 Second internal channel steel fixture
  27 First semicircular steel plate
  28 Second semicircular steel plate
  29 3rd semi-circular steel plate
  30 Spacing gap
  31 1st flat bar
  32 2nd flat steel
  33 No. 3 flat steel
  101 brace
  102 Vibration control device
  103 steel plate
  104 Viscoelastic body
  111 steel outer brace
  112 Steel inner brace
  113 Viscoelastic material layer
  114 Cement hardener
  115 Building vibration control device
  116 Vibration suppressor for building
  117 building
  118 pillars
  119 beams
  120 Viscoelastic damper
  121 Streaks
  122 outer cylinder
  124 inner cylinder
  125 elastomer
  126 Beam
  127 Lower floor
  128 gusset plate
  129 Gusset plate
  130 Inner cylinder
  131 outer cylinder
  132 plates
  133 Viscoelastic body

Claims (9)

H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を前記第2心材に固着した粘弾性ブレース。The first core member and the second core member made of any one of H-shaped steel, I-shaped steel, H-shaped assembled material, or I-shaped assembled material are arranged in series via an expansion / contraction gap, and are formed on the flange side surface of the first core material. , One set of grooved steel and viscoelastic sheet that are disposed opposite to each other so as to surround the first core material are alternately laminated and adhered, and an end portion in the longitudinal direction of the grooved steel is fixed to the second core material, The first core material and the second core material are viscoelastically coupled to the channel steel through the viscoelastic body sheet, and a pair of channel steels arranged opposite to each other on the web side surface of the first core material; A viscoelastic brace in which viscoelastic sheets are alternately laminated and adhered, and end portions in the longitudinal direction of grooved steel arranged opposite to the web side surface are fixed to the second core material. H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を交互に前記第2心材または前記第1芯材端部近傍に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は、該ウエブ側面に配置した前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結した粘弾性ブレース。The first core member and the second core member made of any one of H-shaped steel, I-shaped steel, H-shaped assembled material, or I-shaped assembled material are arranged in series via an expansion / contraction gap, and are formed on the flange side surface of the first core material. A plurality of sets of groove steels and viscoelastic sheets that are disposed opposite to each other so as to surround the first core material are alternately laminated and adhered, and end portions in the longitudinal direction of the groove steel materials are alternately provided to the second core material or the The first core material and the second core material are viscoelastically connected to each other through the grooved steel and the viscoelastic body sheet, and fixed to the vicinity of the end portion of the first core material. A pair of groove steels and viscoelastic sheets that are arranged opposite to each other are laminated and adhered alternately, and the longitudinal ends of the groove steels arranged opposite to the side surfaces of the web are fixed to the second core material. 1 core material and the 2nd core material are the groove steel and the viscoelastic sheet arranged on the side surface of the web. Visco-elastic brace viscoelastic linked to. H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を交互に前記第2心材または前記第1心材端部近傍に固着し、前記第1心材と前記第2心材は、該ウエブ側面に配置した前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結した粘弾性ブレース。The first core member and the second core member made of any one of H-shaped steel, I-shaped steel, H-shaped assembled material, or I-shaped assembled material are arranged in series via an expansion / contraction gap, and are formed on the flange side surface of the first core material. , One set of grooved steel and viscoelastic sheet that are disposed opposite to each other so as to surround the first core material are alternately laminated and adhered, and an end portion in the longitudinal direction of the grooved steel is fixed to the second core material, The first core material and the second core material are viscoelastically connected to the channel steel through the viscoelastic sheet, and a plurality of sets of channel steels arranged opposite to each other on the web side surface of the first core material, The viscoelastic sheets are alternately laminated and adhered, and the end portions of the longitudinal direction of the grooved steel arranged opposite to the web side surface are alternately fixed to the second core material or the vicinity of the first core material end portion, and the first The core material and the second core material include the channel steel and the viscoelastic sheet disposed on the side surface of the web. Visco-elastic brace viscoelastic linked to. H形鋼、I形鋼、H形組み立て材、またはI形組み立て材のいずれかからなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のフランジ側面に、前記第1心材を包囲して対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を交互に前記第2心材または前記第1芯材端部近傍に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性体シートを介して粘弾性的に連結し、前記第1心材のウェブ側面には、対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、該ウェブ側面に対向配置した溝形鋼の長手方向の端部を交互に前記第2心材または前記第1心材端部近傍に固着し、前記第1心材と前記第2心材は、該ウエブ側面に配置した前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結した粘弾性ブレース。The first core member and the second core member made of any one of H-shaped steel, I-shaped steel, H-shaped assembled material, or I-shaped assembled material are arranged in series via an expansion / contraction gap, and are formed on the flange side surface of the first core material. A plurality of sets of groove steels and viscoelastic sheets that are disposed opposite to each other so as to surround the first core material are alternately laminated and adhered, and end portions in the longitudinal direction of the groove steel materials are alternately provided to the second core material or the The first core material and the second core material are viscoelastically connected to each other through the grooved steel and the viscoelastic body sheet, and fixed to the vicinity of the end portion of the first core material. A plurality of sets of groove steels and viscoelastic sheets that are arranged opposite to each other are laminated and adhered alternately, and ends in the longitudinal direction of the groove steels arranged opposite to the side surfaces of the web are alternately placed in the second core material or the first. The first core material and the second core material are fixed to the vicinity of the end of the core material, and are arranged on the side surface of the web. Viscoelastic brace viscoelastic connected via said the viscoelastic sheet and channel steel was. 対向配置した最も外側の一方の溝形鋼の側面と、対向配置した最も外側の他方の前記溝形鋼の側面を互いに連結する蓋を固着させた請求項1〜4のいずれかに記載の粘弾性ブレース。The viscosity according to any one of claims 1 to 4 , wherein a lid connecting the side surfaces of the outermost one of the groove steels arranged opposite to each other and the side surfaces of the other outermost groove steel arranged opposite to each other is fixed. Elastic brace. 対向配置した前記溝形鋼側面の対向端部は、互いに所定の間隔を設けて設置された請求項1〜5のいずれかに記載の粘弾性ブレース。The viscoelastic brace according to any one of claims 1 to 5, wherein opposing end portions of the side surfaces of the grooved steel that are arranged to face each other are installed at a predetermined interval. H形鋼、I形鋼、H形組み立て材、またはI形組み立て材からなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のウェブ側面には、対向配置した1組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部を前記第2心材に固着し、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結したことを特徴とする粘弾性ブレース。The 1st core material and 2nd core material which consist of H-shaped steel, I-shaped steel, H-shaped assembly material, or I-shaped assembly material are arrange | positioned in series through the expansion-contraction space | interval, and it opposes the web side surface of the said 1st core material. The set of grooved steel and viscoelastic sheet are alternately laminated and adhered, the end of the grooved steel in the longitudinal direction is fixed to the second core, and the first core and the second core are A viscoelastic brace that is viscoelastically connected to the channel steel through the viscoelastic sheet. H形鋼、I形鋼、H形組み立て材、またはI形組み立て材からなる第1心材及び第2心材は伸縮用間隙を介して直列に配置され、前記第1心材のウェブ側面には、対向配置した複数組の溝形鋼と粘弾性体シートをそれぞれ交互に積層粘着し、前記溝形鋼の長手方向の端部は交互に前記第2心材または前記第1芯材端部近傍に固着され、前記第1心材と前記第2心材は前記溝形鋼と前記粘弾性シートを介して粘弾性的に連結したことを特徴とする粘弾性ブレース。The 1st core material and 2nd core material which consist of H-shaped steel, I-shaped steel, H-shaped assembly material, or I-shaped assembly material are arrange | positioned in series through the expansion-contraction space | interval, and it opposes the web side surface of the said 1st core material. A plurality of sets of grooved steel and viscoelastic sheet are alternately laminated and adhered, and the ends in the longitudinal direction of the grooved steel are alternately fixed to the vicinity of the end of the second core material or the first core material. The viscoelastic brace is characterized in that the first core material and the second core material are viscoelastically connected to each other through the channel steel and the viscoelastic sheet. 対向配置した前記1組又は複数組の溝形鋼と粘弾性体シートの組のうち、少なくとも一組は片側のみの配置としたことを特徴とする請求項1〜8のいずれか1項に記載の粘弾性ブレース。9. The set of any one of claims 1 to 8 , wherein at least one set is arranged on only one side among the set of the one or a plurality of sets of channel steel and the viscoelastic body sheet facing each other. Viscoelastic brace.
JP02067599A 1998-01-28 1999-01-28 Viscoelastic brace Expired - Lifetime JP3686542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02067599A JP3686542B2 (en) 1998-01-28 1999-01-28 Viscoelastic brace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-29062 1998-01-28
JP2906298 1998-01-28
JP02067599A JP3686542B2 (en) 1998-01-28 1999-01-28 Viscoelastic brace

Publications (2)

Publication Number Publication Date
JPH11280294A JPH11280294A (en) 1999-10-12
JP3686542B2 true JP3686542B2 (en) 2005-08-24

Family

ID=26357643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02067599A Expired - Lifetime JP3686542B2 (en) 1998-01-28 1999-01-28 Viscoelastic brace

Country Status (1)

Country Link
JP (1) JP3686542B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942238B2 (en) * 2000-04-19 2012-05-30 株式会社ブリヂストン Rubber damper
JP4622207B2 (en) 2002-02-21 2011-02-02 オイレス工業株式会社 Vibration absorber and damping structure using the same
US7174680B2 (en) 2002-05-29 2007-02-13 Sme Steel Contractors, Inc. Bearing brace apparatus
US7305799B2 (en) 2002-05-29 2007-12-11 Sme Steel Contractors, Inc. Bearing brace apparatus
US7185462B1 (en) 2003-07-25 2007-03-06 Sme Steel Contractors, Inc. Double core brace
KR100908864B1 (en) 2008-10-31 2009-07-21 유암이엔씨(주) Steel damper using load transfer plate and slit steel plate
CN101942906A (en) * 2010-09-21 2011-01-12 同济大学 Buckling-restraining and strengthening system for circular steel tubes
CN101949171B (en) * 2010-10-13 2012-01-25 太原理工大学 Double buckling-restrained steel brace for continuous restraint on yield thin wall surface
CN101974950B (en) * 2010-11-19 2012-04-18 太原理工大学 Rod type core bar bending restrain steel support
KR101364787B1 (en) * 2012-04-27 2014-02-20 (주)티섹구조엔지니어링기술사사무소 Buckling-Restrained Braces
KR101364922B1 (en) * 2012-04-27 2014-02-20 (주)티섹구조엔지니어링기술사사무소 Buckling-Restrained Braces
KR101670548B1 (en) * 2014-10-29 2016-10-31 서울시립대학교 산학협력단 Buckling-Restrained Braces

Also Published As

Publication number Publication date
JPH11280294A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP3686542B2 (en) Viscoelastic brace
US8516753B2 (en) Fork configuration dampers and method of using same
US3834487A (en) Sandwich core panel with structural decoupling between the outer face sheets thereof
JP4034006B2 (en) Vibration energy absorbing device for tension structure and construction method thereof
JP2000213200A (en) Damping construction
WO1999039064A1 (en) Viscoelastic brace
CN214574910U (en) Built-in double-deck profiled sheet concrete composite shear wall
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
JP2016080051A (en) Base isolation support device
Hashemi et al. Behaviour of sandwich panel infilled steel frames with different interface conditions
JP3931944B2 (en) Damping damper and its installation structure
JP7015624B2 (en) Bearing wall
JP2520038B2 (en) Seismic isolation steel beam
JPH01187271A (en) Earthquake-resistant device
JP2008008364A (en) Structure for reinforcing multilayer flat metal plate
WO2000071840A1 (en) Vibration control member formed integrally with elasto-plastic and viscoelastic damper
JP2002221252A (en) Vibration-resistant damper
JP5292881B2 (en) Vibration control panel
JP2002081480A (en) Composite viscoelastic damper
JP2015117533A (en) Bearing wall of combinedly using face bar and brace
JPH09317240A (en) Elastic and plastic damper
CN210887716U (en) Adopt steel construction building floor structure of light floor
JP3106992U (en) Pure axial force bending prevention bundling brace
JPH1162313A (en) Lead bearing
JPH02137756A (en) Sound insulation composite floor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term