JP3683369B2 - Charged particle exposure method and apparatus - Google Patents

Charged particle exposure method and apparatus Download PDF

Info

Publication number
JP3683369B2
JP3683369B2 JP33558096A JP33558096A JP3683369B2 JP 3683369 B2 JP3683369 B2 JP 3683369B2 JP 33558096 A JP33558096 A JP 33558096A JP 33558096 A JP33558096 A JP 33558096A JP 3683369 B2 JP3683369 B2 JP 3683369B2
Authority
JP
Japan
Prior art keywords
charged particle
aperture
apertures
passed
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33558096A
Other languages
Japanese (ja)
Other versions
JPH10172895A (en
Inventor
新一 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP33558096A priority Critical patent/JP3683369B2/en
Publication of JPH10172895A publication Critical patent/JPH10172895A/en
Application granted granted Critical
Publication of JP3683369B2 publication Critical patent/JP3683369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は荷電粒子露光装置に関し、電子ビーム等の荷電粒子を用いて試料の露光を行う装置に関する。
【0002】
【従来の技術】
ウェーハ上にデバイスパターンを形成する際に、少品種大量生産の場合にはパターンの親としてマスクないしレチクルを作成し、アライナーないしステッパーでウェーハ上に転写する技術が広く使用されている。そのマスク・レチクルの製作の際の乾板露光には、電子ビーム等の荷電粒子を偏向・照射する荷電粒子露光装置が広く使用されている。また、多品種少量生産および短納期生産の場合にはウェーハ上に直接荷電粒子露光を行う。なお、乾板とはガラス基板の上に光を遮るための金属膜をスパッタし、その上にビームに感光するレジストを塗布したものであり、ウェーハの場合はウェーハ上に直接レジストを塗布する。
【0003】
このような露光装置では荷電粒子のビーム径(ビームサイズ)が常時一定となるよう管理する必要がある。
図6は従来の露光装置のビーム測定装置の一例の構成図を示す。なお、電子銃10〜ファラディーカップ18までは真空チャンバ内に設置されているが、図面を分り易くする為に省略している。同様の目的で本発明に直接は関らない機器も省略している。他の図においても同様である。同図中、電子銃10より発射された電子ビーム11は主アパーチャ12を通して整形され、縮小レンズ13及び対物絞り14を通して縮小し、更に偏向器15で静電偏向されて乾板の置かれる焦点位置に投影される。この投影面にナイフエッジ17を設けたファラディーカップ18が設置されている。
【0004】
ここで、CPU21から図7(B)に示すブランキング信号をブランキング電極23に供給して、その接地レベル期間に電子ビームを投影面に照射させると共に、偏向制御回路20に指示を出して偏向器15に図7(A)に示す偏向電圧を印加する。これによって投影面上で電子ビームをX方向に走査し、ファラディーカップ18で検出される図7(C)に示す検出信号を信号処理回路19に供給する。信号処理回路19では上記検出信号を微分して図7(D)に示す微分信号を得て、この微分信号が予め定められた設定レベルの閾値を越える期間T1を計測してビームサイズを推定している。
【0005】
【発明が解決しようとする課題】
従来装置では、微分信号を閾値と比較することでビームサイズを測定するため、閾値の設定そのものにあいまいさを含んでおり、また閾値の変動によってビームサイズが変動し、正確なビームサイズの測定が行えないという問題があった。本発明は上記の点に鑑みなされたもので、閾値の変動の影響を受けることなく、常時、ビームサイズの測定を正確に行いえる荷電粒子露光装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、アパーチャを通過した荷電粒子ビームを縮小レンズにより縮小して投影面上を走査し、上記投影面上の試料の露光を行う荷電粒子露光方法において、
上記アパーチャを上記走査方向に互いに離間させて複数配置して、それらを通過する電子ビームを独立にオン/オフし、
上記投影面上の所定位置で荷電粒子ビームを検出し、
上記複数のアパーチャを通過した荷電粒子ビームを走査して、一つのアパーチャを通過した荷電粒子ビームが上記検出手段で検出されてから次のアパーチャを通過した荷電粒子ビームが上記検出手段で検出されるまでの期間と、上記複数のアパーチャの離間距離とから縮小率を求め、上記縮小率と各アパーチャの走査方向幅とから上記投影面上の荷電粒子の走査方向幅であるビームサイズを計算する。
【0007】
請求項2に記載の発明は、アパーチャを通過した荷電粒子ビームを縮小レンズにより縮小して投影面上を走査し、上記投影面上の試料の露光を行う荷電粒子露光装置において、
上記アパーチャを上記走査方向に互いに離間させて複数配置して、それらを通過する電子ビームを独立にオン/オフする手段と、
上記投影面上の所定位置で荷電粒子ビームを検出する検出手段と、
上記複数のアパーチャを通過した荷電粒子ビームを走査して、一つのアパーチャを通過した荷電粒子ビームが上記検出手段で検出されてから次のアパーチャを通過した荷電粒子ビームが上記検出手段で検出されるまでの期間と、上記複数のアパーチャの離間距離とから縮小率を求め、上記縮小率と各アパーチャの走査方向幅とから上記投影面上の荷電粒子の走査方向幅であるビームサイズを計算する計算手段とを有する。
【0008】
このため、検出手段で得た検出信号、又はこの検出信号を微分した信号を閾値と比較して荷電粒子ビームの検出時点を決める場合、閾値が変動したとしても一つのアパーチャを通過した荷電粒子ビームの検出時点から次のアパーチャを通過した荷電粒子ビームの検出時点までの期間は変動することがなく、この変動のない期間とアパーチャの離間距離とアパーチャの幅とから常時正確なビームサイズを求めることができる。
【0009】
請求項3に記載の発明は、請求項2記載の荷電粒子露光装置において、
前記複数のアパーチャは第1のアパーチャを中心としてX方向及びこれと直交するY方向に離間した第2,第3のアパーチャであり、
上記第1,第2のアパーチャを通過した荷電粒子ビームをX方向に走査し、上記第1,第3のアパーチャを通過した荷電粒子ビームをY方向に走査する。
【0010】
このため、閾値の変動に拘らずX方向のビームサイズ、及びY方向のビームサイズを常時正確に求めることができ、更にX方向、Y方向夫々のビームサイズから非点収差を求めることが可能となる。
請求項4に記載の発明は、請求項3記載の荷電粒子露光装置において、
前記第1乃至第3のアパーチャはブランキングアパーチャアレイ内の任意のアパーチャを選定する。
【0011】
このようにブランキングアパーチャアレイではX方向、Y方向に離間するアパーチャを任意に選定してX方向のビームサイズ、Y方向のビームサイズ、及び非点収差を求めることができる。
【0012】
【発明の実施の形態】
図1は本発明装置の一実施例の構成図を示す。同図中、電子銃30より発射された電子ビーム31は主アパーチャ32a及び補助アパーチャ32b夫々を通して整形される。この主アパーチャ32a,補助アパーチャ32b夫々を通った電子ビームは縮小レンズ33及び対物絞り34を通して縮小され、更に偏向器35で静電偏向されて乾板の置かれる焦点位置に投影される。この投影面にはナイフエッジ37を設けた検出手段としてのファラディーカップ18が設置されている。計算手段としてのCPU41は偏向制御回路40を通して主アパーチャ32a,補助アパーチャ32b夫々のブランキング電極の作動制御、及び偏向制御回路40への指示等を行い、信号処理回路39から処理結果を通知されてビームサイズを算出する。
【0013】
ここで、主アパーチャ32a,補助アパーチャ32bについて図2,図3を用いて説明する。図2は図1の縮小レンズ33側から見た下面図、図3は図2の下方から見た側面図を示す。図2,図3において、支持部材50に貫通孔51,52,53が穿設されている。貫通孔51が主アパーチャ32aとなり、貫通孔52が補助アパーチャ32bとなり、貫通孔53は図1に示されていないが補助アパーチャ32cとなる。支持部材50上には貫通孔51,52,53夫々を囲むように略コ字状のシールド電極54,55,56,及びブランキング電極57,58,59夫々が立設されている。シールド電極54〜56は配線60によって接地され、ブランキング電極57〜59夫々には端子61〜63夫々よりブランキング信号が供給される。
【0014】
例えば端子61のブランキング信号が値0(電圧0V)のときはブランキング電極57とこれに対向するシールド電極54との間に電位差が生じないため、電子ビームは偏向されることなく貫通孔51を通過する。即ち主アパーチャ32aが開口する。ブランキング信号が値1(電圧V1 )のときはブランキング電極57とシールド電極54との間の電位差に応じた電界によって貫通孔51を通過する電子ビームは偏向され、対物絞り14の外側に到達し、投影面には到達することがない。なお、上記の主アパーチャ53aの貫通孔51と補助アパーチャ53b,53cの貫通孔52,53夫々との間の距離A,B夫々は所定値とされている。
【0015】
図1に戻って説明するに、CPU41から偏向制御回路40に指示を出して偏向器35に図4(A)に示す偏向電圧を印加する。これと共に主アパーチャ32aのブランキング電極57に図4(B)に示す主ブランキング信号を印加して、その値が0の期間に主アパーチャ32aを開口させる。そして補助アパーチャ32bのブランキング電極58に図4(C)に示す補助ブランキング信号を印加して、その値が0の期間に補助アパーチャ32bを開口させる。上記の主ブランキング信号と補助ブランキング信号夫々の値0の期間は重ならないように設定されている。
【0016】
これによって、まず主アパーチャ32aを通った電子ビームがX方向に走査されてファラディーカップ38に到達し、図4(D)の実線Iに示す検出信号が得られる。この後、補助アパーチャ32bを通った電子ビームがX方向走査によりファラディーカップ38に到達し、図4(D)の実線IIに示す検出信号が得られる。この検出信号は信号処理回路39に供給されて微分され、図4(E)に実線III ,IVで示す微分信号とされる。信号処理回路39は実線III の主アパーチャ32aの微分信号の立上り部分が閾値Vref を越える時点から実線IVの補助アパーチャ32bの微分信号の立上り部分が閾値Vref を越えるまでの期間T2を計測してCPU41に通知する。
【0017】
ところで、偏向器35の偏向量は較正されており、一定速度で偏向を行うため、期間T2は投影面における偏向量(長さ)とみなすことができる。
また、図2に示す既知の距離(貫通孔51,52夫々の対応する辺の距離)Aと測定値T2との比は縮小レンズ33の縮小率αを表わしており、既知の主アパーチャ32aの貫通孔51のX方向幅aと上記縮小率αとから投影面におけるX方向ビームサイズを知ることができる。CPU41では上記測定値T2と距離A及び幅aを用いてX方向ビームサイズを算出する。実際には測定値T2が予め定めた値となるように縮小レンズの縮小率αの調整を行うことによってX方向ビームサイズを一定の値に調整することができる。
【0018】
また、同様にして、電子ビームをX方向と直交するY方向に走査を行うことにより主アパーチャ32aと補助アパーチャ32cによる検出信号をファラディーカップ38で得て、その検出信号の微分信号を求め、主アパーチャ32aの微分信号の立上り部分が閾値Vref を越える時点から補助アパーチャ32cの微分信号の立上り部分が閾値Vref を越えるまでの期間T3を計測し、貫通孔51,53夫々の対応する辺の距離Bと期間T3との比と、貫通孔51のY方向幅bとから投影面におけるY方向ビームサイズを求めることができる。このように、X方向ビームサイズとY方向ビームサイズとを測定することにより非点収差の測定が可能となる。
【0019】
ところで、微分信号の比較の基準となる閾値Vref が多少変動しても、主アパーチャ32a,補助アパーチャ32b,32cは略同一形状であるため検出信号I,IIは略同一波形であり、微分信号III ,IVも略同一波形である。このため、閾値Vref が変動しても期間T2の変化はない。従って、閾値Vref の変動に拘らず常時、正確なビームサイズを計測することができる。なお、微分信号III ,IVの立下り時点の期間T2a,又はピーク時点の期間T2b夫々も上記期間T2と同一であるため、これらのどの期間を選んでも良い。
【0020】
ところで、複数形成された荷電粒子ビーム(例えば電子ビーム)を全体として所望のビーム形状となるように制御するマルチビーム方式の荷電粒子ビーム露光装置の1つであるブランキングアパーチャアレイ(BAA)を用いた電子ビーム露光装置が従来から開発されている。BAAは図5に示すように、矩形の貫通孔70とその周囲に形成されたシールド電極71とブランキング電極72からなる群を千鳥格子状に複数個配列し、シールド電極71をグランド電位に設定し、ブランキング電極72をグランド電位又はある電位に設定することにより、各貫通孔を通過する電子ビームの軌道を制御するものである。
【0021】
このようなBAAにおいては例えばアパーチャ75を主アパーチャと決め、この主アパーチャ75からX方向に延在した位置にあるアパーチャ76と、Y方向に延在した位置にあるアパーチャ77とを補助アパーチャと決めることにより前述と同様にしてX方向ビームサイズ、Y方向ビームサイズ、及び非点収差の測定が可能である。
【0022】
【発明の効果】
上述の如く、請求項1に記載の発明は、アパーチャを通過した荷電粒子ビームを縮小レンズにより縮小して投影面上を走査し、上記投影面上の試料の露光を行う荷電粒子露光方法において、
上記アパーチャを上記走査方向に互いに離間させて複数配置して、それらを通過する電子ビームを独立にオン/オフし、
上記投影面上の所定位置で荷電粒子ビームを検出し、
上記複数のアパーチャを通過した荷電粒子ビームを走査して、一つのアパーチャを通過した荷電粒子ビームが上記検出手段で検出されてから次のアパーチャを通過した荷電粒子ビームが上記検出手段で検出されるまでの期間と、上記複数のアパーチャの離間距離とから縮小率を求め、上記縮小率と各アパーチャの走査方向幅とから上記投影面上の荷電粒子の走査方向幅であるビームサイズを計算する。
【0023】
また、請求項2に記載の発明は、アパーチャを通過した荷電粒子ビームを縮小レンズにより縮小して投影面上を走査し、上記投影面上の試料の露光を行う荷電粒子露光装置において、
上記アパーチャを上記走査方向に互いに離間させて複数配置して、それらを通過する電子ビームを独立にオン/オフする手段と、
上記投影面上の所定位置で荷電粒子ビームを検出する検出手段と、
上記複数のアパーチャを通過した荷電粒子ビームを走査して、一つのアパーチャを通過した荷電粒子ビームが上記検出手段で検出されてから次のアパーチャを通過した荷電粒子ビームが上記検出手段で検出されるまでの期間と、上記複数のアパーチャの離間距離とから縮小率を求め、上記縮小率と各アパーチャの走査方向幅とから上記投影面上の荷電粒子の走査方向幅であるビームサイズを計算する計算手段とを有する。
【0024】
このため、検出手段で得た検出信号、又はこの検出信号を微分した信号を閾値と比較して荷電粒子ビームの検出時点を決める場合、閾値が変動したとしても一つのアパーチャを通過した荷電粒子ビームの検出時点から次のアパーチャを通過した荷電粒子ビームの検出時点までの期間は変動することがなく、この変動のない期間とアパーチャの離間距離とアパーチャの幅とから常時正確なビームサイズを求めることができる。
【0025】
また、請求項3に記載の発明は、請求項2記載の荷電粒子露光装置において、前記複数のアパーチャは第1のアパーチャを中心としてX方向及びこれと直交するY方向に離間した第2,第3のアパーチャであり、
上記第1,第2のアパーチャを通過した荷電粒子ビームをX方向に走査し、上記第1,第3のアパーチャを通過した荷電粒子ビームをY方向に走査する。
【0026】
このため、閾値の変動に拘らずX方向のビームサイズ、及びY方向のビームサイズを常時正確に求めることができ、更にX方向、Y方向夫々のビームサイズから非点収差を求めることが可能となる。
また、請求項4に記載の発明は、請求項3記載の荷電粒子露光装置において、前記第1乃至第3のアパーチャはブランキングアパーチャアレイ内の任意のアパーチャを選定する。
【0027】
このようにブランキングアパーチャアレイではX方向、Y方向に離間するアパーチャを任意に選定してX方向のビームサイズ、Y方向のビームサイズ、及び非点収差を求めることができる。
【図面の簡単な説明】
【図1】本発明装置の構成図である。
【図2】アパーチャを説明するための図である。
【図3】アパーチャを説明するための図である。
【図4】本発明の信号波形図である。
【図5】BAAを説明するための図である。
【図6】従来装置の構成図である。
【図7】従来の信号波形図である。
【符号の説明】
30 電子銃
31 電子ビーム
32a 主アパーチャ
32b 補助アパーチャ
33 縮小レンズ
34 対物絞り
35 偏向器
37 ナイフエッジ
38 ファラディーカップ
39 信号処理回路
40 偏向制御回路
41 CPU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charged particle exposure apparatus, and more particularly to an apparatus for exposing a sample using charged particles such as an electron beam.
[0002]
[Prior art]
When forming a device pattern on a wafer, in the case of mass production of a small number of products, a technique of creating a mask or reticle as a parent of the pattern and transferring it onto the wafer with an aligner or stepper is widely used. A charged particle exposure apparatus that deflects and irradiates charged particles such as an electron beam is widely used for dry plate exposure in manufacturing the mask / reticle. In the case of high-mix low-volume production and short delivery time production, charged particle exposure is performed directly on the wafer. The dry plate is obtained by sputtering a metal film for shielding light on a glass substrate and applying a resist sensitive to a beam thereon. In the case of a wafer, the resist is directly applied on the wafer.
[0003]
In such an exposure apparatus, it is necessary to manage such that the beam diameter (beam size) of charged particles is always constant.
FIG. 6 is a block diagram showing an example of a beam measuring apparatus of a conventional exposure apparatus. Although the electron gun 10 to the Faraday cup 18 are installed in the vacuum chamber, they are omitted for easy understanding of the drawings. For the same purpose, equipment not directly related to the present invention is also omitted. The same applies to the other drawings. In the figure, an electron beam 11 emitted from an electron gun 10 is shaped through a main aperture 12, reduced through a reduction lens 13 and an objective aperture 14, and is further electrostatically deflected by a deflector 15 to a focal position where a dry plate is placed. Projected. A Faraday cup 18 having a knife edge 17 is provided on the projection surface.
[0004]
Here, the blanking signal shown in FIG. 7B is supplied from the CPU 21 to the blanking electrode 23 to irradiate the projection surface with the electron beam during the ground level period, and the deflection control circuit 20 is instructed to deflect. A deflection voltage shown in FIG. As a result, the electron beam is scanned in the X direction on the projection surface, and the detection signal shown in FIG. 7C detected by the Faraday cup 18 is supplied to the signal processing circuit 19. The signal processing circuit 19 differentiates the detection signal to obtain a differential signal shown in FIG. 7D, and measures a period T1 in which the differential signal exceeds a predetermined threshold level to estimate the beam size. ing.
[0005]
[Problems to be solved by the invention]
In the conventional device, since the beam size is measured by comparing the differential signal with the threshold value, the setting of the threshold value itself includes ambiguity, and the beam size varies due to the variation of the threshold value, so that accurate beam size measurement is possible. There was a problem that it could not be done. The present invention has been made in view of the above points, and an object of the present invention is to provide a charged particle exposure apparatus capable of accurately measuring the beam size at all times without being affected by fluctuations in the threshold value.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a charged particle exposure method in which a charged particle beam that has passed through an aperture is reduced by a reduction lens and scanned on a projection surface to expose a sample on the projection surface.
A plurality of the apertures are spaced apart from each other in the scanning direction, and an electron beam passing through them is independently turned on / off,
Detecting a charged particle beam at a predetermined position on the projection plane;
The charged particle beam that has passed through the plurality of apertures is scanned, the charged particle beam that has passed through one aperture is detected by the detecting means, and then the charged particle beam that has passed through the next aperture is detected by the detecting means. The reduction ratio is obtained from the period until and the separation distance of the plurality of apertures, and the beam size which is the scanning direction width of the charged particles on the projection plane is calculated from the reduction ratio and the scanning direction width of each aperture.
[0007]
According to a second aspect of the present invention, there is provided a charged particle exposure apparatus that scans a projection surface by reducing a charged particle beam that has passed through an aperture by a reduction lens and exposes a sample on the projection surface.
A plurality of apertures spaced apart from each other in the scanning direction, and means for independently turning on / off the electron beams passing through the apertures;
Detecting means for detecting a charged particle beam at a predetermined position on the projection plane;
The charged particle beam that has passed through the plurality of apertures is scanned, the charged particle beam that has passed through one aperture is detected by the detecting means, and then the charged particle beam that has passed through the next aperture is detected by the detecting means. Calculation for calculating a beam size which is a scanning direction width of the charged particle on the projection plane from the period until and a separation distance of the plurality of apertures, and obtaining a reduction rate from the reduction rate and the scanning direction width of each aperture Means.
[0008]
Therefore, when a detection signal obtained by the detection means or a signal obtained by differentiating the detection signal is compared with a threshold value to determine a detection time point of the charged particle beam, even if the threshold value fluctuates, the charged particle beam that has passed through one aperture The period from the detection time to the detection time of the charged particle beam that has passed through the next aperture does not fluctuate, and always obtain an accurate beam size from this fluctuation period, the aperture separation distance, and the aperture width. Can do.
[0009]
The invention according to claim 3 is the charged particle exposure apparatus according to claim 2,
The plurality of apertures are second and third apertures spaced from each other in the X direction and the Y direction orthogonal to the first aperture,
The charged particle beam that has passed through the first and second apertures is scanned in the X direction, and the charged particle beam that has passed through the first and third apertures is scanned in the Y direction.
[0010]
For this reason, the beam size in the X direction and the beam size in the Y direction can always be accurately obtained regardless of the fluctuation of the threshold, and astigmatism can be obtained from the beam sizes in the X direction and the Y direction. Become.
According to a fourth aspect of the present invention, in the charged particle exposure apparatus according to the third aspect,
As the first to third apertures, arbitrary apertures in the blanking aperture array are selected.
[0011]
In this manner, in the blanking aperture array, apertures that are separated in the X direction and the Y direction can be arbitrarily selected to obtain the beam size in the X direction, the beam size in the Y direction, and astigmatism.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a block diagram of an embodiment of the apparatus of the present invention. In the figure, an electron beam 31 emitted from an electron gun 30 is shaped through a main aperture 32a and an auxiliary aperture 32b. The electron beam that has passed through the main aperture 32a and the auxiliary aperture 32b is reduced through the reduction lens 33 and the objective aperture 34, and is further electrostatically deflected by the deflector 35 and projected onto the focal position where the dry plate is placed. A Faraday cup 18 as a detecting means provided with a knife edge 37 is installed on the projection surface. The CPU 41 as the calculation means performs the operation control of the blanking electrodes of the main aperture 32a and the auxiliary aperture 32b through the deflection control circuit 40 and gives instructions to the deflection control circuit 40, and is notified of the processing result from the signal processing circuit 39. Calculate the beam size.
[0013]
Here, the main aperture 32a and the auxiliary aperture 32b will be described with reference to FIGS. 2 is a bottom view as viewed from the reduction lens 33 side of FIG. 1, and FIG. 3 is a side view as viewed from below in FIG. 2 and 3, through holes 51, 52 and 53 are formed in the support member 50. The through hole 51 serves as the main aperture 32a, the through hole 52 serves as the auxiliary aperture 32b, and the through hole 53 serves as the auxiliary aperture 32c (not shown in FIG. 1). On the support member 50, substantially U-shaped shield electrodes 54, 55, 56 and blanking electrodes 57, 58, 59 are erected so as to surround the through holes 51, 52, 53, respectively. The shield electrodes 54 to 56 are grounded by the wiring 60, and blanking signals are supplied to the blanking electrodes 57 to 59 from the terminals 61 to 63, respectively.
[0014]
For example, when the blanking signal at the terminal 61 has a value of 0 (voltage 0 V), there is no potential difference between the blanking electrode 57 and the shield electrode 54 opposed to the blanking electrode 57, so that the electron beam is not deflected and the through hole 51 is deflected. Pass through. That is, the main aperture 32a is opened. When the blanking signal has a value of 1 (voltage V 1 ), the electron beam passing through the through hole 51 is deflected by an electric field corresponding to the potential difference between the blanking electrode 57 and the shield electrode 54, so that the electron beam passes outside the objective aperture 14. And never reach the projection plane. The distances A and B between the through hole 51 of the main aperture 53a and the through holes 52 and 53 of the auxiliary apertures 53b and 53c are set to predetermined values.
[0015]
Returning to FIG. 1, the CPU 41 issues an instruction to the deflection control circuit 40 to apply the deflection voltage shown in FIG. At the same time, the main blanking signal shown in FIG. 4B is applied to the blanking electrode 57 of the main aperture 32a, and the main aperture 32a is opened during the period when the value is zero. Then, an auxiliary blanking signal shown in FIG. 4C is applied to the blanking electrode 58 of the auxiliary aperture 32b, and the auxiliary aperture 32b is opened during a period when the value is zero. The period of the value 0 of each of the main blanking signal and the auxiliary blanking signal is set so as not to overlap.
[0016]
As a result, first, the electron beam that has passed through the main aperture 32a is scanned in the X direction to reach the Faraday cup 38, and a detection signal indicated by a solid line I in FIG. 4D is obtained. Thereafter, the electron beam passing through the auxiliary aperture 32b reaches the Faraday cup 38 by scanning in the X direction, and a detection signal indicated by a solid line II in FIG. 4D is obtained. This detection signal is supplied to the signal processing circuit 39 and differentiated to be differentiated signals indicated by solid lines III and IV in FIG. The signal processing circuit 39 measures a period T2 from when the rising portion of the differential signal of the main aperture 32a of the solid line III exceeds the threshold value Vref to when the rising portion of the differential signal of the auxiliary aperture 32b of the solid line IV exceeds the threshold value Vref. Notify
[0017]
By the way, since the deflection amount of the deflector 35 is calibrated and the deflection is performed at a constant speed, the period T2 can be regarded as the deflection amount (length) on the projection surface.
Further, the ratio of the known distance (distance between the corresponding sides of the through holes 51 and 52) A shown in FIG. 2 and the measured value T2 represents the reduction ratio α of the reduction lens 33, and the known main aperture 32a. The X-direction beam size on the projection plane can be known from the X-direction width a of the through hole 51 and the reduction ratio α. The CPU 41 calculates the X-direction beam size using the measured value T2, the distance A, and the width a. In practice, the X-direction beam size can be adjusted to a constant value by adjusting the reduction ratio α of the reduction lens so that the measured value T2 becomes a predetermined value.
[0018]
Similarly, a detection signal by the main aperture 32a and the auxiliary aperture 32c is obtained by the Faraday cup 38 by scanning the electron beam in the Y direction orthogonal to the X direction, and a differential signal of the detection signal is obtained. A period T3 from the time when the rising portion of the differential signal of the main aperture 32a exceeds the threshold value Vref to the time when the rising portion of the differential signal of the auxiliary aperture 32c exceeds the threshold value Vref is measured. The Y-direction beam size on the projection plane can be obtained from the ratio between B and the period T3 and the Y-direction width b of the through hole 51. Thus, astigmatism can be measured by measuring the X-direction beam size and the Y-direction beam size.
[0019]
By the way, even if the threshold value Vref used as a reference for comparison of the differential signal slightly varies, the main aperture 32a and the auxiliary apertures 32b and 32c have substantially the same shape, so that the detection signals I and II have substantially the same waveform, and the differential signal III. , IV also have substantially the same waveform. For this reason, even if the threshold value Vref fluctuates, there is no change in the period T2. Therefore, it is possible to always measure an accurate beam size regardless of the fluctuation of the threshold value Vref. Note that the period T2a at the time of falling of the differential signals III and IV or the period T2b at the peak time are the same as the period T2, and any of these periods may be selected.
[0020]
By the way, a blanking aperture array (BAA), which is one of multi-beam type charged particle beam exposure apparatuses that controls a plurality of formed charged particle beams (for example, electron beams) so as to have a desired beam shape as a whole, is used. The conventional electron beam exposure apparatus has been developed. As shown in FIG. 5, the BAA has a plurality of groups of rectangular through holes 70 and shield electrodes 71 and blanking electrodes 72 formed around the rectangular through holes 70 arranged in a staggered pattern, and the shield electrodes 71 are set to the ground potential. By setting the blanking electrode 72 to the ground potential or a certain potential, the trajectory of the electron beam passing through each through hole is controlled.
[0021]
In such a BAA, for example, the aperture 75 is determined as the main aperture, and the aperture 76 at the position extending in the X direction from the main aperture 75 and the aperture 77 at the position extending in the Y direction are determined as the auxiliary apertures. Thus, the X direction beam size, the Y direction beam size, and astigmatism can be measured in the same manner as described above.
[0022]
【The invention's effect】
As described above, the invention according to claim 1 is a charged particle exposure method in which the charged particle beam that has passed through the aperture is reduced by a reduction lens, scanned on the projection surface, and the sample on the projection surface is exposed.
A plurality of the apertures are spaced apart from each other in the scanning direction, and an electron beam passing through them is independently turned on / off,
Detecting a charged particle beam at a predetermined position on the projection plane;
The charged particle beam that has passed through the plurality of apertures is scanned, the charged particle beam that has passed through one aperture is detected by the detecting means, and then the charged particle beam that has passed through the next aperture is detected by the detecting means. The reduction ratio is obtained from the period until and the separation distance of the plurality of apertures, and the beam size which is the scanning direction width of the charged particles on the projection plane is calculated from the reduction ratio and the scanning direction width of each aperture.
[0023]
According to a second aspect of the present invention, there is provided a charged particle exposure apparatus that scans a projection surface by reducing a charged particle beam that has passed through an aperture by a reduction lens and exposes a sample on the projection surface.
A plurality of apertures spaced apart from each other in the scanning direction, and means for independently turning on / off the electron beams passing through the apertures;
Detecting means for detecting a charged particle beam at a predetermined position on the projection plane;
The charged particle beam that has passed through the plurality of apertures is scanned, the charged particle beam that has passed through one aperture is detected by the detecting means, and then the charged particle beam that has passed through the next aperture is detected by the detecting means. Calculation for calculating a beam size which is a scanning direction width of the charged particle on the projection plane from the period until and a separation distance of the plurality of apertures, and obtaining a reduction rate from the reduction rate and the scanning direction width of each aperture Means.
[0024]
Therefore, when a detection signal obtained by the detection means or a signal obtained by differentiating the detection signal is compared with a threshold value to determine a detection time point of the charged particle beam, even if the threshold value fluctuates, the charged particle beam that has passed through one aperture The period from the detection time to the detection time of the charged particle beam that has passed through the next aperture does not fluctuate, and always obtain an accurate beam size from this fluctuation period, the aperture separation distance, and the aperture width. Can do.
[0025]
According to a third aspect of the present invention, there is provided the charged particle exposure apparatus according to the second aspect, wherein the plurality of apertures are separated from each other in the X direction and the Y direction perpendicular to the first aperture with the first aperture as a center. 3 aperture,
The charged particle beam that has passed through the first and second apertures is scanned in the X direction, and the charged particle beam that has passed through the first and third apertures is scanned in the Y direction.
[0026]
For this reason, the beam size in the X direction and the beam size in the Y direction can always be accurately obtained regardless of the fluctuation of the threshold, and astigmatism can be obtained from the beam sizes in the X direction and the Y direction. Become.
According to a fourth aspect of the present invention, in the charged particle exposure apparatus according to the third aspect, the first to third apertures are arbitrary apertures in a blanking aperture array.
[0027]
In this manner, in the blanking aperture array, apertures that are separated in the X direction and the Y direction can be arbitrarily selected to obtain the beam size in the X direction, the beam size in the Y direction, and astigmatism.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an apparatus according to the present invention.
FIG. 2 is a diagram for explaining an aperture.
FIG. 3 is a diagram for explaining an aperture;
FIG. 4 is a signal waveform diagram of the present invention.
FIG. 5 is a diagram for explaining BAA.
FIG. 6 is a configuration diagram of a conventional apparatus.
FIG. 7 is a conventional signal waveform diagram.
[Explanation of symbols]
30 Electron gun 31 Electron beam 32a Main aperture 32b Auxiliary aperture 33 Reduction lens 34 Objective aperture 35 Deflector 37 Knife edge 38 Faraday cup 39 Signal processing circuit 40 Deflection control circuit 41 CPU

Claims (4)

アパーチャを通過した荷電粒子ビームを縮小レンズにより縮小して投影面上を走査し、上記投影面上の試料の露光を行う荷電粒子露光方法において、
上記アパーチャを上記走査方向に互いに離間させて複数配置して、それらを通過する電子ビームを独立にオン/オフし、
上記投影面上の所定位置で荷電粒子ビームを検出し、
上記複数のアパーチャを通過した荷電粒子ビームを走査して、一つのアパーチャを通過した荷電粒子ビームが上記検出手段で検出されてから次のアパーチャを通過した荷電粒子ビームが上記検出手段で検出されるまでの期間と、上記複数のアパーチャの離間距離とから縮小率を求め、上記縮小率と各アパーチャの走査方向幅とから上記投影面上の荷電粒子の走査方向幅であるビームサイズを計算することを特徴とする荷電粒子露光方法。
In the charged particle exposure method in which the charged particle beam that has passed through the aperture is reduced by a reduction lens and scanned on the projection surface to expose the sample on the projection surface.
A plurality of the apertures are spaced apart from each other in the scanning direction, and an electron beam passing through them is independently turned on / off,
Detecting a charged particle beam at a predetermined position on the projection plane;
The charged particle beam that has passed through the plurality of apertures is scanned, and the charged particle beam that has passed through one aperture is detected by the detecting means, and then the charged particle beam that has passed through the next aperture is detected by the detecting means. And calculating the beam size, which is the scanning direction width of the charged particles on the projection plane, from the reduction ratio and the scanning direction width of each aperture. A charged particle exposure method characterized by the above.
アパーチャを通過した荷電粒子ビームを縮小レンズにより縮小して投影面上を走査し、上記投影面上の試料の露光を行う荷電粒子露光装置において、
上記アパーチャを上記走査方向に互いに離間させて複数配置して、それらを通過する電子ビームを独立にオン/オフする手段と、
上記投影面上の所定位置で荷電粒子ビームを検出する検出手段と、
上記複数のアパーチャを通過した荷電粒子ビームを走査して、一つのアパーチャを通過した荷電粒子ビームが上記検出手段で検出されてから次のアパーチャを通過した荷電粒子ビームが上記検出手段で検出されるまでの期間と、上記複数のアパーチャの離間距離とから縮小率を求め、上記縮小率と各アパーチャの走査方向幅とから上記投影面上の荷電粒子の走査方向幅であるビームサイズを計算する計算手段とを有することを特徴とする荷電粒子露光装置。
In the charged particle exposure apparatus that scans the projection surface by reducing the charged particle beam that has passed through the aperture with a reduction lens, and exposing the sample on the projection surface,
A plurality of apertures spaced apart from each other in the scanning direction, and means for independently turning on / off the electron beams passing through the apertures;
Detecting means for detecting a charged particle beam at a predetermined position on the projection plane;
The charged particle beam that has passed through the plurality of apertures is scanned, and the charged particle beam that has passed through one aperture is detected by the detecting means, and then the charged particle beam that has passed through the next aperture is detected by the detecting means. Calculation for calculating a beam size which is a scanning direction width of the charged particles on the projection plane from the period until and a separation distance of the plurality of apertures, and obtaining a reduction rate from the reduction rate and the scanning direction width of each aperture A charged particle exposure apparatus.
請求項2記載の荷電粒子露光装置において、
前記複数のアパーチャは第1のアパーチャを中心としてX方向及びこれと直交するY方向に離間した第2,第3のアパーチャであり、
上記第1,第2のアパーチャを通過した荷電粒子ビームをX方向に走査し、上記第1,第3のアパーチャを通過した荷電粒子ビームをY方向に走査することを特徴とする荷電粒子露光装置。
The charged particle exposure apparatus according to claim 2.
The plurality of apertures are second and third apertures spaced from each other in the X direction and the Y direction orthogonal to the first aperture,
A charged particle exposure apparatus that scans the charged particle beam that has passed through the first and second apertures in the X direction and that scans the charged particle beam that has passed through the first and third apertures in the Y direction. .
請求項3記載の荷電粒子露光装置において、
前記第1乃至第3のアパーチャはブランキングアパーチャアレイ内の任意のアパーチャを選定することを特徴とする荷電粒子露光装置。
The charged particle exposure apparatus according to claim 3.
The charged particle exposure apparatus according to claim 1, wherein any one of the first to third apertures in a blanking aperture array is selected.
JP33558096A 1996-12-16 1996-12-16 Charged particle exposure method and apparatus Expired - Fee Related JP3683369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33558096A JP3683369B2 (en) 1996-12-16 1996-12-16 Charged particle exposure method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33558096A JP3683369B2 (en) 1996-12-16 1996-12-16 Charged particle exposure method and apparatus

Publications (2)

Publication Number Publication Date
JPH10172895A JPH10172895A (en) 1998-06-26
JP3683369B2 true JP3683369B2 (en) 2005-08-17

Family

ID=18290179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33558096A Expired - Fee Related JP3683369B2 (en) 1996-12-16 1996-12-16 Charged particle exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP3683369B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947842B2 (en) * 2000-03-31 2012-06-06 キヤノン株式会社 Charged particle beam exposure system
JP2003077813A (en) * 2001-09-05 2003-03-14 Nikon Corp Method of evaluating imaging performance of charged particle beam exposure device, method of adjusting the charged particle beam exposure device, beam spread measuring apparatus and the charged particle beam exposure device
JP4784544B2 (en) * 2007-04-03 2011-10-05 日新イオン機器株式会社 Method of measuring beam width and divergence angle of ion beam and ion implantation apparatus
JP6700152B2 (en) 2016-10-18 2020-05-27 株式会社ニューフレアテクノロジー Multi-beam focus adjusting method and multi-beam focus measuring method

Also Published As

Publication number Publication date
JPH10172895A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
TWI271770B (en) In situ ion beam incidence angle and beam divergence monitor
JP4327497B2 (en) Electron beam exposure apparatus, electron beam exposure method, semiconductor element manufacturing method, mask, and mask manufacturing method
JP2005056923A (en) Multi-charged particle beam optical lithography system and method, and method for manufacturing device employing the system or the method
JPH10289851A (en) Charged particle beam exposing device
US6194732B1 (en) Charged-particle-beam exposure methods with beam parallelism detection and correction
KR101090639B1 (en) Electron beam dimension measuring device and electron beam dimension measuring method
US6624430B2 (en) Method of measuring and calibrating inclination of electron beam in electron beam proximity exposure apparatus, and electron beam proximity exposure apparatus
JP3251875B2 (en) Charged particle beam exposure system
EP0078579A2 (en) Method of using an electron beam
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JP3683369B2 (en) Charged particle exposure method and apparatus
JP2009081459A (en) Method and device for electron beam exposure, semiconductor element manufacturing method, mask, and mask manufacturing method
CA1166766A (en) Method and apparatus for forming a variable size electron beam
US20130168569A1 (en) Drawing apparatus, and method of manufacturing article
JP4477434B2 (en) Charged particle beam exposure apparatus and device manufacturing method
US20030197135A1 (en) Electron beam exposure apparatus, electron beam exposure method, semiconductor device manufacturing method, and electron beam shape measuring method
JP3697494B2 (en) Beam edge blur measurement method and refocus amount determination method, stencil mask used in these methods, and charged particle beam exposure method and apparatus
JP3064375B2 (en) Electron beam drawing apparatus and its adjustment method
JP2786660B2 (en) Charged beam drawing method
JP3838771B2 (en) Electron beam incident angle measuring method in electron beam exposure apparatus and exposure method using the same
JPS6320376B2 (en)
JP3256648B2 (en) Method for evaluating shaped beam of charged beam writing apparatus and charged beam writing method
JPH04278516A (en) Electron beam aligner
JP2848417B2 (en) Charged particle beam exposure apparatus and exposure method
JP4095218B2 (en) Charged beam exposure method and exposure apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees