JP3684422B2 - β-halo-α, β-unsaturated carboxylic acid ester derivative and method for producing the same - Google Patents

β-halo-α, β-unsaturated carboxylic acid ester derivative and method for producing the same Download PDF

Info

Publication number
JP3684422B2
JP3684422B2 JP07648598A JP7648598A JP3684422B2 JP 3684422 B2 JP3684422 B2 JP 3684422B2 JP 07648598 A JP07648598 A JP 07648598A JP 7648598 A JP7648598 A JP 7648598A JP 3684422 B2 JP3684422 B2 JP 3684422B2
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
groups
halo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07648598A
Other languages
Japanese (ja)
Other versions
JPH11255712A (en
Inventor
正人 田中
端茂 華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP07648598A priority Critical patent/JP3684422B2/en
Publication of JPH11255712A publication Critical patent/JPH11255712A/en
Application granted granted Critical
Publication of JP3684422B2 publication Critical patent/JP3684422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、ベータアミノ酸やキノロン骨格等を持つ抗生剤等の医薬、殺菌剤や植物の生育制御剤等の農薬類、高分子化合物等の合成に用いられる有用な物質であるβ−ハロ−α,β−不飽和カルボン酸エステルの製造法に関するものである。
【0002】
【従来の技術】
β−ハロ−α,β−不飽和カルボン酸エステル誘導体は、従来β−ケト酸誘導体をオキシ塩化リンや五塩化リンにより塩素化することにより合成されている。しかし、この方法は、一般的には入手が困難なβ−ケト酸誘導体等が出発原料として必要であり、工業的に有利な方法ではなかった。
一方、β−ハロ−α,β−不飽和カルボン酸エステル誘導体は、複数の官能基を有し、特にカルボキシル基の近傍に反応性に富む官能基を有しているために、医薬品、農薬、機能性高分子化合物などの製造原料として重要視されている。したがって、このβ−ハロ−α,β−不飽和カルボン酸エステル誘導体を工業的に入手が容易な原料化合物からの製造し得る方法の開発が望まれていた。
【0003】
【発明が解決しようとする課題】
本発明者らは、このような問題を解決するために鋭意研究の結果、遷移金属触媒、殊にロジウム錯体触媒の存在下において、ハロゲン化ギ酸エステルがアセチレン結合に容易に付加し、二重結合を残した段階で生成物を単離し得ることを見いだし、新規なβ−ハロ−α,β−不飽和カルボン酸エステルの製造方法を完成するに至った。
【0004】
本発明は、工業的に入手容易な炭素−炭素三重結合を有する化合物とハロゲン化ギ酸エステルを反応させることからなる、新規かつ効率的なβ−ハロ−α,β−不飽和カルボン酸エステル誘導体の製造方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
すなわち、本発明は、ロジウム錯体触媒の存在下、炭素−炭素三重結合を有する化合物と、ハロゲン化ギ酸エステルとを反応させることを特徴とする、β−ハロ−α,β−不飽和カルボン酸エステルの製造方法に関するものである。
【0006】
より詳細には、本発明は、次式の一般式(I)、
【0007】
【化2】

Figure 0003684422
【0008】
(式中、R1は置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のシクロアルケニル基、置換若しくは非置換のアリール基、置換若しくは非置換の複素環基、又は、置換若しくは非置換のアラルキル基を示す。)
で表される炭素−炭素三重結合を有する化合物と、次式の一般式(II)、
X−COOR2 (II)
(式中、R2は置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のシクロアルケニル基、置換若しくは非置換のアリール基、置換若しくは非置換の複素環基、又は、置換若しくは非置換のアラルキル基を示し、Xはハロゲンを示す。)で表されるハロゲン化ギ酸エステルを反応させて、次式の一般式(III)、
1C(X)=CHCOOR2 (III)
(式中、R1、R2及びXは前記の一般式(I)、(II)で示されるものと同じものを示す。)
で表されるβ−ハロ−α,β−不飽和カルボン酸エステル誘導体を製造する方法に関する。本発明のこの反応は、好ましくは錯体触媒、より好ましくはロジウム錯体の存在下で行われる。
【0010】
本発明の方法によれば、ハロゲンとエステル基が逆に付加した次式の一般式(V)
X−CH=C(R)−COOR (V)
(式中、R、R及びXは前記のものと同じ。)
で表される化合物を得ることができる。したがって、本発明は一般式(V)で表される化合物の製造方法に関するものでもある。
【0011】
本発明の方法の原料のひとつとして使用される炭素−炭素三重結合を有する化合物は、分子中に少なくとも1個の炭素−炭素三重結合を有するものであって、ハロゲン化ギ酸エステルとの反応を阻害する基を有さないものであれば特に制限はないが、前記一般式(I)で示されるアセチレン化合物が好ましい。
三重結合を有する化合物が、分子中に2個以上の三重結合を有する場合には、これらの2個以上の三重結合が同時に反応して、ビス体、トリス体を生成することになる。このようにして生成される化合物及びその製造方法も本発明に包含されるものである。
前記一般式(I)におけるアルキル基としては、炭素数1〜30、好ましくは1〜20、より好ましくは1〜10の直鎖状又は分枝状のアルキル基が好ましく、より好ましくは低級アルキル基であり、アルケニル基としては、炭素数2〜30、好ましくは2〜20、より好ましくは2〜10の直鎖状又は分枝状のアルケニル基が好ましく、より好ましくは低級アルケニル基であり、シクロアルキル基としては、炭素数5〜30、好ましくは5〜20、より好ましくは6〜10の単環、多環又は縮合環式のシクロアルキル基が好ましく、シクロアルケニル基としては前記したシクロアルキル基であって少なくとも1個以上の不飽和結合を有するものが好ましく、アリール基としては、炭素数6〜30、好ましくは6〜20、より好ましくは6〜10の単環、多環又は縮合環式のアリール基が好ましく、複素環式基としては、環中に少なくとも1個以上の窒素原子、酸素原子又は硫黄原子を有し、1個の環の大きさが5〜20員、好ましく5〜10員、より好ましく5〜7員であって、前記したシクロアルキル基、シクロアルケニル基又はアリール基を縮合していてもよい飽和又は不飽和の単環、多環又は縮合環式の複素環式基が好ましく、アラルキル基としては前記したアルキル基又はアルケニル基に前記のアリール基又は複素環式基が置換しているものが挙げられる。
【0012】
一般式(I)中の前記したアルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基、複素環基、又は、アラルキル基は、反応を阻害しない置換基で置換されていてもよい。また、置換基が反応を阻害する可能性がある場合には、必要に応じてこれらの置換基を保護基で保護することもできる。したがって、本発明の置換基としては、反応中に保護基で保護することができる反応性の置換基も包含している。
一般式(I)中の前記したアルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基、複素環基、又は、アラルキル基の置換基としては、これらの基が相互に置換することができる場合には、これらの基が相互に置換したものであってもよい。例えば、アルキル置換シクロアルキル基、アルキル置換アリール基、アルキル置換複素環式基、アルキル置換アラルキル基、シクロアルキルアルキル基、シクロアルキルアルケニル基、アルケニル置換アリール基などが挙げられる。
【0013】
その他の置換基としては、前記したアルキル基からなるアルコキシ基、アルキルチオ基、ジアルキルアミノ基、トリアルキルシリル基、アルキル置換シロキシ基などの他に、塩素、臭素、フッ素などのハロゲン原子、メチレンジオキシ、2,2−ジメチルメチレンジオキシ基などのアルキレンジオキシ基、シアノ基などが挙げられる。
好ましい置換基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基などの低級アルキル基、フェニル基、ナフチル基などのアリール基、メトキシ基、エトキシ基、n−プロポキシ基などの低級アルコキシ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基などのジ低級アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、ジメチルエチルシリル基、ジメチルt−ブチルシリル基などの低級アルキル置換シリル基、塩素、フッ素などのハロゲン原子、メチレンジオキシ、2,2−ジメチルメチレンジオキシ基などのアルキレンジオキシ基、シアノ基などが挙げられる。
【0014】
一般式(I)のR1の具体例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、ヘキシル基などの低級アルキル基、ビニル基、プロペニル基、ブテニル基などの低級アルケニル基、シクロヘキシル基、シクロペンチル基などのシクロアルキル基、シクロヘキセニル基などのシクロアルケニル基、フェニル基、ナフチル基などのアリール基、チエニル基、フラニル基などの複素環基、ベンジル基、フェネチル基などのアラルキル基等が挙げられる。また、置換基を有するものとしては、例えば、1−クロロエチル基、2−クロロエチル基、1−クロロプロピル基、2−クロロプロピル基、3−クロロプロピル基、1−クロロブチル基、2−クロロブチル基、3−クロロブチル基、4−クロロブチル基、1−シアノエチル基、2−シアノエチル基、1−シアノプロピル基、2−シアノプロピル基、3−シアノプロピル基、1−シアノブチル基、2−シアノブチル基、3−シアノブチル基、4−シアノブチル基、1−シアノペンチル基、2−シアノペンチル基、3−シアノペンチル基、4−シアノペンチル基、5−シアノペンチル基、1−ジメチルt−ブチルシロキシ−エチル基、2−ジメチルt−ブチルシロキシ−エチル基、1−ジメチルt−ブチルシロキシ−プロピル基、2−ジメチルt−ブチルシロキシ−プロピル基、3−ジメチルt−ブチルシロキシ−プロピル基、1−ジメチルt−ブチルシロキシ−ブチル基、2−ジメチルt−ブチルシロキシ−ブチル基、3−ジメチルt−ブチルシロキシ−ブチル基、4−ジメチルt−ブチルシロキシ−ブチル基、1−ジメチルt−ブチルシロキシ−ペンチル基、2−ジメチルt−ブチルシロキシ−ペンチル基、3−ジメチルt−ブチルシロキシ−ペンチル基、4−ジメチルt−ブチルシロキシ−ペンチル基、5−ジメチルt−ブチルシロキシ−ペンチル基、1−ジメチルt−ブチルシロキシ−ヘキシル基、2−ジメチルt−ブチルシロキシ−ヘキシル基、3−ジメチルt−ブチルシロキシ−ヘキシル基、4−ジメチルt−ブチルシロキシ−ヘキシル基、5−ジメチルt−ブチルシロキシ−ヘキシル基、6−ジメチルt−ブチルシロキシ−ヘキシル基、メトキシメチル基、1−メトキシエチル基、2−メトキシエチル基、1−メトキシプロピル基、2−メトキシプロピル基、3−メトキシプロピル基、1−メトキシブチル基、2−メトキシブチル基、3−メトキシブチル基、4−メトキシブチル基、1−メトキシペンチル基、2−メトキシペンチル基、3−メトキシペンチル基、4−メトキシペンチル基、5−メトキシペンチル基、エトキシメチル基、1−エトキシエチル基、2−エトキシエチル基、1−エトキシプロピル基、2−エトキシプロピル基、3−エトキシプロピル基、1−エトキシブチル基、2−エトキシブチル基、3−エトキシブチル基、4−エトキシブチル基、1−エトキシペンチル基、2−エトキシペンチル基、3−エトキシペンチル基、4−エトキシペンチル基、5−エトキシペンチル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−エトキシフェニル基、3−エトキシフェニル基、4−エトキシフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−シアノフェニル基、3−シアノフェニル基、4−シアノフェニル基、2−メチルベンジル基、3−メチルベンジル基、4−メチルベンジル基、2−エチルベンジル基、3−エチルベンジル基、4−エチルベンジル基、2−メトキシベンジル基、3−メトキシベンジル基、4−メトキシベンジル基、2−エトキシベンジル基、3−エトキシベンジル基、4−エトキシベンジル基、2−クロロベンジル基、3−クロロベンジル基、4−クロロベンジル基、2−シアノベンジル基、3−シアノベンジル基、4−シアノベンジル基、3−メチルチオフェン−2−イル基、4−メチルチオフェン−2−イル基、5−メチルチオフェン−2−イル基、2−メチルチオフェン−3−イル基、4−メチルチオフェン−3−イル基、5−メチルチオフェン−3−イル基、3−エチルチオフェン−2−イル基、4−エチルチオフェン−2−イル基、5−エチルチオフェン−2−イル基、2−エチルチオフェン−3−イル基、4−エチルチオフェン−3−イル基、5−エチルチオフェン−3−イル基、3−メトキシチオフェン−2−イル基、4−メトキシチオフェン−2−イル基、5−メトキシチオフェン−2−イル基、2−メトキシチオフェン−3−イル基、4−メトキシチオフェン−3−イル基、5−メトキシチオフェン−3−イル基、3−エトキシチオフェン−2−イル基、4−エトキシチオフェン−2−イル基、5−エトキシチオフェン−2−イル基、2−エトキシチオフェン−3−イル基、4−エトキシチオフェン−3−イル基、5−エトキシチオフェン−3−イル基、3−クロロチオフェン−2−イル基、4−クロロチオフェン−2−イル基、
5−クロロチオフェン−2−イル基、2−クロロチオフェン−3−イル基、4−クロロチオフェン−3−イル基、5−クロロチオフェン−3−イル基などが挙げられる。
【0015】
前記の一般式(II)で表される本発明の反応において用いられるハロゲン化ギ酸エステルのR2基としては、前記一般式(I)で示した基と同様のものであってよい。
一般式(II)のR2の具体例としては、メチル基、エチル基、フェニル基、ナフチル基、ベンジル基などが好ましい。
また、一般式(II)のXは、塩素原子、臭素原子などのハロゲンであれば特に制限はないが、原料の入手の容易さからしても、Xは塩素原子であるもの、即ちクロロギ酸エステルが好ましい。
【0026】
本発明の反応は、錯体触媒、殊にロジウム錯体触媒の存在下において好ましい速度で進行する。ロジウム錯体としては種々の構造のものを用いることが出来るが、好適なものは、いわゆる低原子価のロジウム錯体である。具体的には、RhCl(CO)(PPh32、RhCl(CO)(PPhMe22、RhCl(CO)(PMe32、RhCl(cod)(PPh3)(「cod」はシクロオクタジエンを示す)、RhCl(cod)(PPhMe2)、RhCl(cod)(PMe3)、[RhCl(cod)]2等が例示される。また、低原子価のロジウム錯体に配位子を添加して反応系中で活性種を発生させてそのまま触媒として用いる方法も、本発明の態様に含まれる。
【0027】
これらのロジウム錯体の使用量はいわゆる触媒量でよく、アセチレン化合物に対して20モル%以下であり、一般的には5モル%以下で十分である。
【0028】
反応は特に溶媒を用いなくてもよいが、必要に応じて溶媒中で実施することもできる。溶媒としては、ベンゼン、トルエンなどの炭化水素系もしくはテトラヒドロフラン(THF)などのエーテル系の溶媒が一般的に用いられる。
ハロゲン化ギ酸エステルの使用量は、アセチレン化合物に対するそのモル比には制限はないが、一般により高価なアセチレン化合物を基準に収率を考える場合には、アセチレンに対して過剰に用いるのが好ましい。
【0029】
反応温度は、アセチレン化合物の構造によるが、一般には50℃以上に加熱するのが好ましく、通常は80〜200℃の範囲から選ばれる。本反応は空気中等の酸素の存在下でも進行するが、反応中間体が酸素にやや敏感であるため、窒素やアルゴン、メタン等の不活性ガス雰囲気で反応させるのが好ましい。反応混合物からの精製物の分離は、クロマトグラフィー、蒸留または再結晶によって容易に達成される。
【0030】
【実施例】
本発明を以下の実施例によってさらに具体的に説明するが、本発明は実施例に限定されるものではない。
【0031】
実施例1
1−ヘキシン(5.0ミリモル)、クロロギ酸メチル(3等量)、RhCl(cod)(PPh3)(1モル%)(式中の「cod」はシクロオクタジエンを示す。以下同じ。)をトルエン(3.0ml)に加え、窒素雰囲気下、110℃で10時間加熱した。反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計91%の収率で生成し、その両者の異性体比は97:3であった。反応液を濃縮し、カラムクロマトグラフィー(シリカゲル、2:1のヘキサン−エーテル混合液で展開)を行うことにより、単離収率80%で、(Z)−3−クロロ−2−ヘプテン酸メチルが得られた。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
無色液体; 沸点57−60 ℃ (0.6 mmHg);
1H NMR (300 MHz, CDCl3) δ 5.98 (s, 1H, C=CH), 3.69 (s, 3H, OCH3),
2.41 (t, 2H, J = 7.0 Hz), 1.57 (m, 2H), 1.32 (m, 2H),
0.89 (t, 3H, J = 7.1 Hz);
13C NMR (75 MHz, CDCl3) δ 164.4 (COOCH3), 151.0 (C=CH),
115.7 (C=CH), 51.3 (COOCH3), 40.9, 29.2, 21.6,
13.7 (carbons of butyl);
GCMS (相対強度) 176(M+, 4), 161(2), 147(100), 145(66), 141(59),
119(34), 99(59), 81(80), 67(39), 59(94);
HRMS,C8H13ClO2としての計算値: 176.0603、実測値: 176.0615
【0032】
実施例2
1−ヘキシンの代わりに3,3−ジメチル−1−ブチンを用いて実施例1と同様に処理することにより、単離収率61%で、(Z)−3−クロロ−4,4−ジメチル−2−ペンテン酸メチルが得られた。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
無色液体;沸点52−55 ℃ (0.9 mmHg);
1H NMR (300 MHz, CDCl3) δ 6.02 (s, 1H, C=CH), 3.67 (s, 3H, OCH3),
1.18 (s, 9H, C(CH3)3);
13C NMR (75 MHz, CDCl3) δ 164.9 (COOCH3), 159.3 (C=CH),
113.4 (C=CH), 51.4 (COOCH3), 40.2 (C(CH3)), 28.6 (C(CH3)3);
GCMS (相対強度) 176(M+, 3), 161(8), 145(26), 141(91), 129(17),
109(100), 81(94), 59(40);
HRMS,C8H13ClO2としての計算値: 176.0603、実測値: 176.0610
【0033】
実施例3
1−ヘキシンの代わりに5−クロロ−1−ペンチンを用いて実施例1と同様に処理することにより、単離収率91%で、(Z)−3,6−ジクロロ−2−ヘキセン酸メチルが得られた。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
無色液体; 沸点57−60 ℃ (0.6 mmHg);
1H NMR (300 MHz, CDCl3) δ 6.08 (s, 1H, C=CH), 3.72 (s, 3H, OCH3),
3.53 (t, 2H, J = 6.2 Hz), 2.62 (t, 2H, J = 7.2 Hz),
2.08 (m, 2H);
13C NMR (75 MHz, CDCl3) δ 164.1 (COOCH3), 148.6 (C=CH),
117.2 (C=CH), 51.5 (COOCH3), 43.2, 38.0, 29.6;
GCMS (相対強度) 196(M+, 10), 165(48), 161(16), 147(100), 145(66),
129(11), 119(21), 101(20), 65(87), 59(56);
HRMS,C7H10Cl2O2としての計算値:196.0057、実測値: 196.0044
【0034】
実施例4
1−ヘキシンの代わりに3−メトキシ−1−プロピンを用いて同様の処理することにより、単離収率25%で、(Z)−3−クロロ−4−メトキシ−2−ブテン酸メチルが得られた。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
無色液体; 沸点 52−55 ℃ (0.6 mmHg);
1H NMR (300 MHz, CDCl3) δ 6.32 (s, 1H, C=CH), 4.02 (s, 2H, CH2OCH3),
3.72 (s, 3H, OCH3), 3.38 (s, 3H, CH2OCH3);
13C NMR (75 MHz, CDCl3) δ 164.2 (COOCH3), 145.4 (C=CH),
115.2 (C=CH), 75.2 (CH3OCH2), 58.8 (CH3OCH2), 51.6 (COOCH3);
GCMS (相対強度) 164(M+, 5), 156(63), 149(16), 129(100), 105(86),
75(18);
HRMS,C6H9ClO3としての計算値:164.0240、実測値: 164.0304
【0035】
実施例5
1−ヘキシンの代わりに5−ヘキシノニトリルを用いて実施例1と同様に処理することにより、単離収率82%で、(Z)−6−シアノ−3−クロロ−2−ヘキセン酸メチルが得られた。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
無色液体; 沸点97−100 ℃ (1.8×10-2 mmHg)
1H NMR (300 MHz, CDCl3) δ 6.06 (s, 1H, C=CH), 3.67 (s, 3H, OCH3),
2.56 (t, 2H, J = 7.3 Hz), 2.34 (t, 2H, J = 7.0 Hz),
1.94(m, 2H);
13C NMR ( 75MHz, CDCl3) δ 163.8 (COOCH3), 147.4 (C=CH), 120.4 (CN),
118.7 (C=CH), 51.6 (COOCH3), 39.3, 22.8, 16.2;
GCMS (相対強度) 187(M+, 0.2), 156(63), 161(16), 147(15), 115(100),
101(13), 87(24), 65(38), 54(48);
HRMS,C8H10ClNOとしての計算値:2187.0399、実測値: 187.0421
【0036】
実施例6
1−ヘキシンの代わりにフェニルアセチレンを用いて実施例1と同様に処理することにより、単離収率79%で、文献(A.H. A. Youssef, H. M. Abdel-Maksoud, J. Org. Chem., 1975年, 40巻, 3227頁)に記載の既知の(Z)−3−クロロ桂皮酸メチルが得られた。
【0037】
実施例7
1−ヘキシンの代わりにp−メチルフェニルアセチレンを用いて実施例1と同様に処理し、ヘキサン−エタノールの混合溶媒から再結晶することにより、単離収率63%で、文献(A.H. A. Youssef, H. M. Abdel-Maksoud, J. Org. Chem., 1975年, 40巻, 3227頁)に記載の既知の(Z)−3−クロロ−p−メチル桂皮酸メチルが得られた。
