JP3684650B2 - Method for producing Ti-containing ferritic stainless steel with excellent formability - Google Patents

Method for producing Ti-containing ferritic stainless steel with excellent formability Download PDF

Info

Publication number
JP3684650B2
JP3684650B2 JP04314096A JP4314096A JP3684650B2 JP 3684650 B2 JP3684650 B2 JP 3684650B2 JP 04314096 A JP04314096 A JP 04314096A JP 4314096 A JP4314096 A JP 4314096A JP 3684650 B2 JP3684650 B2 JP 3684650B2
Authority
JP
Japan
Prior art keywords
less
rolling
stainless steel
ferritic stainless
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04314096A
Other languages
Japanese (ja)
Other versions
JPH09235621A (en
Inventor
淳一郎 平澤
淳 宮崎
和秀 石井
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP04314096A priority Critical patent/JP3684650B2/en
Publication of JPH09235621A publication Critical patent/JPH09235621A/en
Application granted granted Critical
Publication of JP3684650B2 publication Critical patent/JP3684650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、成形性に優れたTi含有フェライト系ステンレス鋼の製造方法に関し、特にその製造工程中、熱間圧延後の熱延板焼鈍を省略することにより、製造工程の短縮化および製造コストの低減を実現しようとするものである。
【0002】
【従来の技術】
Ti含有低Crフェライト系ステンレス鋼は、Cr含有量が少ないため比較的安価でありながらステンレス鋼の優れた耐食性を持ち、またTiを含有しているため、成形性や溶接性に優れており、これまで普通鋼や亜鉛めっき鋼、あるいはアルミめっき鋼が使われていた自動車排気系材料に使用されるようになってきている。
通常のTi含有低Crフェライト系ステンレス鋼板の製造においては、連続鋳造スラブ、またはインゴットを分塊圧延したスラブを、1100℃〜1300℃に加熱後、熱間圧延し、ついで 600℃以下の温度で巻き取り、放冷後、熱延板の軟質化、均質化を目的とするバッチ式焼鈍あるいは連続焼鈍を行い、引き続き冷間圧延、仕上げ焼鈍を行うことにより製品とされている。
【0003】
しかしながら、今日では製造コスト低減への要求が特に強いことから、熱延板の焼鈍を省略して製造コストを削減する方法が広く用いられている。
この際に最も問題となる点は、熱延板の焼鈍を省略することにより、熱延板焼鈍を施した場合に比べて、冷延焼鈍後の鋼板の成形性、例えば伸びやr値が劣化することである。従って、自動車排気系部品のなかでも、加工が厳しく、優れた成形性を必要とする場合には、依然として熱延板焼鈍を施したコストの高い材料の使用を余儀なくされていた。
【0004】
このような熱延板焼鈍を省略する際の成形性の劣化を改善する方法として、特公平3-49973号公報には、C:0.06wt%、Cr:13〜16wt%の組成を有し、熱間圧延時にフェライト−オーステナイの2相混合組織となる鋼種について、巻き取り温度を 750〜1000℃とし、その後少なくとも 700℃以下の温度まで徐冷して軟化させることにより、熱延板焼鈍を省略する方法が提案されている。
しかしながら、上記の方法は、Tiを含有せず、また熱間圧延時にフェライト−オーステナイの2相混合組織となる鋼種についてのものであり、従って、熱間圧延時にもフェライト単相で、またTi化合物の析出が鋼の再結晶挙動を左右するこの発明の鋼とは本質的に異なる。
【0005】
また、特開昭50-15722号公報には、17wt%Cr鋼および15wt%Cr鋼にTiを含有させ、熱間加工温度ではフェライト単相かまたは多くても5%までしかオーステナイト相を含有しないフェライト系ステンレス鋼に対して、熱間圧延後、焼鈍を行うことなく冷延し、ついで焼鈍を施すことにより、成形性に優れた鋼材を得る方法が提案されている。なお、上記のような高Cr鋼は、熱延後、 600℃以上の高温で巻き取るとその後の冷却中に鋼が脆化するため、通常は熱延後に水冷し、600 ℃以下の温度で巻き取っている。
しかしながら、 600℃以下の巻き取り温度では、巻き取り後の徐冷中に鋼の軟化が十分に行われないため、冷延焼鈍後の十分な加工性をそなえた鋼板は得られなかった。
【0006】
【発明が解決しようとする課題】
この発明は、上記の問題を有利に解決するもので、Ti含有低Crフェライト系ステンレス鋼に対して、冷間圧延の前に行う熱延板焼鈍を省略しても、熱延板焼鈍を施したものと同等あるいはそれ以上の優れた成形性をそなえるフェライト系ステンレス冷延鋼板の有利な製造方法を提案することを目的とする。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく、Ti含有低Crフェライト系ステンレス鋼について、その成分組成および熱延条件について綿密な検討を行った。
その結果、成形性に優れた鋼板を製造するには、特にTiとPの含有量の比をある適切な範囲内に規制すると共に、熱間圧延後 600℃以上の高温でコイルに巻き取ることが重要であることの知見を得た。
【0008】
すなわち、発明者らの研究によれば、Ti含有低Crフェライト系ステンレス鋼において、特にTiおよびP含有量につき、3≦{Ti−5×(C+N)}/P≦20の条件を満足する場合には、熱延板の焼鈍を省略してもそのr値および伸びの劣化がなくなり、熱延板焼鈍を施したものと同等、あるいはそれ以上の優れた成形性を示すことが究明されたのである。
【0009】
図1に、冷延焼鈍板のr値に及ぼすTiおよびPの影響を整理して示す。
同図に示した結果は、Fe−11%Cr−0.2 %Tiの基本組成に対して、P,CおよびNの含有量を種々に変更した鋼種について、200 mm厚のスラブを1080℃に加熱し、仕上げ圧延最終パスを圧下率:30%、摩擦係数:0.25の条件下で、またその前段パスを圧下率:25%、摩擦係数:0.25の条件下でそれぞれ熱間圧延し、3.5 mm厚の熱延板とした後、巻き取り温度:550, 600, 700 および800 ℃の4条件で巻き取り、ついで熱延板焼鈍を省略して、1.2 mm厚まで冷延し、しかるのち 880℃, 1分の仕上げ焼鈍を施したものについて、引張試験でr値を測定したものである。
なお、r値は、圧延方向に対して、0°、45°、90°方向のJIS 13号B形状の引張試験片で測定し、次式により算出したものである。
r=(r0 °+2×r45°+r90°) /4
【0010】
図1に示したとおり、巻き取り温度が一定の場合、{Ti−5×(C+N)}/Pの値が3〜20の範囲で高いr値が得られている。また、巻き取り温度が高いほどr値は高くなるが、特に 600℃以上の範囲でその効果は顕著になっている。
すなわち、r値を改善するには、成分中、特にTi, P,CおよびNの含有量を3≦{Ti−5×(C+N)}/P≦20とすること、および巻き取り温度を 600℃以上で通常の熱間圧延が可能な範囲でできるだけ高くすることが有効であることが判明したのである。
【0011】
さらに、スラブ加熱温度、仕上げ圧延の後段の圧下率および摩擦係数についても詳細な検討を行ったところ、適正なスラブ加熱温度の下で、少なくとも後段2段について低摩擦係数の潤滑圧延とすることによって、成形性に優れたTi含有フェライト系ステンレス鋼が得られることが新規に知見されたのである。
【0012】
この発明は、上記の知見に立脚するものである。
すなわち、この発明の要旨構成は次のとおりである。
1.C:0.015 wt%以下、
N:0.015 wt%以下、
ただし、C+N:0.02wt%以下、
Cr:10wt%以上、14wt%以下、
Ti:5×(C+N)以上、0.6 wt%以下、
P:0.03wt%以下、
ただし、{Ti−5×(C+N)}/P:3以上、20以下
を含有し、残部はFeおよび不可避的不純物の組成になるフェライト系ステンレス鋼スラブを熱間圧延するに際し、圧延に先立ってスラブを 980 1200 ℃に加熱し、仕上げ圧延の最終パスおよびその前段パスをそれぞれ、圧下率: 15 %以上で行い、しかるのち 600℃以上の温度でコイルに巻き取り、ついで焼鈍せずに酸洗したのち、冷間圧延ついで仕上げ焼鈍を施すことを特徴とする成形性に優れたTi含有フェライト系ステンレス鋼の製造方法(第1発明)。
【0013】
2.上記第1発明において、鋼組成が、さらに
Cu:0.5 wt%以下、
V:0.5 wt%以下、
Ni:1.0 wt%以下、
Mo:3.0 wt%以下
のうちから選んだ1種または2種以上を含有するものである成形性に優れたTi
含有フェライト系ステンレス鋼の製造方法(第2発明)。
【0014】
3.第1発明または第2発明において、フェライト系ステンレス鋼スラブを熱間圧延するに際し、圧延に先立ってスラブを 980〜1100℃に加熱し、仕上げ圧延の最終パスおよびその前段パスをそれぞれ、圧下率:20%以上でかつ摩擦係数:0.25以下の潤滑条件下で行い、しかるのち巻き取り工程に供することを特徴とする成形性に優れたTi含有フェライト系ステンレス鋼の製造方法(第3発明
)。
【0015】
【発明の実施の形態】
以下、この発明において、素材の成分組成を上記の範囲に限定した理由について説明する。
C:0.015 wt%以下
Cは、成形性に悪影響を及ぼす元素であり、含有量が 0.015wt%を超えるとその影響が顕著になるので、0.015 wt%以下に限定した。この発明の主旨からは、C含有量は低いほど良く、特に 0.006wt%以下にするのが望ましい。
【0016】
N:0.015 wt%以下
Nも、Cと同様、成形性に悪影響を及ぼす元素であり、0.015 wt%を超えるとその影響が顕著になるので、0.015 wt%以下に限定した。好ましくは 0.008wt%以下である。
【0017】
C+N:0.02wt%以下
ただし、CおよびNとも、上記の範囲を満足していても、合計量が0.02wt%を超えると成形性が劣化するので、C+N量は0.02wt%以下に限定した。
【0018】
Cr:10wt%以上、14wt%以下
Crは、耐食性を向上させる元素であるが、含有量が10wt%に満たないと耐食性の顕著な向上が見られず、一方14wt%を超えて多量に含有すると熱延時に高温で巻き取る際に脆化が起こるため、Crは10〜14wt%に限定した。
【0019】
Ti:5×(C+N)以上、0.6 wt%以下
Tiは、鋼中のCおよびNを固定し、成形性および溶接性を向上させる元素であり、この効果はTiをwt%で5×(C+N)以上含有することにより発揮される。しかしながら、0.6 wt%を超えて添加しても効果が飽和するばかりでなく、固溶Tiが鋼の再結晶温度を上昇させて、高温巻き取り時の鋼の軟化を妨げるので、この値を上限とした。
【0020】
P:0.03wt%以下
Pは、耐食性およびr値を劣化させる元素なので、極力低減することが好ましいが、0.03wt%以下で許容される。望ましくは、0.015 wt%以下である。
【0021】
{Ti−5×(C+N)}/P:3以上、20以下
さらに、この発明者らの知見によれば、Ti,P、さらにはCおよびNの含有量が3≦{Ti−5×(C+N)}/P≦20の関係式を満たす場合に、優れた成形性が得られることから、この式によりTi,P,CおよびNの含有量を限定した。
【0022】
以上、必須成分について説明したが、この発明ではさらに、耐食性改善成分としてCu, V,NiおよびMoのうちから選んだ1種または2種以上を含有させることもできる。
Cu:0.5 wt%以下、V:0.5 wt%以下、Ni:1.0 wt%以下、Mo:3.0 wt%以下
Cu, V,NiおよびMoはいずれも、耐食性の改善に有用な元素であるが、それぞれCu:0.5 wt%、V:0.5 wt%、Ni:1.0 wt%、Mo:3.0 wt%を超えて添加しても効果が飽和するばかりでなく、製造性および経済性を損なうので、各元素とも上記の範囲で添加するものとした。
【0023】
次に、この発明法に従う製造条件について説明する。
この種鋼板の製造に際しては、巻き取り温度が特に重要であり、巻き取り温度:600 ℃以上で巻き取られたコイルは、冷却過程において軟質化、均質化し、冷延、焼鈍後の鋼板の成形性が 600℃未満で巻き取った場合に比べて優れることから、巻き取り温度は 600℃以上とした。なお、通常の熱延が可能な範囲であれば、巻き取り温度が高いほど成形性の向上が顕著に見られることから、巻き取り温度は 700℃以上とすることが好ましい。
【0024】
また、熱間圧延条件は次のとおりであり、特に第3発明の条件で行うことは有利である。
すなわち、圧延前のスラブ加熱温度が 980℃に満たないと、圧延荷重が上昇し圧延が困難となり、一方1200℃を超えると良好な成形性を得るのに必要な組織が得難いので、圧延前のスラブ加熱温度は 980〜1200する。特に好ましくは 980 1100 ℃の範囲である
【0025】
また、仕上げ圧延に際しては、とくに後段の圧延条件が重要であり、仕上げ圧延の最終パスとその前段パスのうちいずれかの圧下率が15%に満たないと、圧延前のスラブ加熱温度および後述する摩擦係数が適正範囲内にあっても成形性の向上が不十分となるので、仕上げ圧延の後段2パスの圧下率はそれぞれ15%以上とする。特に好ましくは 20 %以上である
【0026】
さらに、仕上げ圧延の後段2パスの圧延を潤滑圧延とすることは、成形性向上の面で一層の効果がある。ここに、摩擦係数が0.25を超えると成形性の改善効果は乏しくなるので、潤滑圧延の際の摩擦係数は0.25以下とすることが好ましい。
【0027】
【実施例】
表1に示す成分組成になるフェライト系ステンレス鋼を、連続鋳造により200 mm厚のスラブとし、このスラブを熱間圧延により、30mm厚まで粗圧延し、引き続き7段からなる仕上げ圧延機を用いて、3.5 mm厚の熱延鋼板とした。
上記の熱間圧延において、圧延前のスラブ加熱温度、仕上げ圧延の6パス目(F6)と最終パスである7パス目(F7) それぞれの圧下率および摩擦係数、さらには圧延後の巻取り温度をそれぞれ表2のように変化させた。
表2において、No.1からNo.6 スラブ加熱温度、仕上げ圧延圧下率は第1発明または第2発明に従う熱間圧延条件、また No.7 から No.10 のスラブ加熱温度、仕上げ圧延圧下率および仕上げ圧延時の摩擦係数は第3発明に従う熱間圧延条件である。
コイルに巻き取った後は、 500℃/hより小さい冷却速度で 200℃まで冷却しその後放冷した。
その後、この発明法に従い焼鈍を省略、または比較例としてバッチ式焼鈍( 800 ℃, 8h−炉冷)を施した後、酸洗、冷延、仕上げ焼鈍を施して、製品とした。仕上げ板厚は1.2 mm、仕上げ焼鈍温度は 900℃、1分保持とした。
かくして得られた試験材について、引張試験を行い、r値および伸びについて調査した結果を表2に併記する。
なお、r値および伸びは、圧延方向に対して、0°、45°、90°方向のJIS13号B形状の引張試験片で測定し、r=(r0 °+2×r45°+r90°) /4、E1=(E10 °+2×E145°+E190°)/4の式により算出した。
【0028】
【表1】

Figure 0003684650
【0029】
【表2】
Figure 0003684650
【0030】
表2から明らかなように、この発明に従い得られた鋼板は、比較例に比べるとr値および伸びとも良好であり、優れた成形性を有することが判る。
特に、スラブ加熱温度および仕上げ圧延の後段側2パスの圧下率と摩擦係数が請求項3の範囲にある表2のNo.7〜No.10 は、通常の熱間圧延に従った場合と比較して、より優れた成形性が得られている。
【0031】
【発明の効果】
かくして、この発明によれば、成形性の優れたTi含有フェライト系ステンレス鋼板を熱延板焼鈍なしで安価に得ることができる。
【図面の簡単な説明】
【図1】 Ti−5×(C+N)とP含有量の比と、冷延焼鈍板のr値との関係を、巻き取り温度別に示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a Ti-containing ferritic stainless steel having excellent formability. In particular, by omitting hot-rolled sheet annealing after hot rolling during the production process, the production process is shortened and the production cost is reduced. The reduction is to be realized.
[0002]
[Prior art]
Ti-containing low Cr ferritic stainless steel has excellent corrosion resistance of stainless steel while being relatively inexpensive due to its low Cr content, and also has excellent formability and weldability because it contains Ti. It has come to be used for automobile exhaust system materials that have been used for ordinary steel, galvanized steel, or aluminized steel.
In the production of ordinary Ti-containing low Cr ferritic stainless steel sheets, continuous cast slabs or slabs obtained by rolling ingots are heated to 1100 ° C to 1300 ° C, then hot rolled, and then at a temperature of 600 ° C or lower. After winding and allowing to cool, the product is obtained by batch-type annealing or continuous annealing for the purpose of softening and homogenizing the hot-rolled sheet, followed by cold rolling and finish annealing.
[0003]
However, since the demand for manufacturing cost reduction is particularly strong today, methods for reducing manufacturing cost by omitting annealing of hot-rolled sheets are widely used.
In this case, the most problematic point is that the annealing of the hot-rolled sheet is omitted, and the formability of the steel sheet after cold-rolled annealing, for example, the elongation and the r-value are deteriorated, compared with the case where the hot-rolled sheet is annealed. It is to be. Therefore, among the automobile exhaust system parts, when the processing is severe and excellent formability is required, it is still necessary to use a high-cost material subjected to hot-rolled sheet annealing.
[0004]
As a method for improving the deterioration of formability when omitting such hot-rolled sheet annealing, Japanese Patent Publication No. 3-49973 has a composition of C: 0.06 wt%, Cr: 13-16 wt%, For steel types that have a two-phase mixed structure of ferrite and austenite during hot rolling, the coiling temperature is set to 750 to 1000 ° C, and then gradually cooled to a temperature of at least 700 ° C and softened to eliminate hot rolled sheet annealing. A method has been proposed.
However, the above method is for a steel type that does not contain Ti and that has a two-phase mixed structure of ferrite and austenite during hot rolling. Therefore, it is a ferrite single phase and also a Ti compound during hot rolling. This is essentially different from the steel of the present invention, where the precipitation of this affects the recrystallization behavior of the steel.
[0005]
Japanese Patent Laid-Open No. 50-15722 discloses that 17 wt% Cr steel and 15 wt% Cr steel contain Ti, and the hot working temperature contains only a ferrite single phase or at most 5% austenite phase. A method has been proposed in which a ferritic stainless steel is hot rolled, cold-rolled without annealing, and then annealed to obtain a steel material with excellent formability. Note that the high Cr steel as described above, after being rolled at a high temperature of 600 ° C or higher after hot rolling, embrittles the steel during the subsequent cooling, so it is usually cooled with water after hot rolling and at a temperature of 600 ° C or lower. Winding up.
However, at a coiling temperature of 600 ° C. or lower, the steel was not sufficiently softened during the slow cooling after winding, so that a steel sheet having sufficient workability after cold rolling annealing could not be obtained.
[0006]
[Problems to be solved by the invention]
The present invention advantageously solves the above problem, and even if the hot-rolled sheet annealing performed before cold rolling is omitted for the Ti-containing low Cr ferritic stainless steel, the hot-rolled sheet annealing is performed. It is an object of the present invention to propose an advantageous method for producing a ferritic stainless steel cold-rolled steel sheet having excellent formability equivalent to or better than the above-described one.
[0007]
[Means for Solving the Problems]
Now, in order to achieve the above object, the inventors have conducted a thorough examination on the component composition and hot rolling conditions of the Ti-containing low Cr ferritic stainless steel.
As a result, in order to produce a steel sheet with excellent formability, the content ratio of Ti and P is restricted within a certain appropriate range, and the coil is wound around a coil at a high temperature of 600 ° C. or higher after hot rolling. I got the knowledge that is important.
[0008]
That is, according to the researches of the inventors, in the Ti-containing low Cr ferritic stainless steel, particularly when the condition of 3 ≦ {Ti-5 × (C + N)} / P ≦ 20 is satisfied with respect to the Ti and P contents. Therefore, even if the annealing of the hot-rolled sheet is omitted, the r-value and elongation are not deteriorated, and it has been found that it exhibits excellent formability equivalent to or higher than that obtained by annealing the hot-rolled sheet. is there.
[0009]
FIG. 1 summarizes the effects of Ti and P on the r value of the cold-rolled annealed sheet.
The results shown in the figure show that a 200 mm thick slab was heated to 1080 ° C for steel types with various contents of P, C and N with respect to the basic composition of Fe-11% Cr-0.2% Ti. The final pass of the final rolling was hot-rolled under the conditions of a reduction ratio of 30% and a friction coefficient of 0.25, and the preceding pass was hot-rolled under the conditions of a reduction ratio of 25% and a friction coefficient of 0.25, and a thickness of 3.5 mm. After being rolled into a hot-rolled steel sheet, it was wound up under four conditions of winding temperature: 550, 600, 700 and 800 ° C, then the hot-rolled sheet annealing was omitted and cold-rolled to 1.2 mm thickness, and then 880 ° C, The r value was measured by a tensile test for the one subjected to finish annealing for 1 minute.
The r value is measured with a JIS No. 13 B-shaped tensile test piece in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction, and is calculated by the following equation.
r = (r 0 ° + 2 × r 45 ° + r 90 °) / 4
[0010]
As shown in FIG. 1, when the coiling temperature is constant, a high r value is obtained when the value of {Ti-5 × (C + N)} / P is in the range of 3-20. The r value increases as the coiling temperature increases, but the effect is particularly remarkable in the range of 600 ° C. or higher.
That is, in order to improve the r value, in particular, the content of Ti, P, C and N in the component is 3 ≦ {Ti-5 × (C + N)} / P ≦ 20, and the winding temperature is 600. It has been found that it is effective to make the temperature as high as possible within a range in which normal hot rolling is possible at a temperature higher than or equal to ° C.
[0011]
Furthermore, the slab heating temperature, the rolling reduction ratio and the friction coefficient in the latter stage of the finish rolling were examined in detail, and at the proper slab heating temperature, at least the latter two stages were lubricated with a low friction coefficient. It has been newly found that a Ti-containing ferritic stainless steel having excellent formability can be obtained.
[0012]
The present invention is based on the above findings.
That is, the gist configuration of the present invention is as follows.
1. C: 0.015 wt% or less,
N: 0.015 wt% or less,
However, C + N: 0.02 wt% or less,
Cr: 10wt% or more, 14wt% or less,
Ti: 5 × (C + N) or more, 0.6 wt% or less,
P: 0.03 wt% or less,
However, {Ti-5 × (C + N)} / P: containing 3 or more and 20 or less, and the remainder is hot rolled a ferritic stainless steel slab having a composition of Fe and unavoidable impurities prior to rolling. the slab was heated to 980 ~ 1200 ° C., respectively the final pass and the preceding stage path of the finishing rolling, rolling reduction: performed at 15% or more, wound into a coil at 600 ° C. or higher temperature later that accordingly, then acid without annealing A method for producing a Ti-containing ferritic stainless steel excellent in formability, characterized by performing cold rolling followed by finish annealing after washing (first invention).
[0013]
2. In the first invention, the steel composition is further
Cu: 0.5 wt% or less,
V: 0.5 wt% or less,
Ni: 1.0 wt% or less,
Mo: Ti excellent in formability, containing one or more selected from 3.0 wt% or less
A method for producing a ferritic stainless steel (second invention).
[0014]
3. In the first invention or the second invention, when the ferritic stainless steel slab is hot-rolled, the slab is heated to 980-1100 ° C. prior to rolling, and the final pass of the finish rolling and the preceding pass are respectively reduced: A method for producing a Ti-containing ferritic stainless steel having excellent formability, characterized in that it is carried out under a lubricating condition of 20% or more and a friction coefficient of 0.25 or less, and then subjected to a winding process (third invention).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the component composition of the material is limited to the above range in this invention will be described.
C: 0.015 wt% or less C is an element that adversely affects the moldability. When the content exceeds 0.015 wt%, the influence becomes significant, so the content is limited to 0.015 wt% or less. From the gist of the present invention, the lower the C content, the better. In particular, it is desirable to make it 0.006 wt% or less.
[0016]
N: 0.015 wt% or less N is also an element having an adverse effect on formability, as is the case with C. Since the effect becomes significant when it exceeds 0.015 wt%, it is limited to 0.015 wt% or less. Preferably it is 0.008 wt% or less.
[0017]
C + N: 0.02 wt% or less However, even if both C and N satisfy the above range, if the total amount exceeds 0.02 wt%, the formability deteriorates, so the C + N amount was limited to 0.02 wt% or less.
[0018]
Cr: 10wt% or more, 14wt% or less
Cr is an element that improves corrosion resistance, but if the content is less than 10 wt%, no significant improvement in corrosion resistance is seen. On the other hand, if it contains more than 14 wt%, when it is rolled up at high temperature during hot rolling Since embrittlement occurs, Cr is limited to 10 to 14 wt%.
[0019]
Ti: 5 × (C + N) or more, 0.6 wt% or less
Ti is an element that fixes C and N in steel and improves formability and weldability, and this effect is exhibited by containing Ti by wt. 5 × (C + N) or more. However, adding more than 0.6 wt% not only saturates the effect, but also solid solution Ti raises the recrystallization temperature of the steel and prevents the softening of the steel during high temperature winding. It was.
[0020]
P: 0.03 wt% or less P is an element that deteriorates corrosion resistance and r value, and therefore it is preferable to reduce it as much as possible, but it is allowed to be 0.03 wt% or less. Desirably, it is 0.015 wt% or less.
[0021]
{Ti-5 × (C + N)} / P: 3 or more and 20 or less Further, according to the knowledge of the inventors, the content of Ti, P, and further C and N is 3 ≦ {Ti-5 × ( Since excellent moldability can be obtained when the relational expression C + N)} / P ≦ 20 is satisfied, the contents of Ti, P, C, and N are limited by this expression.
[0022]
Although the essential components have been described above, the present invention may further contain one or more selected from Cu, V, Ni and Mo as a corrosion resistance improving component.
Cu: 0.5 wt% or less, V: 0.5 wt% or less, Ni: 1.0 wt% or less, Mo: 3.0 wt% or less
Cu, V, Ni and Mo are all useful elements for improving corrosion resistance, but added in excess of Cu: 0.5 wt%, V: 0.5 wt%, Ni: 1.0 wt% and Mo: 3.0 wt%, respectively. Even if the effect is not only saturated, but also the productivity and economy are impaired, each element is added in the above range.
[0023]
Next, the manufacturing conditions according to this invention method will be described.
The coiling temperature is particularly important in the production of this type of steel sheet. The coil wound at a coiling temperature of 600 ° C or higher is softened and homogenized during the cooling process, and the steel sheet is formed after cold rolling and annealing. The winding temperature was set to 600 ° C. or higher because the properties were superior to those of the case of winding at less than 600 ° C. In addition, within the range in which normal hot rolling is possible, the higher the winding temperature, the more remarkable the improvement in formability. Therefore, the winding temperature is preferably 700 ° C. or higher.
[0024]
Further, the hot rolling conditions are as follows, and it is particularly advantageous to carry out under the conditions of the third invention.
That is, if the slab heating temperature before rolling is less than 980 ° C, the rolling load increases and rolling becomes difficult, while if it exceeds 1200 ° C, it is difficult to obtain a structure necessary for obtaining good formability. slab heating temperature is set to 980~ 1200 ℃. In particular, rather preferably is in the range of 980 ~ 1100 ℃.
[0025]
In finish rolling, the rolling conditions of the latter stage are particularly important. If the rolling reduction of any one of the final pass of the finish rolling and the preceding pass is less than 15 %, the slab heating temperature before rolling and the later-described rolling Even if the coefficient of friction is within an appropriate range, the formability is not improved sufficiently. Therefore, the rolling reduction in the second pass after finish rolling should be 15 % or more . In particular, rather than preferred it is 20% or more.
[0026]
Furthermore, it is more effective in terms of improving the formability that the rolling of the second pass after finish rolling is lubricated rolling. Here, when the friction coefficient exceeds 0.25, the effect of improving the formability becomes poor. Therefore, the friction coefficient during the lubrication rolling is preferably set to 0.25 or less.
[0027]
【Example】
Ferritic stainless steel with the composition shown in Table 1 is made into a slab of 200 mm thickness by continuous casting, this slab is roughly rolled to 30 mm thickness by hot rolling, and then using a finish rolling mill consisting of 7 stages. 3.5 mm thick hot rolled steel sheet.
In the hot rolling described above, the slab heating temperature before rolling, the rolling reduction and friction coefficients of the sixth pass (F6) of finish rolling and the seventh pass (F7) of final rolling, and the coiling temperature after rolling Each was changed as shown in Table 2.
In Table 2, a slab heating temperature of the No .6 from No.1, finish rolling reduction ratio is first invention or the hot rolling conditions according to the second invention, also a slab heating temperature of from No.7 No.10, the finish rolling reduction The rate and the friction coefficient during finish rolling are the hot rolling conditions according to the third invention.
After being wound on the coil, it was cooled to 200 ° C. at a cooling rate lower than 500 ° C./h, and then allowed to cool.
Thereafter, annealing was omitted according to the method of the present invention, or batch annealing (800 ° C., 8 h—furnace cooling) was performed as a comparative example, and then pickling, cold rolling, and finish annealing were performed to obtain a product. The finished plate thickness was 1.2 mm, and the final annealing temperature was 900 ° C for 1 minute.
The test material thus obtained was subjected to a tensile test, and the results of examining the r value and the elongation are also shown in Table 2.
The r value and elongation were measured with JIS No. 13 B-shaped tensile test pieces in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction, and r = (r 0 ° + 2 × r 45 ° + r 90 °). ) / 4, E1 = (E1 0 ° + 2 × E1 45 ° + E1 90 °) / 4.
[0028]
[Table 1]
Figure 0003684650
[0029]
[Table 2]
Figure 0003684650
[0030]
As is apparent from Table 2, the steel sheet obtained according to the present invention has a better r value and elongation than the comparative example, and it is understood that the steel sheet has excellent formability.
In particular, No. 7 to No. 10 in Table 2 where the slab heating temperature and the reduction ratio and friction coefficient of the second pass on the second stage of finish rolling are in the range of claim 3 are compared with those in the case of following normal hot rolling. Thus, more excellent moldability is obtained.
[0031]
【The invention's effect】
Thus, according to the present invention, a Ti-containing ferritic stainless steel sheet having excellent formability can be obtained at low cost without hot-rolled sheet annealing.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the ratio of Ti-5 × (C + N) and P content and the r value of a cold-rolled annealed sheet according to winding temperature.

Claims (3)

C:0.015 wt%以下、
N:0.015 wt%以下、
ただし、C+N:0.02wt%以下、
Cr:10wt%以上、14wt%以下、
Ti:5×(C+N)以上、0.6 wt%以下、
P:0.03wt%以下、
ただし、{Ti−5×(C+N)}/P:3以上、20以下
を含有し、残部はFeおよび不可避的不純物の組成になるフェライト系ステンレス鋼スラブを熱間圧延するに際し、圧延に先立ってスラブを 980 1200 ℃に加熱し、仕上げ圧延の最終パスおよびその前段パスをそれぞれ、圧下率: 15 %以上で行い、しかるのち 600℃以上の温度でコイルに巻き取り、ついで焼鈍せずに酸洗したのち、冷間圧延ついで仕上げ焼鈍を施すことを特徴とする成形性に優れたTi含有フェライト系ステンレス鋼の製造方法。
C: 0.015 wt% or less,
N: 0.015 wt% or less,
However, C + N: 0.02 wt% or less,
Cr: 10wt% or more, 14wt% or less,
Ti: 5 × (C + N) or more, 0.6 wt% or less,
P: 0.03 wt% or less,
However, {Ti-5 × (C + N)} / P: containing 3 or more and 20 or less, and the remainder is hot rolled a ferritic stainless steel slab having a composition of Fe and unavoidable impurities prior to rolling. the slab was heated to 980 ~ 1200 ° C., respectively the final pass and the preceding stage path of the finishing rolling, rolling reduction: performed at 15% or more, wound into a coil at 600 ° C. or higher temperature later that accordingly, then acid without annealing A method for producing a Ti-containing ferritic stainless steel having excellent formability, characterized by performing cold rolling followed by finish annealing after washing.
請求項1において、鋼組成が、さらに
Cu:0.5 wt%以下、
V:0.5 wt%以下、
Ni:1.0 wt%以下、
Mo:3.0 wt%以下
のうちから選んだ1種または2種以上を含有するものである成形性に優れたTi含有フェライト系ステンレス鋼の製造方法。
The steel composition according to claim 1, further comprising:
Cu: 0.5 wt% or less,
V: 0.5 wt% or less,
Ni: 1.0 wt% or less,
Mo: A method for producing a Ti-containing ferritic stainless steel having excellent formability and containing one or more selected from 3.0 wt% or less.
請求項1または2において、フェライト系ステンレス鋼スラブを熱間圧延するに際し、圧延に先立ってスラブを 980〜1100℃に加熱し、仕上げ圧延の最終パスおよびその前段パスをそれぞれ、圧下率:20%以上でかつ摩擦係数:0.25以下の潤滑条件下で行い、しかるのち巻き取り工程に供することを特徴とする成形性に優れたTi含有フェライト系ステンレス鋼の製造方法。  3. When hot rolling a ferritic stainless steel slab according to claim 1 or 2, the slab is heated to 980 to 1100 ° C. prior to rolling, and the final pass of the finish rolling and the preceding pass are respectively reduced by 20%. A process for producing a Ti-containing ferritic stainless steel having excellent formability, characterized in that it is carried out under lubricating conditions with a friction coefficient of 0.25 or less and then subjected to a winding process.
JP04314096A 1996-02-29 1996-02-29 Method for producing Ti-containing ferritic stainless steel with excellent formability Expired - Fee Related JP3684650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04314096A JP3684650B2 (en) 1996-02-29 1996-02-29 Method for producing Ti-containing ferritic stainless steel with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04314096A JP3684650B2 (en) 1996-02-29 1996-02-29 Method for producing Ti-containing ferritic stainless steel with excellent formability

Publications (2)

Publication Number Publication Date
JPH09235621A JPH09235621A (en) 1997-09-09
JP3684650B2 true JP3684650B2 (en) 2005-08-17

Family

ID=12655543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04314096A Expired - Fee Related JP3684650B2 (en) 1996-02-29 1996-02-29 Method for producing Ti-containing ferritic stainless steel with excellent formability

Country Status (1)

Country Link
JP (1) JP3684650B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW496903B (en) * 1997-12-19 2002-08-01 Armco Inc Non-ridging ferritic chromium alloyed steel
KR100733016B1 (en) * 2002-06-17 2007-06-27 제이에프이 스틸 가부시키가이샤 FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPH09235621A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JPH11279693A (en) Good workability/high strength hot rolled steel sheet excellent in baking hardenability and its production
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP3684650B2 (en) Method for producing Ti-containing ferritic stainless steel with excellent formability
JP3302118B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP4239247B2 (en) Method for producing Ti-containing ferritic stainless steel sheet with excellent workability
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP2948416B2 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet with excellent deep drawability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP3270685B2 (en) Method for producing cold-rolled steel sheet for deep drawing and hot-dip galvanized steel sheet with excellent ridging resistance
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JP3762085B2 (en) Manufacturing method of soft cold-rolled steel sheet by direct feed rolling with excellent workability
JP4313912B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JP2001254154A (en) Ferritic stainless cold rolled steel sheet excellent in punchability and formability
JP3301633B2 (en) Method for producing high-strength cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent deep drawability
JPS59123721A (en) Production of cold rolled steel sheet having excellent processability
JP3612109B2 (en) Manufacturing method of thin hot-rolled steel sheet for processing with small anisotropy
JP3600655B2 (en) Hot rolled steel sheet excellent in workability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees