JP3685409B2 - Calibration method of absorbed power measuring device - Google Patents

Calibration method of absorbed power measuring device Download PDF

Info

Publication number
JP3685409B2
JP3685409B2 JP2003184591A JP2003184591A JP3685409B2 JP 3685409 B2 JP3685409 B2 JP 3685409B2 JP 2003184591 A JP2003184591 A JP 2003184591A JP 2003184591 A JP2003184591 A JP 2003184591A JP 3685409 B2 JP3685409 B2 JP 3685409B2
Authority
JP
Japan
Prior art keywords
measured
electric field
electromagnetic field
absorbed power
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003184591A
Other languages
Japanese (ja)
Other versions
JP2004029027A (en
Inventor
裕 鈴木
芳明 垂澤
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2003184591A priority Critical patent/JP3685409B2/en
Publication of JP2004029027A publication Critical patent/JP2004029027A/en
Application granted granted Critical
Publication of JP3685409B2 publication Critical patent/JP3685409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は人体の電磁気特性を模疑した固形誘電体よりなる測定対象内に電磁界プローブを配し、その電磁界プローブにより、測定対象に照射された電磁波のその測定対象に吸収された電力を測定する装置の校正方法に関する。
【0002】
【従来の技術】
図4に従来の吸収電力測定装置を示す。電磁波送信装置からそのアンテナ12に100W程度の電力を給電し、アンテナ12から放射される電磁波を、人体の電磁気特性を模疑した固形誘電体よりなる測定対象13に照射する。アンテナ12から放射される電磁波エネルギは大きく、アンテナ12と測定対象13とが比較的近接している状態で或る程度の時間に亘って電磁波を照射し続けると、電磁波エネルギを吸収した測定対象13の表面には温度分布が生じるに到る。この温度分布をサーモグラフカメラ14を使用して観測する。サーモグラフカメラ14により観測された温度分布に基づいて測定対象13に吸収され電力を換算測定する。
【0003】
【発明が解決しようとする課題】
上述した吸収電力測定装置を使用して測定対象13の吸収電力を測定するために、測定対象13に充分な温度分布を与えるには、一般に、アンテナ12に対して100W程度以上の高電力を給電しなければならない。給電電力を小さくすると、アンテナ12から放射される電磁波エネルギが少なくなり、サーモグラフカメラ14により観測できる程度の温度分布を測定対象13に付与することができなくなる。従って、電磁波送信装置11が低電力無線装置である場合、サーモグラフカメラ14を使用して吸収電力測定装置を構成することは困難となる。
【0004】
この発明は、測定対象に電磁界プローブを内挿して電磁界プローブにより測定される測定値に基づいて吸収電力を測定することにより上述の問題を解消した吸収電力測定装置の校正方法を提供するものである。
【0005】
【課題を解決するための手段】
この発明によれば、人体の電磁気特性を模疑した固形誘電体よりなる測定対象内に電磁界プローブが、その表面よりわずか内側、3cm程度好ましくは2cm程度より内側に配され、測定対象に照射された電磁波の電界強度が測定され、その測定値にもとづき、測定対象の吸収電力が測定される装置においては、電磁界プローブにより測定された値E(d)に校正係数f(d)を乗算して、その測定対象の実質的に表面位置であるその内側における電界強度Es を求める。校正係数f(d)は、測定対象の表面での吸収電力値をサーモグラフィにより測定し、これと対応する表面電界強度と、電磁界プローブの測定値E(d)とから求める。dは表面から電磁界プローブまでの距離、つまり埋込み深さであり、校正係数f(d)はdの関数である。
【0006】
このような校正方法が可能であるのは、次のことから云える。測定対象の表皮効果にもとづき、電界強度が表面の電界強度の1/eとなる距離をds とすると、
【数1】