【0038】
実施例8
1−ヘキシンの代わりに3−フェニル−1−プロピンを用いて実施例1と同様に処理することにより、単離収率73%で、(Z)−4−フェニル−3−クロロ−2−ブテン酸メチルが得られた。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
無色液体; 沸点96−100℃ (8.4×10-2 mmHg);
1H NMR (300 MHz, CDCl3) δ 7.15-6.93 (m, 5H, Ph), 5.87 (s, 1H, C=CH),
3.37 (s, 3H, OCH3), 3.34 (s, 2H, CH2Ph);
13C NMR (75 MHz, CDCl3) δ 163.8 (COOCH3), 149.0 (C=CH), 136.0,
129.4, 128.9, 127.5, 117.7 (C=CH), 51.1 (COOCH3), 47.1 (CH2Ph);
GCMS (相対強度) 210(M+, 4), 179(18), 175(31), 144(30), 115(100),
91(31), 65(21), 58(48);
HRMS,C11H11ClO2としての計算値:210.0446、実測値: 210.0443
【0039】
実施例9
RhCl(cod)(PPh3)の代わりにRhCl(cod)(PPhMe2)を用いて実施例1と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計19%の収率で生成し、その両者の異性体比は64:36であった。
【0040】
実施例10
1−ヘキシンの代わりに1−オクチンを、RhCl(cod)(PPh3)の代わりにRhCl(CO)(PPh32用いて、実施例1と同様に処理することにより、単離収率86%で、(Z)−3−クロロ−2−ノネン酸メチルが得られた。 本化合物は文献未収載の新規化合物であり、その性状およびスペクトルデータ等は以下の通りであった。
無色液体;
1H NMR (300 MHz, CDCl3) δ 6.00 (s, 1H, C=CH), 3.72 (s, 3H, OCH3),
2.42 (t, 2H, J = 7.2 Hz), 1.60 (m, 2H), 1.27 (m, 6H),
0.87 (t, 3H, J = 6.9 Hz);
13C NMR (75 MHz, CDCl3) δ 164.4 (COOCH3), 151.1 (C=CH),
115.7 (C=CH), 51.5 (COOCH3), 41.2, 31.43, 28.2, 27.1, 22.4, 14.0;
GCMS (相対強度) 204(M+, 0.1), 173(27), 169(24), 147(25), 135(50),
109(38), 93(66), 67(66), 55(100);
HRMS,C10H18ClO2 (MH+)としての計算値:205.1004、実測値: 205.0994
【0041】
実施例11
1−オクチンの代わりに5−[ジメチル(t−ブチル)シロキシ]−1−ヘキシンを用いて、実施例10と同様に処理することにより、単離収率72%で、(Z)−7−[ジメチル(t−ブチル)シロキシ]−3−クロロ−2−ヘプテン酸メチルが得られた。
本化合物は文献未収載の新規化合物であり、その性状およびスペクトルデータ等は以下の通りであった。
無色液体;
1H NMR (300 MHz, CDCl3) δ 5.97 (s, 1H, C=CH), 3.66 (s, 3H, OCH3),
3.55 (m, 2H), 2.41 (m, 2H), 1.60-1.44 (m, 4H), 0.82 (s, 9H),
-0.015 (s, 6H);
13C NMR (75 MHz, CDCl3) δ 164.3 (COOCH3), 150.8 (C=CH),
115.9 (C=CH), 62.5, 62.1, 51.3, 40.9, 31.4, 25.9, 23.6, -5.39;
GCMS (相対強度) 306 (M+ - Me, 0.7), 275(5), 251(14), 249(40),
219(12), 217(32), 115(29), 89(100);
HRMS,C13H24ClO3Si (M+ - Me)としての計算値:291.1181、実測値: 291.1161
【0042】
実施例12
1−オクチンの代わりにp−クロロフェニルアセチレンを用いて、実施例10と同様に処理し、ヘキサンから再結晶することにより、単離収率84%で、文献(A.H. A. Youssef, H. M. Abdel-Maksoud, J. Org. Chem., 1975年, 40巻, 3227頁)に記載の既知の(Z)−3−クロロ−p−クロロ桂皮酸メチルが得られた。
【0043】
実施例13
クロロギ酸メチルの代わりにクロロギ酸エチルを、RhCl(cod)(PPh3)の代わりにRhCl(CO)(PPh32を用いて実施例1と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸エチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計99%の収率で生成し、その両者の異性体比は99:1であった。
(Z)−3−クロロ−2−ヘプテン酸エチルは文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータ等は以下の通りであった。
無色液体;
1H NMR (300 MHz, CDCl3) δ 5.99 (s, 1H, C=CH),
4.18 (q, 2H, J = 7.1 Hz, OCH2CH3), 2.42 (t, 2H, J = 7.3 Hz),
1.60 (m, 2H), 1.36-1.25 (m, 5H), 0.90 (t, 3H, J = 7.3 Hz);
13C NMR (75 MHz, CDCl3) δ 164.0 (COOCH2CH3), 150.6 (C=CH),
116.1 (C=CH), 60.3 (OCH2CH3), 40.9, 29.2, 21.6, 14.2, 13.7;
GCMS (相対強度) 190(M+, 3), 161(29), 155(36), 145(100), 133(63),
109(14), 81(73);
HRMS,C9H15ClO2としての計算値:190.0760、実測値: 190.0767
【0044】
実施例14
クロロギ酸エチルの代わりにクロロギ酸ベンジルを用いて実施例13と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸ベンジルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計87%の収率で生成し、その両者の異性体比は98:2であった。
(Z)−3−クロロ−2−ヘプテン酸ベンジルは文献未収載の新規化合物であり、その性状およびスペクトルデータ等は以下の通りであった。
無色液体;
1H NMR (300 MHz, CDCl3) δ 7.42-7.27 (m, 5H, Ph), 6.07 (s, 1H, C=CH),
5.20 (s, 2H), 2.46 (t, 2H, J = 7.3 Hz), 1.62 (m, 2H),
1.34 (m, 2H), 0.93 (t, 3H, J = 7.3 Hz);
13C NMR (75 MHz, CDCl3) δ 163.8 (COOCH2Ph), 151.6 (C=CH), 135.8,
128.6, 128.4, 128.3, 115.8 (C=CH), 66.2 (OCH2Ph), 41.1, 29.3,
21.7, 13.7;
GCMS (相対強度) 252(M+, 4), 217(5), 161(1), 145(56), 129(3),
107(16), 91(100), 65(17);
HRMS,C14H17ClO2としての計算値:252.0916、実測値: 252.0907
【0045】
実施例15
クロロギ酸エチルの代わりにクロロギ酸フェニルを用いて実施例13と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸フェニルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計60%の収率で生成し、その両者の異性体比は77:23であった。
(Z)−3−クロロ−2−ヘプテン酸フェニルは文献未収載の新規化合物であり、その性状およびスペクトルデータ等は以下の通りであった。
無色液体;
1H NMR (300 MHz, CDCl3) δ 7.41-7.11 (m, 5H, Ph), 6.25 (s, 1H, C=CH),
2.53 (t, 2H, J = 7.4 Hz), 1.66 (m, 2H), 1.35 (m, 2H),
0.96 (t, 3H, J = 7.4Hz);
13C NMR (75 MHz, CDCl3) δ 162.2 (COOPh), 153.6,
150.4 (C=CH及びイプソ位炭素), 129.4, 125.8, 121.6,
115.4 (C=CH), 41.2, 29.3, 21.7, 13.8;
GCMS (相対強度) 238(M+, 2), 145(100), 115(4), 81(25);
HRMS,C13H15ClO2としての計算値:238.0759、実測値: 238.0740
【0046】
実施例16
フェニルアセチレンの代わりにp−ジエチニルベンゼンを用い、クロロギ酸メチルの使用量を6等量として実施例1と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、p−ビス[{(Z)−1−クロロ−2−メトキシカルボニル}エテニル]ベンゼンが選択的に生成していることが判明した。塩化メチレン−ヘキサンの混合溶媒から再結晶することにより、単離収率64%でp−ビス[{(Z)−1−クロロ−2−メトキシカルボニル}エテニル]ベンゼンが得られた。
本化合物は文献未収載の新規化合物であり、その性状、物性値およびスペクトルデータは等以下の通りであった。
黄色結晶; 融点107.0−109.0 ℃,
1H NMR (300 MHz, CDCl3) δ 7.72 (s, 4H, Ph), 6.59 (s, 2H, C=CH),
3.81 (s, 3H, OCH3);
13C NMR (75 MHz, CDCl3) δ 164.3 (COOCH3), 144.9,
139.1 (C=CH及びイプソ位炭素), 127.5, 117.1 (C=CH),
51.9 (COOCH3);
GCMS (相対強度) 315(M+, 5), 283(18), 251(10), 247(12), 220(13),
189(23), 161(12), 126(96), 99(18), 75(28), 59(100);
元素分析、C14H12Cl2O4としての計算値: C, 53.33; H, 3.81
実測値: C, 54.60; H, 3.79
【0047】
実施例17
RhCl(cod)(PPh3)の代わりにRhCl(CO)(1,1’−dppf)[1,1’−dppfは1,1’−ビス(ジフェニルホスフィノ)フェロセンを示す]を用いて実施例1と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計55%の収率で生成し、その両者の異性体比は94:6であった。
【0048】
実施例18
RhCl(cod)(PPh3)の代わりにRhCl(CO)(PPh2Me)2を用いて実施例1と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計67%の収率で生成し、その両者の異性体比は84:16であった。
【0049】
実施例19
RhCl(cod)(PPh3)の代わりにRhCl(CO)(dppe)[dppeは1,2−ビス(ジフェニルホスフィノ)エタンを示す]を用いて実施例1と同様に処理し、反応液を冷却後、ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計31%の収率で生成し、その両者の異性体比は94:6であった。
【0050】
実施例20
RhCl(cod)(PPh3)の代わりに、[RhCl(CO)22およびそれに対して2等量のdppb[dppbは1,2−ビス(ジフェニルホスフィノ)ブタンを示す]を用いて実施例1と同様に処理し、反応液を冷却後ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2−ヘプテン酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計26%の収率で生成し、その両者の異性体比は91:9であった。
【0051】
実施例21
1−オクチンの代わりに1−エチニルシクロヘキセンを用いて、実施例10と同様に反応し、反応液を冷却後ガスクロマトグラフィーで分析したところ、(Z)−3−(1−シクロヘキセニル)−3−クロロアクリル酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計34%の収率で生成し、その両者の異性体比は92:8であった。
(Z)−3−(1−シクロヘキセニル)−3−クロロアクリル酸メチルは文献未収載の新規化合物であり、そのマススペクトルデータは等以下の通りであった。
MS (相対強度) 200 (M+, 20), 164 (47), 133 (26), 105 (100), 91 (43),
77 (57).
【0052】
実施例22
1−オクチンの代わりに1−ブテン−3−インを用いて、実施例10と同様に反応し、反応液を冷却後ガスクロマトグラフィーで分析したところ、(Z)−3−クロロ−2,4−ペンタジエン酸メチルおよびアセチレン結合への塩素原子とエステル基の付加の方向が逆の位置異性体が合計25%の収率で生成し、その両者の異性体比は93:7であった。
(Z)−3−クロロ−2,4−ペンタジエン酸メチルは文献未収載の新規化合物であり、そのマススペクトルデータは等以下の通りであった。
MS (相対強度) 160 (M+, 40), 144 (19), 128 (30), 125 (9), 100 (37),
65 (100).
【0053】
【発明の効果】
本発明の方法により、医薬・農薬等の合成に有用なβ−ハロ−α,β−不飽和カルボン酸エステルを、入手容易なハロゲン化ギ酸エステルと三重結合を有する化合物から効率的かつ安全に製造でき、その分離精製も容易である。従って、本発明は工業的に有用な化合物を大量に安価に製造できる方法を提供するものである。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to β-halo-α, which is a useful substance used in the synthesis of pharmaceuticals such as antibiotics having beta amino acids and quinolone skeleton, agricultural chemicals such as bactericides and plant growth regulators, and high molecular compounds. , Β-unsaturated carboxylic acid ester.
[0002]
[Prior art]
A β-halo-α, β-unsaturated carboxylic acid ester derivative has been conventionally synthesized by chlorinating a β-keto acid derivative with phosphorus oxychloride or phosphorus pentachloride. However, this method requires a β-keto acid derivative, which is generally difficult to obtain, as a starting material, and is not an industrially advantageous method.
On the other hand, β-halo-α, β-unsaturated carboxylic acid ester derivatives have a plurality of functional groups, and in particular, have functional groups rich in reactivity in the vicinity of carboxyl groups. It is regarded as important as a raw material for producing functional polymer compounds. Accordingly, it has been desired to develop a method capable of producing this β-halo-α, β-unsaturated carboxylic acid ester derivative from a raw material compound which is easily available industrially.
[0003]
[Problems to be solved by the invention]
As a result of diligent research to solve such problems, the present inventors have found that a halogenated formate can be easily added to an acetylene bond in the presence of a transition metal catalyst, particularly a rhodium complex catalyst, and a double bond. As a result, it was found that the product could be isolated in the stage where the cis was left, and a novel method for producing a β-halo-α, β-unsaturated carboxylic acid ester was completed.
[0004]
  The present invention relates to a novel and efficient β-halo-α, β-unsaturated carboxylic acid ester derivative comprising reacting a compound having a carbon-carbon triple bond which is easily available industrially with a halogenated formate. The object is to provide a manufacturing method.
[0005]
[Means for Solving the Problems]
  That is, the present invention provides a β-halo-α, β-unsaturated carboxylic acid ester characterized by reacting a compound having a carbon-carbon triple bond with a halogenated formate in the presence of a rhodium complex catalyst. It is related with the manufacturing method.
[0006]
More specifically, the present invention relates to the general formula (I):
[0007]
[Chemical 2]
Figure 0003684422
[0008]
(Wherein R1Is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocycle Or a substituted or unsubstituted aralkyl group. )
A compound having a carbon-carbon triple bond represented by the general formula (II):
X-COOR2 (II)
(Wherein R2Is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocycle Group represents a substituted or unsubstituted aralkyl group, and X represents halogen. ) Is reacted with a halogenated formate ester represented by the following general formula (III),
R1C (X) = CHCOOR2 (III)
(Wherein R1, R2And X are the same as those represented by the general formulas (I) and (II). )
It relates to a method for producing a β-halo-α, β-unsaturated carboxylic acid ester derivative represented by the formula: This reaction of the present invention is preferably carried out in the presence of a complex catalyst, more preferably a rhodium complex.
[0010]
  According to the method of the present invention, a general formula (V) of the following formula in which a halogen and an ester group are added reversely:
          X-CH = C (R1) -COOR2            (V)
  (Wherein R1, R2And X are the same as above. )
Can be obtained. Therefore, this invention relates also to the manufacturing method of the compound represented by general formula (V).
[0011]
The compound having a carbon-carbon triple bond used as one of the raw materials of the method of the present invention has at least one carbon-carbon triple bond in the molecule and inhibits the reaction with a halogenated formate. The acetylene compound represented by the general formula (I) is preferable as long as it does not have a group to be used.
When a compound having a triple bond has two or more triple bonds in the molecule, these two or more triple bonds react simultaneously to form a bis form or a tris form. Thus, the compound produced | generated and its manufacturing method are also included by this invention.
The alkyl group in the general formula (I) is preferably a linear or branched alkyl group having 1 to 30, preferably 1 to 20, more preferably 1 to 10 carbon atoms, and more preferably a lower alkyl group. As the alkenyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms is preferable, and a lower alkenyl group is more preferable. The alkyl group is preferably a monocyclic, polycyclic or condensed cyclic cycloalkyl group having 5 to 30 carbon atoms, preferably 5 to 20 carbon atoms, more preferably 6 to 10 carbon atoms, and the cycloalkenyl group is the cycloalkyl group described above. And those having at least one unsaturated bond are preferred, and the aryl group has 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 6 carbon atoms. A monocyclic, polycyclic or condensed cyclic aryl group of 0 is preferable, and the heterocyclic group has at least one nitrogen atom, oxygen atom or sulfur atom in the ring, and has a size of one ring. Is a saturated or unsaturated monocyclic ring having 5 to 20 members, preferably 5 to 10 members, more preferably 5 to 7 members, which may be condensed with the aforementioned cycloalkyl group, cycloalkenyl group or aryl group, A polycyclic or condensed heterocyclic group is preferable, and examples of the aralkyl group include those in which the above-described alkyl group or alkenyl group is substituted with the above-described aryl group or heterocyclic group.
[0012]
The aforementioned alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, aryl group, heterocyclic group, or aralkyl group in general formula (I) may be substituted with a substituent that does not inhibit the reaction. Moreover, when a substituent may inhibit reaction, these substituents can be protected with a protecting group as necessary. Accordingly, the substituents of the present invention also include reactive substituents that can be protected with a protecting group during the reaction.
As the substituent of the above-mentioned alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, aryl group, heterocyclic group or aralkyl group in the general formula (I), these groups may be substituted with each other. If possible, these groups may be substituted with each other. Examples include an alkyl-substituted cycloalkyl group, an alkyl-substituted aryl group, an alkyl-substituted heterocyclic group, an alkyl-substituted aralkyl group, a cycloalkylalkyl group, a cycloalkylalkenyl group, and an alkenyl-substituted aryl group.
[0013]
Examples of other substituents include alkoxy groups composed of the above-described alkyl groups, alkylthio groups, dialkylamino groups, trialkylsilyl groups, alkyl-substituted siloxy groups, halogen atoms such as chlorine, bromine, and fluorine, methylenedioxy , Alkylenedioxy groups such as 2,2-dimethylmethylenedioxy group, cyano groups and the like.
Preferred substituents include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, t-butyl groups and other lower alkyl groups, phenyl groups, naphthyl groups and other aryl groups, methoxy groups, ethoxy groups, and n-propoxy groups. Lower alkoxy group such as dimethylamino group, diethylamino group, dilower alkylamino group such as dipropylamino group, trimethylsilyl group, triethylsilyl group, dimethylethylsilyl group, lower alkyl-substituted silyl group such as dimethyl t-butylsilyl group, Examples include halogen atoms such as chlorine and fluorine, alkylenedioxy groups such as methylenedioxy and 2,2-dimethylmethylenedioxy groups, and cyano groups.
[0014]
R in general formula (I)1Specific examples of these include, for example, methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, t-butyl groups, hexyl groups and other lower alkyl groups, vinyl groups, propenyl groups, butenyl groups, etc. Lower alkenyl groups, cycloalkyl groups such as cyclohexyl groups and cyclopentyl groups, cycloalkenyl groups such as cyclohexenyl groups, aryl groups such as phenyl groups and naphthyl groups, heterocyclic groups such as thienyl groups and furanyl groups, benzyl groups and phenethyl groups And aralkyl groups such as Examples of those having a substituent include 1-chloroethyl group, 2-chloroethyl group, 1-chloropropyl group, 2-chloropropyl group, 3-chloropropyl group, 1-chlorobutyl group, 2-chlorobutyl group, 3-chlorobutyl group, 4-chlorobutyl group, 1-cyanoethyl group, 2-cyanoethyl group, 1-cyanopropyl group, 2-cyanopropyl group, 3-cyanopropyl group, 1-cyanobutyl group, 2-cyanobutyl group, 3- Cyanobutyl group, 4-cyanobutyl group, 1-cyanopentyl group, 2-cyanopentyl group, 3-cyanopentyl group, 4-cyanopentyl group, 5-cyanopentyl group, 1-dimethyl t-butylsiloxy-ethyl group, 2 -Dimethyl t-butylsiloxy-ethyl group, 1-dimethyl t-butylsiloxy-propyl group, 2-dimethylt Butylsiloxy-propyl group, 3-dimethylt-butylsiloxy-propyl group, 1-dimethylt-butylsiloxy-butyl group, 2-dimethylt-butylsiloxy-butyl group, 3-dimethylt-butylsiloxy-butyl group, 4-dimethyl t-butylsiloxy-butyl group, 1-dimethyl t-butylsiloxy-pentyl group, 2-dimethyl t-butylsiloxy-pentyl group, 3-dimethyl t-butylsiloxy-pentyl group, 4-dimethyl t-butyl Siloxy-pentyl group, 5-dimethyl t-butylsiloxy-pentyl group, 1-dimethyl t-butylsiloxy-hexyl group, 2-dimethyl t-butylsiloxy-hexyl group, 3-dimethyl t-butylsiloxy-hexyl group, 4 -Dimethyl t-butylsiloxy-hexyl group, 5-dimethylt-butylsiloxy -Hexyl group, 6-dimethyl t-butylsiloxy-hexyl group, methoxymethyl group, 1-methoxyethyl group, 2-methoxyethyl group, 1-methoxypropyl group, 2-methoxypropyl group, 3-methoxypropyl group, 1 -Methoxybutyl group, 2-methoxybutyl group, 3-methoxybutyl group, 4-methoxybutyl group, 1-methoxypentyl group, 2-methoxypentyl group, 3-methoxypentyl group, 4-methoxypentyl group, 5-methoxy Pentyl group, ethoxymethyl group, 1-ethoxyethyl group, 2-ethoxyethyl group, 1-ethoxypropyl group, 2-ethoxypropyl group, 3-ethoxypropyl group, 1-ethoxybutyl group, 2-ethoxybutyl group, 3 -Ethoxybutyl group, 4-ethoxybutyl group, 1-ethoxypentyl group, 2-ethoxypentyl Group, 3-ethoxypentyl group, 4-ethoxypentyl group, 5-ethoxypentyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-ethoxyphenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 2-chlorophenyl group, 3-chlorophenyl Group, 4-chlorophenyl group, 2-cyanophenyl group, 3-cyanophenyl group, 4-cyanophenyl group, 2-methylbenzyl group, 3-methylbenzyl group, 4-methylbenzyl group, 2-ethylbenzyl group, 3 -Ethylbenzyl group, 4-ethylbenzyl group, 2-methoxybenzyl group, 3-methoxybenzyl group, 4 Methoxybenzyl group, 2-ethoxybenzyl group, 3-ethoxybenzyl group, 4-ethoxybenzyl group, 2-chlorobenzyl group, 3-chlorobenzyl group, 4-chlorobenzyl group, 2-cyanobenzyl group, 3-cyanobenzyl Group, 4-cyanobenzyl group, 3-methylthiophen-2-yl group, 4-methylthiophen-2-yl group, 5-methylthiophen-2-yl group, 2-methylthiophen-3-yl group, 4- Methylthiophen-3-yl group, 5-methylthiophen-3-yl group, 3-ethylthiophen-2-yl group, 4-ethylthiophen-2-yl group, 5-ethylthiophen-2-yl group, 2- Ethylthiophen-3-yl group, 4-ethylthiophen-3-yl group, 5-ethylthiophen-3-yl group, 3-methoxythiophen-2-yl group 4-methoxythiophen-2-yl group, 5-methoxythiophen-2-yl group, 2-methoxythiophen-3-yl group, 4-methoxythiophen-3-yl group, 5-methoxythiophen-3-yl group 3-ethoxythiophen-2-yl group, 4-ethoxythiophen-2-yl group, 5-ethoxythiophen-2-yl group, 2-ethoxythiophen-3-yl group, 4-ethoxythiophen-3-yl group 5-ethoxythiophen-3-yl group, 3-chlorothiophen-2-yl group, 4-chlorothiophen-2-yl group,
Examples include 5-chlorothiophen-2-yl group, 2-chlorothiophen-3-yl group, 4-chlorothiophen-3-yl group, and 5-chlorothiophen-3-yl group.
[0015]
R of a halogenated formate used in the reaction of the present invention represented by the general formula (II)2The group may be the same as the group shown in the general formula (I).
R in the general formula (II)2As specific examples, a methyl group, an ethyl group, a phenyl group, a naphthyl group, a benzyl group and the like are preferable.
Further, X in the general formula (II) is not particularly limited as long as it is a halogen such as a chlorine atom or a bromine atom, but X is a chlorine atom from the viewpoint of easy availability of raw materials, that is, chloroformic acid. Esters are preferred.
[0026]
The reaction of the present invention proceeds at a preferred rate in the presence of complex catalysts, particularly rhodium complex catalysts. As the rhodium complex, those having various structures can be used, but a preferable one is a so-called low-valent rhodium complex. Specifically, RhCl (CO) (PPhThree)2, RhCl (CO) (PPhMe2)2, RhCl (CO) (PMeThree)2, RhCl (cod) (PPhThree) ("Cod" represents cyclooctadiene), RhCl (cod) (PPhMe2), RhCl (cod) (PMeThree), [RhCl (cod)]2Etc. are exemplified. In addition, a method in which a ligand is added to a low-valent rhodium complex to generate active species in the reaction system and used as it is as a catalyst is also included in the embodiment of the present invention.
[0027]
The amount of these rhodium complexes used may be a so-called catalytic amount, which is 20 mol% or less with respect to the acetylene compound, and generally 5 mol% or less is sufficient.
[0028]
The reaction is not particularly required to use a solvent, but can be carried out in a solvent if necessary. As the solvent, hydrocarbon solvents such as benzene and toluene or ether solvents such as tetrahydrofuran (THF) are generally used.
The amount of the halogenated formate used is not limited in its molar ratio with respect to the acetylene compound, but when considering the yield based on the more expensive acetylene compound, it is preferably used in excess relative to the acetylene.
[0029]
The reaction temperature depends on the structure of the acetylene compound, but in general, it is preferably heated to 50 ° C. or higher, and usually selected from the range of 80 to 200 ° C. Although this reaction proceeds even in the presence of oxygen such as in the air, the reaction intermediate is somewhat sensitive to oxygen, and thus it is preferable to carry out the reaction in an inert gas atmosphere such as nitrogen, argon or methane. Separation of the purified product from the reaction mixture is easily accomplished by chromatography, distillation or recrystallization.
[0030]
【Example】
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples.
[0031]
Example 1
1-hexyne (5.0 mmol), methyl chloroformate (3 equivalents), RhCl (cod) (PPhThree) (1 mol%) (“cod” in the formula represents cyclooctadiene. The same applies hereinafter) was added to toluene (3.0 ml), and the mixture was heated at 110 ° C. for 10 hours in a nitrogen atmosphere. When the reaction solution was cooled and analyzed by gas chromatography, (Z) -3-chloro-2-heptenoate and a total of 91 positional isomers in which the direction of addition of the chlorine atom and the ester group to the acetylene bond was reversed. %, And the isomer ratio of both was 97: 3. The reaction solution was concentrated and subjected to column chromatography (silica gel, developed with a 2: 1 hexane-ether mixture) to give an isolated yield of 80% and methyl (Z) -3-chloro-2-heptenoate. was gotten.
This compound is a novel compound not yet described in literatures, and its properties, physical properties, spectrum data, and the like were as follows.
Colorless liquid; boiling point 57-60 ° C (0.6 mmHg);
 1H NMR (300 MHz, CDClThree) δ 5.98 (s, 1H, C = CH), 3.69 (s, 3H, OCHThree),
2.41 (t, 2H, J = 7.0 Hz), 1.57 (m, 2H), 1.32 (m, 2H),
 0.89 (t, 3H, J = 7.1 Hz);
13C NMR (75 MHz, CDClThree) δ 164.4 (COOCHThree), 151.0 (C= CH),
115.7 (C =CH), 51.3 (COOCHThree), 40.9, 29.2, 21.6,
 13.7 (carbons of butyl);
 GCMS (relative intensity) 176 (M+, 4), 161 (2), 147 (100), 145 (66), 141 (59),
 119 (34), 99 (59), 81 (80), 67 (39), 59 (94);
 HRMS, C8H13ClO2Calculated value: 176.0603, measured value: 176.0615
[0032]
Example 2
By treating in the same manner as in Example 1 using 3,3-dimethyl-1-butyne in place of 1-hexyne, (Z) -3-chloro-4,4-dimethyl was isolated in 61% yield. Methyl-2-pentenoate was obtained.
This compound is a novel compound not yet described in literatures, and its properties, physical properties, spectrum data, and the like were as follows.
Colorless liquid; boiling point 52-55 ° C (0.9 mmHg);
1H NMR (300 MHz, CDClThree) δ 6.02 (s, 1H, C = CH), 3.67 (s, 3H, OCHThree),
 1.18 (s, 9H, C (CHThree)Three);
13C NMR (75 MHz, CDClThree) δ 164.9 (COOCHThree), 159.3 (C= CH),
113.4 (C =CH), 51.4 (COOCHThree), 40.2 (C(CHThree)), 28.6 (C (CHThree)Three);
 GCMS (relative intensity) 176 (M+, 3), 161 (8), 145 (26), 141 (91), 129 (17),
109 (100), 81 (94), 59 (40);
 HRMS, C8H13ClO2Calculated value: 176.0603, measured value: 176.0610
[0033]
Example 3
By treating in the same manner as in Example 1 using 5-chloro-1-pentyne instead of 1-hexyne, methyl (Z) -3,6-dichloro-2-hexenoate was isolated in 91% yield. was gotten.
This compound is a novel compound not yet described in literatures, and its properties, physical properties, spectrum data, and the like were as follows.
Colorless liquid; boiling point 57-60 ° C (0.6 mmHg);
1H NMR (300 MHz, CDClThree) δ 6.08 (s, 1H, C = CH), 3.72 (s, 3H, OCHThree),
 3.53 (t, 2H, J = 6.2 Hz), 2.62 (t, 2H, J = 7.2 Hz),
 2.08 (m, 2H);
13C NMR (75 MHz, CDClThree) δ 164.1 (COOCHThree), 148.6 (C= CH),
117.2 (C =CH), 51.5 (COOCHThree), 43.2, 38.0, 29.6;
GCMS (relative intensity) 196 (M+, 10), 165 (48), 161 (16), 147 (100), 145 (66),
129 (11), 119 (21), 101 (20), 65 (87), 59 (56);
HRMS, C7HTenCl2O2Calculated value as: 196.0057, measured value: 196.0044
[0034]
Example 4
The same treatment using 3-methoxy-1-propyne instead of 1-hexyne gave methyl (Z) -3-chloro-4-methoxy-2-butenoate in an isolated yield of 25%. It was.
This compound is a novel compound not yet described in literatures, and its properties, physical properties, spectrum data, and the like were as follows.
Colorless liquid; boiling point 52-55 ° C (0.6 mmHg);
1H NMR (300 MHz, CDClThree) δ 6.32 (s, 1H, C = CH), 4.02 (s, 2H, CH2OCHThree),
 3.72 (s, 3H, OCHThree), 3.38 (s, 3H, CH2OCHThree);
13C NMR (75 MHz, CDClThree) δ 164.2 (COOCHThree), 145.4 (C = CH),
115.2 (C = CH), 75.2 (CHThreeOCH2), 58.8 (CHThreeOCH2), 51.6 (COOCHThree);
GCMS (relative intensity) 164 (M+, 5), 156 (63), 149 (16), 129 (100), 105 (86),
     75 (18);
HRMS, C6H9ClOThreeCalculated as: 164.0240, measured: 164.0304
[0035]
Example 5
By treating in the same manner as in Example 1 using 5-hexinonitrile instead of 1-hexyne, methyl (Z) -6-cyano-3-chloro-2-hexenoate was obtained in an isolated yield of 82%. It was.
This compound is a novel compound not yet described in literatures, and its properties, physical properties, spectrum data, and the like were as follows.
Colorless liquid; Boiling point 97-100 ℃ (1.8 × 10-2 mmHg)
1H NMR (300 MHz, CDClThree) δ 6.06 (s, 1H, C = CH), 3.67 (s, 3H, OCHThree),
 2.56 (t, 2H, J = 7.3 Hz), 2.34 (t, 2H, J = 7.0 Hz),
 1.94 (m, 2H);
13C NMR (75MHz, CDClThree) δ 163.8 (COOCHThree), 147.4 (C= CH), 120.4 (CN),
 118.7 (C =CH), 51.6 (COOCHThree), 39.3, 22.8, 16.2;
GCMS (relative intensity) 187 (M+, 0.2), 156 (63), 161 (16), 147 (15), 115 (100),
 101 (13), 87 (24), 65 (38), 54 (48);
HRMS, C8HTenCalculated as ClNO: 2187.0399, measured: 187.0421
[0036]
Example 6
By treating in the same manner as in Example 1 using phenylacetylene instead of 1-hexyne, the isolation yield was 79% and the literature (AHA Youssef, HM Abdel-Maksoud, J. Org. Chem., 1975, 40, page 3227), which is known methyl (Z) -3-chlorocinnamate.
[0037]
Example 7
Treatment in the same manner as in Example 1 using p-methylphenylacetylene instead of 1-hexyne and recrystallization from a mixed solvent of hexane-ethanol gave an isolated yield of 63% (AHA Youssef, HM). Abdel-Maksoud, J. Org. Chem., 1975, 40, 3227), known methyl (Z) -3-chloro-p-methylcinnamate was obtained.
[0038]
Example 8
By treating in the same manner as in Example 1 using 3-phenyl-1-propyne instead of 1-hexyne, (Z) -4-phenyl-3-chloro-2-butene was isolated in 73% isolated yield. Methyl acid was obtained.
This compound is a novel compound not yet described in literatures, and its properties, physical properties, spectrum data, and the like were as follows.
Colorless liquid; Boiling point 96-100 ° C (8.4 × 10-2 mmHg);
1H NMR (300 MHz, CDClThree) δ 7.15-6.93 (m, 5H, Ph), 5.87 (s, 1H, C = CH),
 3.37 (s, 3H, OCHThree), 3.34 (s, 2H, CH2Ph);
13C NMR (75 MHz, CDClThree) δ 163.8 (COOCHThree), 149.0 (C= CH), 136.0,
 129.4, 128.9, 127.5, 117.7 (C =CH), 51.1 (COOCHThree), 47.1 (CH2Ph);
GCMS (relative intensity) 210 (M+, 4), 179 (18), 175 (31), 144 (30), 115 (100),
 91 (31), 65 (21), 58 (48);
HRMS, C11H11ClO2Calculated as: 210.0446, measured: 210.0443
[0039]
Example 9
RhCl (cod) (PPhThree) Instead of RhCl (cod) (PPhMe2), And the reaction solution was cooled and analyzed by gas chromatography. As a result, methyl (Z) -3-chloro-2-heptenoate and chlorine atoms and ester groups to the acetylene bond were analyzed. The regioisomers with the opposite direction of addition were produced in a total yield of 19%, and the isomer ratio of both was 64:36.
[0040]
Example 10
Instead of 1-hexyne, 1-octyne is replaced with RhCl (cod) (PPhThree) Instead of RhCl (CO) (PPhThree)2And treated in the same manner as in Example 1 to obtain methyl (Z) -3-chloro-2-nonenoate in an isolated yield of 86%. This compound is a novel compound not yet described in literatures, and its properties, spectrum data, and the like were as follows.
Colorless liquid;
 1H NMR (300 MHz, CDClThree) δ 6.00 (s, 1H, C = CH), 3.72 (s, 3H, OCHThree),
 2.42 (t, 2H, J = 7.2 Hz), 1.60 (m, 2H), 1.27 (m, 6H),
 0.87 (t, 3H, J = 6.9 Hz);
13C NMR (75 MHz, CDClThree) δ 164.4 (COOCHThree), 151.1 (C= CH),
 115.7 (C =CH), 51.5 (COOCHThree), 41.2, 31.43, 28.2, 27.1, 22.4, 14.0;
GCMS (relative intensity) 204 (M+, 0.1), 173 (27), 169 (24), 147 (25), 135 (50),
 109 (38), 93 (66), 67 (66), 55 (100);
HRMS, CTenH18ClO2 (MH+) Calculated value as: 205.1004, measured value: 205.0994
[0041]
Example 11
By treating in the same manner as in Example 10 using 5- [dimethyl (t-butyl) siloxy] -1-hexyne instead of 1-octyne, (Z) -7- [Methyl [dimethyl (t-butyl) siloxy] -3-chloro-2-heptenoate was obtained.
This compound is a novel compound not yet described in literatures, and its properties, spectrum data, and the like were as follows.
Colorless liquid;
 1H NMR (300 MHz, CDClThree) δ 5.97 (s, 1H, C = CH), 3.66 (s, 3H, OCHThree),
 3.55 (m, 2H), 2.41 (m, 2H), 1.60-1.44 (m, 4H), 0.82 (s, 9H),
 -0.015 (s, 6H);
13C NMR (75 MHz, CDClThree) δ 164.3 (COOCHThree), 150.8 (C= CH),
 115.9 (C =CH), 62.5, 62.1, 51.3, 40.9, 31.4, 25.9, 23.6, -5.39;
GCMS (relative intensity) 306 (M+ -Me, 0.7), 275 (5), 251 (14), 249 (40),
 219 (12), 217 (32), 115 (29), 89 (100);
HRMS, C13Htwenty fourClOThreeSi (M+ -Calculated as Me): 291.1181, measured: 291.1161
[0042]
Example 12
By treating with p-chlorophenylacetylene instead of 1-octyne in the same manner as in Example 10 and recrystallizing from hexane, it was isolated in 84% isolated yield (AHA Youssef, HM Abdel-Maksoud, J Org. Chem., 1975, 40, 3227), the known methyl (Z) -3-chloro-p-chlorocinnamate was obtained.
[0043]
Example 13
Instead of methyl chloroformate, ethyl chloroformate is replaced with RhCl (cod) (PPhThree) Instead of RhCl (CO) (PPhThree)2And the reaction solution was cooled and analyzed by gas chromatography. As a result, ethyl (Z) -3-chloro-2-heptenoate and the acetylene bond with chlorine atoms and ester groups were analyzed. The regioisomers with the opposite direction of addition were produced in a total yield of 99%, the isomer ratio of both being 99: 1.
(Z) -3-Chloro-2-heptenoic acid ethyl is a novel compound not yet described in literatures, and its properties, physical properties, spectral data, and the like were as follows.
Colorless liquid;
 1H NMR (300 MHz, CDClThree) δ 5.99 (s, 1H, C = CH),
 4.18 (q, 2H, J = 7.1 Hz, OCH2CHThree), 2.42 (t, 2H, J = 7.3 Hz),
 1.60 (m, 2H), 1.36-1.25 (m, 5H), 0.90 (t, 3H, J = 7.3 Hz);
13C NMR (75 MHz, CDClThree) δ 164.0 (COOCH2CHThree), 150.6 (C= CH),
 116.1 (C =CH), 60.3 (OCH2CHThree), 40.9, 29.2, 21.6, 14.2, 13.7;
GCMS (relative intensity) 190 (M+, 3), 161 (29), 155 (36), 145 (100), 133 (63),
 109 (14), 81 (73);
HRMS, C9H15ClO2Calculated as: 190.0760, measured value: 190.0767
[0044]
Example 14
The reaction mixture was treated in the same manner as in Example 13 using benzyl chloroformate instead of ethyl chloroformate, and the reaction mixture was cooled and analyzed by gas chromatography. As a result, benzyl (Z) -3-chloro-2-heptenoate and acetylene Regioisomers in which the direction of addition of the chlorine atom and the ester group to the bond was reversed were produced in a total yield of 87%, and the isomer ratio of both was 98: 2.
(Z) -3-Chloro-2-heptenoic acid benzyl is a novel compound not yet published in literature, and its properties, spectral data, and the like are as follows.
Colorless liquid;
 1H NMR (300 MHz, CDClThree) δ 7.42-7.27 (m, 5H, Ph), 6.07 (s, 1H, C = CH),
 5.20 (s, 2H), 2.46 (t, 2H, J = 7.3 Hz), 1.62 (m, 2H),
 1.34 (m, 2H), 0.93 (t, 3H, J = 7.3 Hz);
13C NMR (75 MHz, CDClThree) δ 163.8 (COOCH2Ph), 151.6 (C= CH), 135.8,
 128.6, 128.4, 128.3, 115.8 (C =CH), 66.2 (OCH2Ph), 41.1, 29.3,
 21.7, 13.7;
GCMS (relative intensity) 252 (M+, 4), 217 (5), 161 (1), 145 (56), 129 (3),
 107 (16), 91 (100), 65 (17);
HRMS, C14H17ClO2Calculated value: 252.0916, measured value: 252.0907
[0045]
Example 15
The reaction mixture was treated in the same manner as in Example 13 using phenyl chloroformate instead of ethyl chloroformate, and the reaction solution was cooled and analyzed by gas chromatography. As a result, phenyl (Z) -3-chloro-2-heptenoate and acetylene were obtained. Regioisomers in which the direction of addition of the chlorine atom and the ester group to the bond was reversed were produced in a total yield of 60%, and the isomer ratio of both was 77:23.
(Z) -3-Chloro-2-heptenoic acid phenyl is a novel compound not yet described in the literature, and its properties, spectral data, and the like were as follows.
Colorless liquid;
 1H NMR (300 MHz, CDClThree) δ 7.41-7.11 (m, 5H, Ph), 6.25 (s, 1H, C = CH),
 2.53 (t, 2H, J = 7.4 Hz), 1.66 (m, 2H), 1.35 (m, 2H),
 0.96 (t, 3H, J = 7.4Hz);
13C NMR (75 MHz, CDClThree) δ 162.2 (COOPh), 153.6,
 150.4 (C= CH and ipso carbon), 129.4, 125.8, 121.6,
 115.4 (C =CH), 41.2, 29.3, 21.7, 13.8;
GCMS (relative intensity) 238 (M+, 2), 145 (100), 115 (4), 81 (25);
HRMS, C13H15ClO2Calculated as: 238.0759, measured value: 238.0740
[0046]
Example 16
When p-diethynylbenzene was used in place of phenylacetylene and the amount of methyl chloroformate used was 6 equivalents, the mixture was treated in the same manner as in Example 1. The reaction solution was cooled and analyzed by gas chromatography. It was found that [{(Z) -1-chloro-2-methoxycarbonyl} ethenyl] benzene was selectively produced. By recrystallization from a mixed solvent of methylene chloride-hexane, p-bis [{(Z) -1-chloro-2-methoxycarbonyl} ethenyl] benzene was obtained in an isolated yield of 64%.
This compound is a novel compound not yet described in literatures, and its properties, physical property values and spectral data are as follows.
Yellow crystals; mp 107.0-109.0 ° C,
1H NMR (300 MHz, CDClThree) δ 7.72 (s, 4H, Ph), 6.59 (s, 2H, C = CH),
 3.81 (s, 3H, OCHThree);
13C NMR (75 MHz, CDClThree) δ 164.3 (COOCHThree), 144.9,
 139.1 (C = CH and ipso carbon), 127.5, 117.1 (C =CH),
 51.9 (COOCHThree);
GCMS (relative intensity) 315 (M+, 5), 283 (18), 251 (10), 247 (12), 220 (13),
 189 (23), 161 (12), 126 (96), 99 (18), 75 (28), 59 (100);
Elemental analysis, C14H12Cl2OFourCalculated as: C, 53.33; H, 3.81
Found: C, 54.60; H, 3.79
[0047]
Example 17
RhCl (cod) (PPhThree) In place of RhCl (CO) (1,1′-dppf) [1,1′-dppf represents 1,1′-bis (diphenylphosphino) ferrocene]. The reaction solution was cooled and analyzed by gas chromatography. As a result, methyl (Z) -3-chloro-2-heptenoate and the positional isomers in which the direction of addition of the chlorine atom and the ester group to the acetylene bond was reversed were combined. It was produced in a yield of 55%, and the isomer ratio of both was 94: 6.
[0048]
Example 18
RhCl (cod) (PPhThree) Instead of RhCl (CO) (PPh2Me)2And the reaction solution was cooled and analyzed by gas chromatography. As a result, methyl (Z) -3-chloro-2-heptenoate and chlorine atoms and acetylene bonds to the acetylene bond were analyzed. The regioisomers with the opposite direction of addition were produced in a total yield of 67%, and the isomer ratio of both was 84:16.
[0049]
Example 19
RhCl (cod) (PPhThree) In place of RhCl (CO) (dppe) [dppe represents 1,2-bis (diphenylphosphino) ethane], and the reaction mixture was cooled and gas chromatographed. As a result of analysis, (Z) -3-chloro-2-heptenoate and regioisomers in which the direction of addition of the chlorine atom and the ester group to the acetylene bond is reversed are produced in a total yield of 31%. The isomer ratio of was 94: 6.
[0050]
Example 20
RhCl (cod) (PPhThree) Instead of [RhCl (CO)2]2And 2 equivalents of dppb [dppb represents 1,2-bis (diphenylphosphino) butane], and the reaction solution was cooled and analyzed by gas chromatography. , (Z) -3-Chloro-2-heptenoate and regioisomers in which the direction of addition of the chlorine atom and the ester group to the acetylene bond is reversed with a total yield of 26%, both isomers The ratio was 91: 9.
[0051]
Example 21
When 1-ethynylcyclohexene was used instead of 1-octyne and reacted in the same manner as in Example 10, the reaction solution was cooled and analyzed by gas chromatography to find (Z) -3- (1-cyclohexenyl) -3. -Regioisomers in which the directions of addition of chlorine atoms and ester groups to methyl chloroacrylate and acetylene bonds were reversed were produced in a total yield of 34%, and the isomer ratio of the two was 92: 8.
(Z) -3- (1-Cyclohexenyl) -3-chloroacrylate is a novel compound not yet described in literature, and its mass spectrum data is as follows.
MS (relative strength) 200 (M+, 20), 164 (47), 133 (26), 105 (100), 91 (43),
77 (57).
[0052]
Example 22
Using 1-butene-3-yne instead of 1-octyne, the reaction was carried out in the same manner as in Example 10, and the reaction mixture was analyzed by gas chromatography after cooling. As a result, (Z) -3-chloro-2,4 -Positional isomers in which the directions of addition of chlorine atoms and ester groups to methyl pentadienoate and acetylene bonds were reversed were produced in a total yield of 25%, and the isomer ratio of the two was 93: 7.
(Z) -3-Chloro-2,4-pentadienoic acid methyl is a novel compound not yet published in literature, and its mass spectrum data is as follows.
MS (relative strength) 160 (M+, 40), 144 (19), 128 (30), 125 (9), 100 (37),
          65 (100).
[0053]
【The invention's effect】
By the method of the present invention, β-halo-α, β-unsaturated carboxylic acid ester useful for the synthesis of pharmaceuticals, agricultural chemicals and the like is efficiently and safely produced from a readily available halogenated formate ester and a compound having a triple bond. It can be easily separated and purified. Accordingly, the present invention provides a method by which industrially useful compounds can be produced in large quantities at a low cost.

Claims (3)

ロジウム錯体触媒の存在下、炭素−炭素三重結合を有する化合物と、ハロゲン化ギ酸エステルを反応させることを特徴とする、β−ハロ−α,β−不飽和カルボン酸エステルの製造方法。 Presence of a rhodium complex catalyst, carbon - a compound having a carbon triple bond, and wherein Rukoto by reacting a halogen formate esters, beta-halo-.alpha., method for producing beta-unsaturated carboxylic acid ester. ハロゲンがクロルである請求項1に記載の製造方法。  The production method according to claim 1, wherein the halogen is chloro. 炭素−炭素三重結合を有する化合物が次式の一般式(I)、
−C≡CH (I)
(式中、Rは置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のシクロアルケニル基、置換若しくは非置換のアリール基、置換若しくは非置換の複素環式基、又は、置換若しくは非置換のアラルキル基を示す。)
で表されるアセチレン化合物であり、ハロゲン化ギ酸エステルが次式の一般式(II)、
X−COOR (II)
(式中、Rは置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のシクロアルケニル基、置換若しくは非置換のアリール基、置換若しくは非置換の複素環式基、又は、置換若しくは非置換のアラルキル基を示し、Xはハロゲンを示す。)
で表されるハロゲン化ギ酸エステルであり、β−ハロ−α,β−不飽和カルボン酸エステルが次式の一般式(III)
C(X)=CHCOOR (III)
(式中、R、R及びXは前記の一般式(I)、(II)で示されるものと同じものを示す。)
で表されるβ−ハロ−α,β−不飽和カルボン酸エステル誘導体である請求項1又は2に記載の製造方法。
A compound having a carbon-carbon triple bond is represented by the following general formula (I):
R 1 —C≡CH (I)
Wherein R 1 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aryl group, a substituted Or an unsubstituted heterocyclic group or a substituted or unsubstituted aralkyl group.)
In which the halogenated formate is represented by the following general formula (II):
X-COOR 2 (II)
Wherein R 2 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted aryl group, a substituted Or an unsubstituted heterocyclic group, or a substituted or unsubstituted aralkyl group, and X represents a halogen.)
A β-halo-α, β-unsaturated carboxylic acid ester represented by the following general formula (III):
R 1 C (X) = CHCOOR 2 (III)
(Wherein R 1 , R 2 and X are the same as those represented by the general formulas (I) and (II)).
The production method according to claim 1 or 2, which is a β-halo-α, β-unsaturated carboxylic acid ester derivative represented by the formula:
JP07648598A 1998-03-11 1998-03-11 β-halo-α, β-unsaturated carboxylic acid ester derivative and method for producing the same Expired - Lifetime JP3684422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07648598A JP3684422B2 (en) 1998-03-11 1998-03-11 β-halo-α, β-unsaturated carboxylic acid ester derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07648598A JP3684422B2 (en) 1998-03-11 1998-03-11 β-halo-α, β-unsaturated carboxylic acid ester derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11255712A JPH11255712A (en) 1999-09-21
JP3684422B2 true JP3684422B2 (en) 2005-08-17

Family

ID=13606522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07648598A Expired - Lifetime JP3684422B2 (en) 1998-03-11 1998-03-11 β-halo-α, β-unsaturated carboxylic acid ester derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP3684422B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521724B2 (en) 2000-03-10 2003-02-18 E. I. Du Pont De Nemours And Company Polymerization process

Also Published As

Publication number Publication date
JPH11255712A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
Coperet et al. Acylpalladation of Internal Alkynes and Palladium-Catalyzed Carbonylation of (Z)-. beta.-Iodoenones and Related Derivatives Producing. gamma.-Lactones and. gamma.-Lactams
KR20130142477A (en) Method for preparation of nitrocyclopropane derivatives
Bozell et al. Transition-metal-assisted asymmetric synthesis of amino acid analogs. A new synthesis of optically pure D-and L-pyridylalanines
Hayashi et al. Palladium (0)-catalyzed cyclization of 2-butenylene dicarbamates forming 4-vinyl-2-oxazolidones
JP3684422B2 (en) β-halo-α, β-unsaturated carboxylic acid ester derivative and method for producing the same
Hiyama et al. Synthesis of 4-amino-2 (5H)-furanones through intra-and intermolecular nitrile addition of ester enolates. Construction of carbon framework of an antitumor antibiotic basidalin.
Soloshonok et al. Transition metal-catalyzed diastereoselective aldol reactions of prochiral ketones with methyl isocyanoacetate
Kleschick et al. Synthesis of optically active cis-3-(2, 2-dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylic acid via intramolecular alkylation of a chiral enolate
Bernardi et al. Allylic stereocenter directed asymmetric conjugate addition. Enantioselective synthesis of 3-alkylsuccinaldehydic acid methyl esters
Ito et al. Synthesis of indole derivatives by Cu2O-catalyzed cyclization of o-(. ALPHA.-cyanoalkyl) phenyl isocyanides and o-[. ALPHA.-(methoxycarbonyl) alkyl] phenyl isocyanides.
Chang et al. Palladium-catalyzed intermolecular carboazidation of allenes with aryl iodides and trimethylsilyl azide
JP3279620B2 (en) Method for producing optically active silyl compound
JP3872317B2 (en) 4-halo-2-oxo-3-butenoic acid ester derivative and method for producing the same
JP3589932B2 (en) Betastanyl acrylamide derivative and method for producing the same
JP2847183B2 (en) Tin-containing (borylalkylidene) cycloalkane compound and method for producing the same
JP4759722B2 (en) Process for producing aromatic carboxylic acid ester having a substituent
JP3561237B2 (en) Method for producing beta-arylthioacrylate derivatives
CN110698507B (en) Preparation method of aryl vinyl silane compound
JPH10158282A (en) Purification of 3-methacryloxypropyldimethylhalosilane or 3-methacryloxypropylmethyldihalosilane
JP2008069104A (en) Helicene derivative, triyne derivative and method for producing the helicene derivative
JP2838193B2 (en) Preparation of cyclic silyl enol ether
Villiers et al. 1, 6‐Dibromohexa‐1, 3, 5‐triene− Stereocontrolled Synthesis of Monosubstituted and Disubstituted Hexatrienes by Palladium‐Catalysed Cross‐Coupling Reactions
JP2700187B2 (en) Method for producing acetylene alcohol derivative
JPH0316354B2 (en)
CN110981919A (en) Method for synthesizing octatomic amidine cyclic palladium compound by one-pot method and application thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term