Figure 0003685409
となる。ここでμr は測定対象の比透磁率、εr は比誘電率、σは導電率、cは光速、fは入射電磁波の周波数である。したがって、表面から距離ds だけ内側にプローブをずらして電界強度を測定した場合、その位置での電界強度をEi とすれば、表面での電界強度は、e×Ei となる。つまりプローブの表面からの距離をds とした時の測定電界強度Ei に校正係数eを乗算すれば表面電界強度Es が求まる。このことから、表面付近からプローブまでの距離が表皮効果により求められるds 程度のオーダーである場合、校正係数f(d)をEs /E(d)によって定義でき、表面付近での電界強度Es はEs =f(d)E(d)によって評価される。
【0007】
【発明の実施の形態】
図1にこの発明が対象とする吸収電力測定装置の例を示す。図4と対応する部分に同一符号を付けてある。この例では測定対象13の形状として人体頭部を模疑したものである。電磁界プローブ21が測定対象13の表面の近く、つまり表面からの距離dが3cm程度、好ましくは2cm程度以内に配される。またこの例では測定対象13の耳22のつけねの近くの表面に一端が位置して、貫通穴23が形成され、その貫通穴23の耳22の近くに電磁界プローブ21が配される。図示例では、貫通穴23は右耳の近くと鼻24左側との間に形成されている。
【0008】
電磁界プローブ21は調整用支持棒26の一端部に支持され調整用支持棒26の他端は貫通穴23から外部へ突出し、調整用支持棒26を挿脱して、電磁界プローブ21の表面からの距離dを調整できるようにされている。電磁界プローブ21で測定された電界強度は調整用支持棒26を通じるコード27により演算表示器28に接続される。電磁界プローブ21で測定された電界強度は吸収電力に換算されて表示される。
【0009】
測定対象13を構成する人体の電磁気特性を模疑した固形誘電体としては、セラミックスを主成分とするもの、シリコンゴムを主成分とするもの、軽量誘電材料を用いるものなどがある。更に具体的な例としては合成樹脂粉末、高誘電率セラミックス粉末、炭素粉末を焼成し固形にしたものより成り、これら粉末の混合割合は、合成樹脂粉末30〜90容量%、高誘電率セラミックス粉末微量〜60容量%、炭素粉末10〜70容量%の範囲とし、合成樹脂粉末はフッ素樹脂粉末、高誘電率セラミックス粉末はチタン酸バリウムセラミックス粉末、鉛複合ペロブスカイトセラミックス粉末、ビスマスセラミックス粉末の内から選択された何れかであり、この複合誘電体を構成する合成樹脂粉末、高誘電率セラミックス粉末、炭素粉末の混合割合をこの範囲内において調整することにより、種々の特定周波数の電磁波に対する人体の電磁気特性を適正に模疑することができる。
【0010】
電磁界プローブ21として、微小ダイポールと検波器とより成る等方性三軸プローブを使用する。或いは、電磁界プローブ21として、ディアゾルミノメラニン(Diazoluminomelanin:DALM)を使用する。即ち、DALMを密封する透明カプセルを構成し、この透明カプセルにコード27として光ファイバを接続する。DALMは無線伝送に使用される周波数帯域の電磁波が照射されると発光する性質を有し、DALMの発光強度は照射される電磁波の電界強度に応じて変化する。よってその発光強度を測定することにより吸収電力を測定することができる。
【0011】
無線送信装置11のアンテナ12から電波を放射し、その電波が測定対象13に照射され、その照射された電波の電界強度E(d)が電磁界プローブ21で測定され、その電界強度E(d)は演算表示器28へ供給され、校正係数f(d)が乗算され、表面電界強度Es 又は対応吸収電力が表示される。
電磁界プローブ21の表面からの距離dを、1/eだけ表皮効果により減衰する距離ds に選定しておけば、測定値E(d)に校正係数f(d)=eを乗算すればよい。つまりds を式(1)により演算して求めて電磁界プローブ21を位置させることができる。
【0012】
次に一般的な校正係数f(d)を求める例を示す。測定対象13の表面での吸収電力値をサーモグラフィにより測定する。この測定はアンテナ12と測定対象13との距離Dをかえて行い、その各測定値と対応する表面電界強度ai (iはDに対応する変数)を求める。
また電磁界プローブ21の表面からの距離dを変更し、例えば0.5cm、1.0cm、1.5cm、2.0cm、2.5cm、3.0cmとした場合の各アンテナ12と測定対象13間の各距離Di についてそれぞれ電磁界プローブ21で電界強度を測定する。その各測定値をそれぞれ、bi ,ci ,di ,ei ,fi ,gi とする時、各di に対する校正係数f(di )をそれぞれ次式で求める。
【0013】
f(0.5) =(Σai /bi )/N,f(1.0) =(Σai /ci )/N
f(1.5) =(Σai /di )/N,f(2.0) =(Σai /ei )/N
f(2.5) =(Σai /fi )/N,f(3.0) =(Σai /gi )/N
Σは何れもi=1からNまで、NはDを変更して測定した、Dの変更回数である。
【0014】
各Di に対する各ai ,bi ,ci ,di ,ei ,fi ,gi の各値の例を図2に示す。図2においてはai の測定はアンテナ出力を100Wとして行い、その測定結果を1Wのデータに換算し、プローブ21による測定はアンテナ出力を1Wとして行った。図2はN=6であり、例えばf(0.5) を求めるには、D=0.5の時の(×点の値(ai )/(○点の値(bi ))、D=1.0時の(×点の値)/(○点の値)、以下同様にD=1.5、D=2.0、D=2.5、D=3.0の各(×点の値)/(○点の値)をそれぞれ求め、これら割算結果の和をN=6で割算すればよい。
【0015】
この図2に示したように電磁界プローブ21を人体頭部モデル13の表面に固定した場合、携帯無線機11と人体頭部モデル13とが0.5cm程度以上3cm以下離れている場合にはサーモグラフィによって測定を行った結果と電磁界プローブ21によって測定を行った結果とが良く一致した。ところが、実際の携帯無線機の使用状態のように、人体頭部モデル13に携帯無線機11を密着させた状態で、電磁界プローブ21によって電界強度を測定し、吸収電力値を求めたところ、サーモグラフィによる吸収電力値よりも高い値が測定された。このとき、測定値が高くなったのは、携帯無線機11を密着させた状態では、頭部モデル13に吸収された電力値ではなく、アンテナ12から放射される電波を直接測定していることになってしまうためである。つまり、アンテナ12とプローブ21との距離が極端に近くなると結合が生じ、正確な電界強度を測定することができなくなる。
【0016】
周波数が900MHz 付近の場合、電磁界プローブ21の位置を0.5〜3cm内側に固定すれば、校正係数を測定値に掛けることで表面での吸収電力値を近似的に求められることが確認できている。つまり、図2に示す各線はほぼ直線であって3cm以内であれば、校正係数として線形比例係数として求めることができる。これより電磁界プローブ21の位置は表面から、校正係数が線形比例係数として求まる範囲内とする。ところで、電磁界プローブ21のダイナミック・レンジは下限が例えば2V/mであるので、出力の小さい携帯無線機11でも吸収電力値を正確に測れるようにする必要がある。このことから、900MHz 帯の場合、約1〜2cm内側に電磁界プローブ21を固定すればよい。
【0017】
以上のようにして校正係数f(d)を求め、表面電界強度を校正し、これにもとづき、測定対象13の吸収電力を求めることができる。表面電界強度が求まると、これを吸収電力に換算する手法は従来より知られており、その手法により行えばよい。このようにして測定した例を図3Aに示す。曲線31がアンテナ12と測定対象13間の距離Dに対する、この発明により校正した吸収電力(SAR)を示し、曲線32はサーモグラフィによる測定結果を示す。図3はd=2.5cmとし、測定周波数が900MHz の場合である。
【0018】
一方、この発明により校正を行うことなく、電磁界プローブ21の測定値をそのまま用いて吸収電力を求めると、図3Bの曲線33のようになった。この時のサーモグラフィによる求めた吸収電力は曲線34である。これよりアンテナ12と測定対象13が接近し、距離Dが1cm以内になると、アンテナ12と電磁界プローブ21とが直接結合して極端に高い値が生じ、吸収電力を正しく求めることができない。しかしこの発明による校正を行えば、図3Aに示したようにアンテナ12が測定対象13に接近し、D=1cm以下になって吸収電力を可成り正しく求めることができることが理解されよう。
【0019】
アンテナ12と電磁界プローブ21との直接結合が生じない範囲内でなるべく、電磁界プローブ21の表面からの距離dを小さくするように、調整用支持棒26を貫通穴23から挿脱して、dを変化させて電磁界プローブ21の位置を調整する。つまり、例えばdを徐々に小さくさせながら電界強度を測定し、測定電界強度がこれまでの変化に対し、急に大きくなる直前に、電磁界プローブ21を固定する。あるいは、電磁界プローブ21を表面から徐々に遠ざけ、電磁界プローブ21の検出ダイナミック・レンジ内に測定電界が入る範囲で、なるべく表面から遠ざければ、アンテナ12との直接結合のおそれがなく、かつ正しい測定も行える。このようにし最適化する。
このように固定した後、貫通穴23の電磁界プローブ21側、つまり例では耳22側を蓋41で塞ぐ。蓋41も、人体の電磁気特性を模疑した誘電体で構成される。
【0020】
【発明の効果】
以上述べたようにこの発明によれば、電磁界プローブを用いて吸収電力を測定することができる。予め校正係数f(d)を求めておくことにより、低電力無線機が人体のごく近傍にある場合の吸収電力値を正確に評価することができる。
【図面の簡単な説明】
【図1】この発明方法が対象とする吸収電力測定装置の例を示すブロック図。
【図2】電磁界プローブの測定対象表面からの距離dをパラメータとし、アンテナと測定対象間の距離Dを変化させた時の電界強度測定値を示す図。
【図3】アンテナと測定対象間距離に対する吸収電力値の関係を示す図。
【図4】従来の吸収電力測定装置を示す図。[0001]
BACKGROUND OF THE INVENTION
In the present invention, an electromagnetic field probe is arranged in a measurement object made of a solid dielectric material that suspects the electromagnetic characteristics of a human body, and the electromagnetic field irradiated to the measurement object is absorbed by the measurement object by the electromagnetic field probe. The present invention relates to a calibration method for a measuring apparatus.
[0002]
[Prior art]
FIG. 4 shows a conventional absorbed power measuring apparatus. A power of about 100 W is supplied to the antenna 12 from the electromagnetic wave transmitting device, and the electromagnetic wave radiated from the antenna 12 is irradiated to the measurement target 13 made of a solid dielectric material that suspects the electromagnetic characteristics of the human body. The electromagnetic wave energy radiated from the antenna 12 is large, and if the electromagnetic wave is continuously irradiated for a certain period of time while the antenna 12 and the measurement object 13 are relatively close to each other, the measurement object 13 that has absorbed the electromagnetic wave energy. A temperature distribution occurs on the surface of the film. This temperature distribution is observed using the thermograph camera 14. Based on the temperature distribution observed by the thermograph camera 14, it is absorbed by the measuring object 13 and the power is converted and measured.
[0003]
[Problems to be solved by the invention]
In order to provide a sufficient temperature distribution to the measurement target 13 in order to measure the absorbed power of the measurement target 13 using the above-described absorbed power measuring apparatus, generally, high power of about 100 W or more is fed to the antenna 12. Must. When the feed power is reduced, the electromagnetic wave energy radiated from the antenna 12 is reduced, and a temperature distribution that can be observed by the thermograph camera 14 cannot be applied to the measurement target 13. Therefore, when the electromagnetic wave transmission device 11 is a low-power wireless device, it is difficult to configure the absorbed power measurement device using the thermograph camera 14.
[0004]
The present invention provides a method for calibrating an absorbed power measuring apparatus that solves the above-described problems by interpolating an electromagnetic field probe into a measurement object and measuring the absorbed power based on a measurement value measured by the electromagnetic field probe. It is.
[0005]
[Means for Solving the Problems]
According to the present invention, the electromagnetic field probe is arranged in the measuring object made of a solid dielectric material that suspects the electromagnetic characteristics of the human body, and is disposed slightly inside the surface, about 3 cm, preferably inside about 2 cm, and irradiates the measuring object. In an apparatus in which the electric field strength of the electromagnetic wave is measured and the absorbed power to be measured is measured based on the measured value, the value E (d) measured by the electromagnetic field probe is multiplied by the calibration coefficient f (d). to determine the field strength E s in its inside is substantially the surface position of the measurement object. The calibration coefficient f (d) is obtained from the surface electric field intensity corresponding to the absorption power value on the surface of the measurement object by thermography and the measured value E (d) of the electromagnetic field probe. d is the distance from the surface to the electromagnetic field probe, that is, the embedding depth, and the calibration coefficient f (d) is a function of d.
[0006]
The reason why such a calibration method is possible is as follows. Based on the skin effect of the object to be measured, let d s be the distance at which the electric field strength is 1 / e of the electric field strength of the surface
[Expression 1]
Figure 0003685409
It becomes. Here mu r is the relative permeability of the measured object, epsilon r is the dielectric constant, sigma is conductivity, c is the speed of light, f is the frequency of the incident electromagnetic wave. Therefore, when the electric field strength is measured by moving the probe inward from the surface by a distance d s , if the electric field strength at that position is E i , the electric field strength at the surface is e × E i . That is, the surface electric field strength E s can be obtained by multiplying the measured electric field strength E i when the distance from the surface of the probe is d s by the calibration coefficient e. From this, when the distance from the vicinity of the surface to the probe is on the order of d s obtained by the skin effect, the calibration coefficient f (d) can be defined by E s / E (d), and the electric field intensity near the surface E s is evaluated by E s = f (d) E (d).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of an absorbed power measuring apparatus targeted by the present invention. Parts corresponding to those in FIG. In this example, the human head is suspected as the shape of the measurement target 13. The electromagnetic field probe 21 is arranged near the surface of the measurement target 13, that is, the distance d from the surface is about 3 cm, preferably within about 2 cm. In this example, one end is positioned on the surface of the measurement target 13 near the hook of the ear 22, a through hole 23 is formed, and the electromagnetic field probe 21 is disposed near the ear 22 of the through hole 23. In the illustrated example, the through hole 23 is formed between the vicinity of the right ear and the left side of the nose 24.
[0008]
The electromagnetic field probe 21 is supported by one end portion of the adjustment support rod 26, and the other end of the adjustment support rod 26 protrudes from the through hole 23, and the adjustment support rod 26 is inserted into and removed from the surface of the electromagnetic field probe 21. The distance d can be adjusted. The electric field intensity measured by the electromagnetic field probe 21 is connected to the calculation display 28 by a cord 27 passing through the adjustment support rod 26. The electric field strength measured by the electromagnetic field probe 21 is converted into absorbed power and displayed.
[0009]
Solid dielectrics that suspect the electromagnetic characteristics of the human body constituting the measurement object 13 include those containing ceramics as the main component, those containing silicon rubber as the main component, and those using a lightweight dielectric material. More specific examples include a synthetic resin powder, a high dielectric constant ceramic powder, and a carbon powder obtained by firing and solidifying. The mixing ratio of these powders is 30 to 90% by volume of the synthetic resin powder, and the high dielectric constant ceramic powder. The range is from micro volume to 60 volume%, carbon powder from 10 to 70 volume%, synthetic resin powder is selected from fluororesin powder, high dielectric constant ceramic powder is selected from barium titanate ceramic powder, lead composite perovskite ceramic powder, bismuth ceramic powder By adjusting the mixing ratio of synthetic resin powder, high dielectric constant ceramic powder, and carbon powder constituting this composite dielectric within this range, the electromagnetic characteristics of the human body against electromagnetic waves of various specific frequencies Can be suspected properly.
[0010]
As the electromagnetic field probe 21, an isotropic triaxial probe composed of a minute dipole and a detector is used. Alternatively, as the electromagnetic field probe 21, diazominomelanin (DALM) is used. That is, a transparent capsule that seals the DALM is formed, and an optical fiber is connected to the transparent capsule as a cord 27. DALM has a property of emitting light when irradiated with an electromagnetic wave in a frequency band used for wireless transmission, and the emission intensity of DALM changes according to the electric field strength of the irradiated electromagnetic wave. Therefore, the absorbed power can be measured by measuring the emission intensity.
[0011]
Radio waves are radiated from the antenna 12 of the wireless transmission device 11, and the radio waves are irradiated on the measurement target 13. The electric field intensity E (d) of the irradiated radio waves is measured by the electromagnetic field probe 21, and the electric field intensity E (d ) is supplied to the computing display 28, is multiplied calibration coefficient f (d) is, the surface electric field strength E s or corresponding absorbed power is displayed.
If the distance d from the surface of the electromagnetic field probe 21 is selected as a distance d s that is attenuated by the skin effect by 1 / e, the measured value E (d) is multiplied by the calibration coefficient f (d) = e. Good. That is, the electromagnetic field probe 21 can be positioned by calculating d s by equation (1).
[0012]
Next, an example of obtaining a general calibration coefficient f (d) will be shown. The absorbed power value on the surface of the measuring object 13 is measured by thermography. This measurement is performed by changing the distance D between the antenna 12 and the measurement target 13, and the surface electric field strength a i (i is a variable corresponding to D) corresponding to each measurement value is obtained.
Further, the distance d from the surface of the electromagnetic field probe 21 is changed, for example, 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm. respectively, for each distance D i between measuring the field intensity in the electromagnetic field probe 21. Each of which each measurement value, b i, c i, d i, e i, f i, when the g i, determined calibration factor f for each d i a (d i) by the following equations.
[0013]
f (0.5) = (Σa i / b i ) / N, f (1.0) = (Σa i / c i ) / N
f (1.5) = (Σa i / d i ) / N, f (2.0) = (Σa i / e i ) / N
f (2.5) = (Σa i / f i ) / N, f (3.0) = (Σa i / g i ) / N
In each case, Σ is i = 1 to N, and N is the number of changes of D measured by changing D.
[0014]
Each a i for each D i, b i, c i , d i, e i, f i, an example of each value of g i shown in FIG. In FIG. 2, the measurement of a i was performed with the antenna output as 100 W, the measurement result was converted to 1 W data, and the measurement with the probe 21 was performed with the antenna output as 1 W. In FIG. 2, N = 6. For example, in order to obtain f (0.5), when D = 0.5, (× point value (a i ) / (◯ point value (b i )), D = 1.0 value (x point value) / (○ point value), D = 1.5, D = 2.0, D = 2.5, and D = 3.0 (x point value) Value) / (point value), and the sum of these division results is divided by N = 6.
[0015]
When the electromagnetic field probe 21 is fixed to the surface of the human head model 13 as shown in FIG. 2, when the portable wireless device 11 and the human head model 13 are separated by about 0.5 cm or more and 3 cm or less, The result of measurement by thermography and the result of measurement by electromagnetic field probe 21 were in good agreement. However, when the portable radio device 11 is in close contact with the human head model 13 as in the actual use state of the portable radio device, the electric field strength is measured by the electromagnetic field probe 21 to obtain the absorbed power value. A value higher than the absorbed power value by thermography was measured. At this time, the measured value increased because the radio wave radiated from the antenna 12 was directly measured instead of the power value absorbed by the head model 13 when the portable wireless device 11 was in close contact. This is because it becomes. That is, when the distance between the antenna 12 and the probe 21 becomes extremely close, coupling occurs, and accurate electric field strength cannot be measured.
[0016]
When the frequency is around 900 MHz, if the position of the electromagnetic probe 21 is fixed 0.5 to 3 cm inside, it can be confirmed that the absorbed power value at the surface can be obtained approximately by multiplying the measured value by the calibration coefficient. ing. That is, each line shown in FIG. 2 is almost a straight line and within 3 cm, it can be obtained as a linear proportional coefficient as a calibration coefficient. Accordingly, the position of the electromagnetic field probe 21 is set within a range in which the calibration coefficient is obtained as a linear proportional coefficient from the surface. By the way, since the lower limit of the dynamic range of the electromagnetic field probe 21 is, for example, 2 V / m, it is necessary to be able to accurately measure the absorbed power value even with the portable wireless device 11 having a small output. From this, in the case of the 900 MHz band, the electromagnetic field probe 21 may be fixed to the inside of about 1 to 2 cm.
[0017]
As described above, the calibration coefficient f (d) is obtained, the surface electric field strength is calibrated, and based on this, the absorbed power of the measurement object 13 can be obtained. When the surface electric field strength is obtained, a method for converting this into the absorbed power is conventionally known, and this method may be used. An example measured in this manner is shown in FIG. 3A. A curve 31 shows the absorbed power (SAR) calibrated according to the present invention with respect to the distance D between the antenna 12 and the measurement target 13, and a curve 32 shows a measurement result by thermography. FIG. 3 shows the case where d = 2.5 cm and the measurement frequency is 900 MHz.
[0018]
On the other hand, when the absorbed power is obtained by using the measured value of the electromagnetic field probe 21 as it is without performing calibration according to the present invention, a curve 33 in FIG. 3B is obtained. The absorbed power obtained by thermography at this time is a curve 34. As a result, when the antenna 12 and the measurement target 13 approach each other and the distance D is within 1 cm, the antenna 12 and the electromagnetic field probe 21 are directly coupled to generate an extremely high value, and the absorbed power cannot be obtained correctly. However, if calibration according to the present invention is performed, it will be understood that the antenna 12 approaches the measurement target 13 as shown in FIG. 3A and D = 1 cm or less, so that the absorbed power can be obtained fairly accurately.
[0019]
The adjustment support rod 26 is inserted into and removed from the through hole 23 so as to reduce the distance d from the surface of the electromagnetic field probe 21 as much as possible within a range where direct coupling between the antenna 12 and the electromagnetic field probe 21 does not occur. Is adjusted to adjust the position of the electromagnetic probe 21. That is, for example, the electric field strength is measured while gradually decreasing d, and the electromagnetic field probe 21 is fixed immediately before the measured electric field strength suddenly increases with respect to the change so far. Alternatively, if the electromagnetic field probe 21 is gradually moved away from the surface and the measurement electric field is within the detection dynamic range of the electromagnetic field probe 21 and away from the surface as much as possible, there is no possibility of direct coupling with the antenna 12, and Correct measurements can also be made. Optimize in this way.
After fixing in this way, the through hole 23 is closed with the lid 41 on the electromagnetic field probe 21 side, that is, the ear 22 side in the example. The lid 41 is also made of a dielectric material that simulates the electromagnetic characteristics of the human body.
[0020]
【The invention's effect】
As described above, according to the present invention, the absorbed power can be measured using the electromagnetic field probe. By obtaining the calibration coefficient f (d) in advance, it is possible to accurately evaluate the absorbed power value when the low-power radio is in close proximity to the human body.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of an absorbed power measuring apparatus targeted by a method of the present invention.
FIG. 2 is a diagram showing electric field intensity measurement values when the distance d from the measurement target surface of the electromagnetic field probe is used as a parameter and the distance D between the antenna and the measurement target is changed.
FIG. 3 is a diagram illustrating a relationship of an absorbed power value with respect to a distance between an antenna and a measurement target.
FIG. 4 is a diagram showing a conventional absorbed power measuring apparatus.

Claims (4)

人体の電磁気特性を模疑した固形誘電体よりなる測定対象内で、その測定対象の表面の近傍においてその表面より所定範囲だけ引き込んでいるところに電磁界プローブが配され、
上記測定対象に外部より照射された電磁波の電界強度が上記電磁界プローブで測定され、
その測定値にもとづき上記電磁波の上記測定対象に吸収された電力を測定する装置の校正方法であって、
電磁界プローブの測定値に校正係数を乗算して、表面電界強度を求め、
上記校正係数は測定対象の吸収電力をサーモグラフィにより測定した値にもとづき決定することを特徴とする吸収電力測定装置の校正方法。
An electromagnetic field probe is arranged in a measurement target made of a solid dielectric suspected of the electromagnetic characteristics of a human body, where a predetermined range is drawn from the surface in the vicinity of the surface of the measurement target,
The electric field strength of the electromagnetic wave irradiated from the outside to the measurement object is measured by the electromagnetic field probe,
A calibration method for an apparatus for measuring the power absorbed by the measurement object of the electromagnetic wave based on the measured value,
Multiply the measured value of the electromagnetic field probe by the calibration coefficient to obtain the surface electric field strength,
A calibration method for an absorbed power measuring apparatus, wherein the calibration coefficient is determined based on a value obtained by measuring the absorbed power to be measured by thermography.
上記サーモグラフィ測定により測定対象の表面電界強度aを求め、測定対象内の電磁界プローブで電界強度bを測定し、a/bを上記校正係数とすることを特徴とする請求項1記載の吸収電力測定装置の校正方法。The absorbed power according to claim 1, wherein the surface electric field intensity a of the measurement object is obtained by the thermography measurement, the electric field intensity b is measured by an electromagnetic field probe in the measurement object, and a / b is used as the calibration coefficient. Calibration method for measuring equipment. 上記測定対象とこれに電波を照射するアンテナとの距離Dを変更した複数のDについて、上記表面電界強度aと上記測定電界強度bをそれぞれ求め、これらa/bの平均値を上記校正係数とすることを特徴とする請求項2記載の吸収電力測定装置の校正方法。The surface electric field strength a and the measured electric field strength b are respectively obtained for a plurality of Ds in which the distance D between the measurement object and the antenna that irradiates radio waves is changed. The method for calibrating an absorbed power measuring apparatus according to claim 2, wherein: 上記測定対象に貫通穴が形成され、その貫通穴内に上記電磁界プローブが、その貫通穴に沿って移動自在に配され、上記電磁界プローブの貫通穴内の位置を調整する手段が設けられていることを特徴とする請求項1〜3のいずれかに記載の吸収電力測定装置の校正方法。A through hole is formed in the measurement object, the electromagnetic field probe is movably disposed along the through hole, and a means for adjusting a position in the through hole of the electromagnetic field probe is provided. The method for calibrating an absorbed power measuring apparatus according to any one of claims 1 to 3.
JP2003184591A 2003-06-27 2003-06-27 Calibration method of absorbed power measuring device Expired - Fee Related JP3685409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184591A JP3685409B2 (en) 2003-06-27 2003-06-27 Calibration method of absorbed power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184591A JP3685409B2 (en) 2003-06-27 2003-06-27 Calibration method of absorbed power measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11923897A Division JPH10311805A (en) 1997-05-09 1997-05-09 Absorbed power measuring device and method for calibrating the same

Publications (2)

Publication Number Publication Date
JP2004029027A JP2004029027A (en) 2004-01-29
JP3685409B2 true JP3685409B2 (en) 2005-08-17

Family

ID=31185453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184591A Expired - Fee Related JP3685409B2 (en) 2003-06-27 2003-06-27 Calibration method of absorbed power measuring device

Country Status (1)

Country Link
JP (1) JP3685409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8498834B2 (en) * 2010-01-22 2013-07-30 The Boeing Company Radio frequency energy deposition analysis

Also Published As

Publication number Publication date
JP2004029027A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
Okano et al. The SAR evaluation method by a combination of thermographic experiments and biological tissue-equivalent phantoms
EP1326070B1 (en) Absorption power measuring device
CA2607251C (en) Specific absorption rate measurement system and method
Sabbah et al. Evaluation of specific absorption rate and temperature elevation in a multi-layered human head model exposed to radio frequency radiation using the finite-difference time domain method
Balzano et al. Energy deposition in simulated human operators of 800-MHz portable transmitters
Guraliuc et al. Solid phantom for body-centric propagation measurements at 60 GHz
Okano et al. Comparison measurement for specific absorption rate with physically different procedure
Varshini et al. Estimation of specific absorption rate using infrared thermography for the biocompatibility of wearable wireless devices
JP3685409B2 (en) Calibration method of absorbed power measuring device
CN207095715U (en) A kind of integrated unit pyroelectric detector parameter test system
JPH10311805A (en) Absorbed power measuring device and method for calibrating the same
CN109458961B (en) Portable wave-absorbing coating thickness measuring device and method
Wang et al. Review of SAR Measurement Methods in Relation to Wearable Devices.
Morega et al. Computed SAR in human head for the assessment of exposure from different phone device antennas
KR101049789B1 (en) Measurement method of electromagnetic wave absorption
Chandra et al. Antennas and propagation for in-mouth tongue-controlled devices in wireless body area networks
JPH10185838A (en) Absorbed power measuring apparatus
Karimi et al. Method and implementations to measure the absorbed power density
RU2648290C1 (en) Device for measuring specific absorbed power of microwave electromagnetic emission
Wang et al. Dosimetric evaluation of human head for portable telephones
Leushin et al. Numerical simulation of miniature antennas applicators of microwave radiometry for diagnostics of the functional state of the brain
Gabriel et al. Development of whole-body shell and solid phantoms and for SAR and radio propagation measurement
EP4170359A1 (en) Device for electromagnetic exposure assessment comprising a field enhancing element
RU2744537C1 (en) Antenna-applicator for measuring the temperature of internal tissues of a biological object
Sedelnikov et al. Antenna-applicator for Non-invasive Detection of Internal Tissues Anomalies of Biological Objects

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees