JP3682140B2 - Increasing the amount of information transmitted in an optical fiber - Google Patents

Increasing the amount of information transmitted in an optical fiber Download PDF

Info

Publication number
JP3682140B2
JP3682140B2 JP04554997A JP4554997A JP3682140B2 JP 3682140 B2 JP3682140 B2 JP 3682140B2 JP 04554997 A JP04554997 A JP 04554997A JP 4554997 A JP4554997 A JP 4554997A JP 3682140 B2 JP3682140 B2 JP 3682140B2
Authority
JP
Japan
Prior art keywords
light
angle
optical fiber
signal
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04554997A
Other languages
Japanese (ja)
Other versions
JPH10239566A (en
Inventor
菊枝 入江
則司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP04554997A priority Critical patent/JP3682140B2/en
Publication of JPH10239566A publication Critical patent/JPH10239566A/en
Application granted granted Critical
Publication of JP3682140B2 publication Critical patent/JP3682140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はマルチモードステップインデックス型(以下単に「SI型」と略す)光ファイバを用いた信号伝送において、伝送可能な情報量を増加させる方法に関する。
【0002】
【従来の技術】
SI型光ファイバは光信号伝達の媒体として使用される。その際、SI型光ファイバを伝わる光には多数の伝搬モードが存在し、モードによって伝搬速度が異なるため、伝達される信号パルスの形状が崩れるという現象を生じる。すなわちファイバへの入射角とファイバからの出射角が大きい高次モードの光は、ファイバへの入射角とファイバからの出射角が小さい低次モードの光より伝播速度が遅い。従ってこれらを合成して得られる信号パルスの形状が劣化するので、SI型光ファイバでは高い周波数の信号を伝送することができないという問題がある。
【0003】
伝達可能な信号の周波数範囲を伝送帯域といい、一般に伝送可能な上限周波数で表される。伝送帯域が広いということは一定時間に伝達可能な情報量が多いということである。
【0004】
【発明が解決しようとする課題】
SI型光ファイバは、既に述べたごとくモード分散による信号劣化が原因で伝送帯域が限られ、例えば100m伝送に於ける典型的な伝送帯域値は数十MHz〜百数十MHzと低い。
【0005】
本発明の目的は、通常の使用法では伝送帯域が狭いSI型光ファイバの伝送帯域を大幅に改善し伝達可能な情報量を増すことにある。
【0008】
【課題を解決するための手段】
前記課題は以下の発明によって解決される。即ち、マルチモードステップインデックス型光ファイバの入射端から光を入射させ出射端から光を出射させる信号伝送において、出射光を出射光軸となす角度毎の複数の成分に分け、各成分をそれぞれ異なる受光器にて受光して電気信号に変換し、角度が小さい成分の信号をそれぞれ所定の時間遅らせる遅延処理した後、角度が大きい成分の信号と加算することを特徴とする伝達情報量の増加方法である。
【0011】
この発明は、出射角が小さい成分の信号をそれぞれ所定の時間遅らせる遅延処理した後、出射角が大きい成分と加算する方法である。尚、本発明において出射光が出射光軸となす角度を出射角という。
【0012】
【発明の実施の形態】
既に説明したように、SI型光ファイバにおいては光パルスを入力すると出射光パルスは時間軸方向に広がる(図1)。これは伝搬モードによって光路長が変わり,これらの光の到達時間にずれを生じるためである。このことを図2を用いて説明する。
【0013】
図2の中間的な光路長を有するモードの光(2)に対し,このモードよりも伝搬角が大きい(1)のようなモードでは同じファイバ長を伝搬する光路長が長くなり,逆に(2)よりも伝搬角が小さい(3)のようなモードでは光路長が短くなる。一つの光パルスに含まれるこれらのモードの光はファイバを伝わる伝搬速度が違うため,図2の右側に示すようにそれぞれの場合で到達時間に違いを生じ,(2)のモードの光は(1)のモードの光よりt1時間だけ速く到達し,(3)のモードの光は(1)のモードよりt2時間だけ速く到達する。これらが加え合わされた結果時間幅の広いパルスとなるわけである。
【0014】
ここでそれぞれの各伝搬モードの信号の広がり幅、合成されるパルス光(信 号)の広がり幅に比べて狭。各モードの伝搬速度は伝搬角で決まり、出射面がファイバ軸に垂直な平面であれば伝搬角は出射角に対応する。それゆえ受光する光を所定の出射角以下の範囲に限定することによって受光する伝搬モードを所定の範囲内に限定できる。
【0015】
伝搬角と伝搬速度の関係は、伝播角度が小さい場合は角度変化に対する速度変化の差が小さく、伝播角度が大きくなると角度変化に対する速度変化の差が大きくなる。従って所定の角度より小さい伝搬角、即ち所定の角度より小さい出射角の光のみを受光器に導く方法が効率が良い。そしてこの方法は図10に示すような絞りとレンズからなる単純な光学系で実施できるため特に実用性が高い。図10(a)はこの目的を実施する最も簡単な光学系である。尚、レンズの径を小さくすれば、絞りを省略することも可能である。また図10(b)のようにファイバ出射端に凸レンズを追加して、よりコンパクトな光学系にすることもできる。
【0016】
発明は、更に積極的に広帯域化をねらうもので、上記各伝搬モードをそれぞれ別の受光器で受光した後、得られた各モードの電気信号を演算処理してパルス波形を整形するものである。図4は発明の一例であるが、各モードの受信パルスのうち時間の早いものをそれぞれ遅延素子を用いて所定の時間だけ遅らせ、時間補正をした後に加算するもので、全てのモードのパルスを加算できるため効率が良く、S/N比の劣化をまねかずに広帯域化を図ることができる。
【0017】
図5は反転増幅器を利用した減算回路によりパルス波形を整形するもので、遅延素子を用いない分だけシンプルである。特に伝搬速度の早いモードと、逆に遅いモードの信号を他のモードの信号から減算してパルス幅を狭めるものであるが、減算により信号強度が弱まるため、伝搬光が弱い長距離の通信には適さない。
【0018】
前記の実施形態では伝送光を三つのモード群に分けた例を説明したが、実際には二つ或いは四つ以上に分けることもできる。原理的には多数に分ける程大きな効果が期待できるが、実際の光ファイバでは各伝搬モードは相互に混じり合うため、分割数が一定以上になると伝送帯域の拡大効果は飽和する。逆に装置構成が複雑になるというデメリットが生じる。適切な分割数は光ファイバの種類と使用条件によって異なるが、例えば開口数0.5のプラスチック光ファイバを使って50〜100mの伝送では二分割ないし三分割程度である。
【0019】
ファイバ端からの出射角を利用して伝搬モードを分割受光するためには、例えば図3のように同心円状に分割された広い受光面を有するPD(フォトダイオード)を使う方法が考えられる。しかしながらこのような特殊な受光面を持ち、且つ応答速度が速い(数nsec)PDを制作するのは容易でない。そこで以下に述べるような通常のPDを使ってモード分割する方法が採用される。
【0020】
光ファイバの出射光を凸レンズを使ってPDに導く際、図7のごとく凸レンズの光軸をファイバの出射軸からずらすことによって出射光の集束位置も移動する。この集束位置の移動距離Dはレンズの光軸のずれをd、投影倍率をmとすると、D=(1+m)dである。そこで図7の(a)、(b)、(c)のごとく、軸をずらした凸レンズをファイバ軸を中心として同心円状に切り取り、これらを合成した形状の特殊レンズSLを使って、図6のごとく配置すれば、出射角によって区別された各モード群の光は異なる位置に集束され、それぞれのPDで受光される。
【0021】
【実施例】
以下実施例により本発明を説明する。
【0022】
参照例1
直径1mm、開口数0.5のSI型プラスチック光ファイバを使い、図8に示す装置で伝送パルスの波形を観察した。光源にはパルス駆動できるLD(レーザーダイオード)を用い、レンズで入射端に集光させた。受光側には光を円形状にカットするために図9の円形スリットを設けたマスクを用意し、光ファイバの光出射端の後方にこの光ファイバの軸と円形スリットの中心が同一線上に並ぶように置いた。
【0023】
光ファイバから出射した光は、一定の出射角の成分のみが円形スリットを通過し,レンズでPD(フォトダイオード)に導かれた。円形スリットのスリット幅は1mmとし,光ファイバの端面から約5mmのところに置かれ、ファイバ光軸となす角が0度(直径1mmのピンホール),約10度,15度,20度の方向の光のみ通過できる4通りのものを用意した。これらのマスクを通して測定した時間軸に対するパルス幅を,マスクを用いない場合のパルス幅と比較した。
【0024】
パルス幅100psec未満の光パルスを入射し光ファイバを50m通過してきたパルスを比較すると,マスクを用いない場合にパルス幅が3.26nsであったものが,0度,10度,15度,20度のマスクによって,それぞれ,1.48ns,1.53ns,1.80ns,2.58nsとなった。この結果は、マスクを用いない場合と比較して伝送帯域がそれぞれ2.2倍,2.1倍,1.8倍,1.3倍であることを意味する。
【0025】
ここで0〜15度までのパルスのピーク位置は比較的接近しているので、0〜15度までを通す円形窓のマスクを図10のように用いた。その結果、通常の使用法の2倍弱の伝送帯域が実現できた。
【0026】
実施例
直径1mm、長さ50m、開口数0.5のコアが屈折率 1.49 のポリメチルメタクリレートからなるSI型プラスチック光ファイバを使い、図8に示す装置で伝送パルスの波形を観察した。光源にはパルス駆動できるLD(レーザーダイオード)を用い、レンズで入射端に集光させた。
光ファイバの長さをL,内部を伝搬する光線がファイバー軸となす角度をθとすると,この光線が伝搬する距離はL/cosθで表される。ファイバー中を光が進む速さをvとすると,この光線が光ファイバを通って出射端に達するのにかかる時間τは,L/(v・cosθ)である。この光ファイバの0度,10度,15度,20度の出射光はそれぞれθ=0度,6.7度,10.0度,13.3度であり、0度を基準としたτの遅れは0nsec,1.7nsec,3.8nsec,7.8nsecである。
【0027】
験結果から分かるように出射角が20度程度になるとパルスの広がりが著しく大きくなるため、この成分は利用せず、例えば図6ないし図3に示した方法を利用して(分割数は図と異なる)出射角が0〜10度,10〜15度の二成分に分けて受光し、0〜10度の信号に約2nsecの遅延を施した後、10〜15度の信号に加えた。その結果伝送帯域は約2.5倍に向上した。
【0028】
【発明の効果】
本発明によれば、SI型ファイバを使う光信号伝送において、受光側の光学系あるいは光学系と電気回路によりパルス信号の劣化を抑制することができ、伝送帯域を増すことができる。
【図面の簡単な説明】
【図1】光伝送におけるパルス波形の劣化を説明する図である。
【図2】伝搬モードによる伝送パルスの違いを説明する図である。
【図3】本発明の一実施形態である光学系を示す図である。
【図4】本発明の一実施形態である信号処理回路図である。
【図5】本発明の一実施形態である信号処理回路図である。
【図6】本発明の一実施形態である光学系を示す図である。
【図7】本発明の一実施形態である光学系の原理を説明する図である。
【図8】実施例1における光学系の配置図である。
【図9】図8の円形スリットの平面図である。
【図10】実施例1で使用した円形窓を有するマスクを示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for increasing the amount of information that can be transmitted in signal transmission using a multimode step index type (hereinafter simply referred to as “SI type”) optical fiber.
[0002]
[Prior art]
The SI type optical fiber is used as an optical signal transmission medium. At that time, there are many propagation modes in the light transmitted through the SI type optical fiber, and the propagation speed differs depending on the mode, so that the shape of the transmitted signal pulse is broken. That is, the higher-order mode light having a large incident angle to the fiber and the output angle from the fiber has a propagation speed slower than the low-order mode light having a small angle of incidence to the fiber and the output angle from the fiber. Therefore, since the shape of the signal pulse obtained by combining these deteriorates, there is a problem that a high frequency signal cannot be transmitted by the SI type optical fiber.
[0003]
A frequency range of a signal that can be transmitted is called a transmission band, and is generally represented by an upper limit frequency that can be transmitted. A wide transmission band means that a large amount of information can be transmitted in a certain time.
[0004]
[Problems to be solved by the invention]
As described above, the transmission bandwidth of the SI optical fiber is limited due to signal degradation due to mode dispersion. For example, a typical transmission bandwidth value in a 100-meter transmission is as low as several tens of MHz to several tens of MHz.
[0005]
An object of the present invention is to greatly improve the transmission band of an SI type optical fiber having a narrow transmission band under normal usage, and increase the amount of information that can be transmitted.
[0008]
[Means for Solving the Problems]
The above problems are solved by the following invention. That is, in signal transmission in which light is incident from the incident end of the multimode step index optical fiber and light is emitted from the outgoing end, the outgoing light is divided into a plurality of components for each angle with the outgoing optical axis, and each component is different. A method for increasing the amount of transmitted information, comprising: receiving light by a light receiver, converting the signal into an electrical signal, delaying a signal having a component having a small angle by delaying each signal by a predetermined time, and then adding the signal having a component having a large angle It is.
[0011]
The present invention is a method of adding a component having a large exit angle after delay processing for delaying a signal having a component having a small exit angle by a predetermined time. In the present invention, the angle formed by the outgoing light with the outgoing optical axis is called the outgoing angle.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As already described, in the SI type optical fiber, when an optical pulse is input, the outgoing light pulse spreads in the time axis direction (FIG. 1). This is because the optical path length changes depending on the propagation mode, and the arrival times of these lights are shifted. This will be described with reference to FIG.
[0013]
In contrast to the mode light (2) having an intermediate optical path length in FIG. 2, in the mode (1) having a propagation angle larger than this mode, the optical path length propagating through the same fiber length becomes longer. In the mode (3) where the propagation angle is smaller than 2), the optical path length is short. Because the propagation speeds of these modes contained in one light pulse are different in the fiber, the arrival times differ in each case as shown in the right side of FIG. The light in the mode (1) arrives faster by t1 time, and the light in the mode (3) arrives faster than the mode (1) by t2 hours. These are added together to form a pulse with a wide time width.
[0014]
Wherein the width of the spread of each of the propagation modes of the signal is not narrow in comparison with the width of the spread of the synthesized the pulsed light (signal). The propagation speed of each mode is determined by the propagation angle. If the exit surface is a plane perpendicular to the fiber axis, the propagation angle corresponds to the exit angle. Therefore, the propagation mode for receiving light can be limited to a predetermined range by limiting the light to be received to a range of a predetermined emission angle or less.
[0015]
Regarding the relationship between the propagation angle and the propagation speed, when the propagation angle is small, the difference in speed change with respect to the angle change is small, and when the propagation angle is large, the difference in speed change with respect to the angle change is large. Therefore, a method of guiding only light having a propagation angle smaller than a predetermined angle, that is, light having an emission angle smaller than a predetermined angle, to the light receiver is efficient. This method is particularly practical because it can be implemented with a simple optical system comprising a stop and a lens as shown in FIG. FIG. 10 (a) is the simplest optical system that performs this purpose. If the diameter of the lens is reduced, the diaphragm can be omitted. Further, as shown in FIG. 10B, a convex lens can be added to the fiber exit end to make a more compact optical system.
[0016]
The present invention is intended to further broaden the bandwidth, and after receiving each of the above-mentioned propagation modes with a separate light receiver, the electric signal of each mode obtained is processed and shaped into a pulse waveform. is there. FIG. 4 shows an example of the present invention. Of the received pulses in each mode, the earlier received pulse is delayed by a predetermined time using a delay element and added after time correction. Therefore, it is possible to increase the bandwidth without causing deterioration of the S / N ratio.
[0017]
In FIG. 5, the pulse waveform is shaped by a subtracting circuit using an inverting amplifier, which is simple because no delay element is used. In particular, the mode with the fast propagation speed and the signal with the slow mode are subtracted from the signals in the other modes to narrow the pulse width. Is not suitable.
[0018]
In the above embodiment, the example in which the transmission light is divided into the three mode groups has been described. However, in practice, the transmission light can be divided into two or four or more groups. In principle, the greater the effect, the greater the effect that can be expected. However, in an actual optical fiber, the propagation modes are mixed with each other, so the transmission band expansion effect is saturated when the number of divisions exceeds a certain value. On the contrary, there is a demerit that the device configuration becomes complicated. The appropriate number of divisions depends on the type of optical fiber and usage conditions. For example, in the case of transmission of 50 to 100 m using a plastic optical fiber having a numerical aperture of 0.5, it is about two or three.
[0019]
In order to divide and receive the propagation mode using the emission angle from the fiber end, for example, a method using a PD (photodiode) having a wide light receiving surface divided concentrically as shown in FIG. However, it is not easy to produce a PD having such a special light receiving surface and a high response speed (several nsec). Therefore, a method of mode division using a normal PD as described below is adopted.
[0020]
When the outgoing light of the optical fiber is guided to the PD using a convex lens, the focusing position of the outgoing light is moved by shifting the optical axis of the convex lens from the outgoing axis of the fiber as shown in FIG. The moving distance D of the focusing position is D = (1 + m) d where d is the deviation of the optical axis of the lens and m is the projection magnification. Therefore, as shown in FIGS. 7A, 7B, and 7C, a convex lens whose axis is shifted is cut concentrically around the fiber axis, and a special lens SL having a shape obtained by synthesizing these is used, as shown in FIG. If arranged like this, the light of each mode group distinguished by the emission angle is focused at different positions and received by each PD.
[0021]
【Example】
The following examples illustrate the invention.
[0022]
Reference example 1
Using a SI type plastic optical fiber having a diameter of 1 mm and a numerical aperture of 0.5, the waveform of the transmission pulse was observed with the apparatus shown in FIG. An LD (laser diode) that can be pulse-driven was used as the light source, and the light was condensed at the incident end by a lens. A mask provided with a circular slit of FIG. 9 is prepared on the light receiving side in order to cut light into a circular shape, and the axis of the optical fiber and the center of the circular slit are aligned on the same line behind the light emitting end of the optical fiber. Put it like that.
[0023]
The light emitted from the optical fiber has only a component having a constant emission angle that passes through the circular slit and is guided to the PD (photodiode) by the lens. The slit width of the circular slit is 1 mm, and it is placed about 5 mm from the end face of the optical fiber. The angle with the optical axis of the fiber is 0 degree (pinhole with a diameter of 1 mm), about 10 degrees, 15 degrees, and 20 degrees. Four types of light that can only pass through are prepared. The pulse width with respect to the time axis measured through these masks was compared with the pulse width without the mask.
[0024]
Comparing pulses that have entered a light pulse with a pulse width of less than 100 psec and passed through an optical fiber of 50 m, the pulse width was 3.26 ns when the mask was not used, but it was 0 degrees, 10 degrees, 15 degrees, and 20 degrees. With the masks of 1.48 ns, 1.53 ns, 1.80 ns, and 2.58 ns, respectively. This result means that the transmission bands are 2.2 times, 2.1 times, 1.8 times, and 1.3 times, respectively, compared with the case where no mask is used.
[0025]
Here, since the peak positions of the pulses from 0 to 15 degrees are relatively close to each other, a mask having a circular window that passes from 0 to 15 degrees was used as shown in FIG. As a result, a transmission band slightly less than twice that of the normal usage was realized.
[0026]
Example 1
A SI type plastic optical fiber made of polymethyl methacrylate having a diameter of 1 mm, a length of 50 m, and a numerical aperture of 0.5 having a refractive index of 1.49 was used, and the waveform of the transmission pulse was observed with the apparatus shown in FIG. An LD (laser diode) that can be pulse-driven was used as the light source, and the light was condensed at the incident end by a lens.
Assuming that the length of the optical fiber is L and the angle between the light beam propagating inside and the fiber axis is θ, the distance that this light beam propagates is represented by L / cos θ. Assuming that the speed of light traveling through the fiber is v, the time τ required for this light ray to reach the exit end through the optical fiber is L / (v · cos θ) . 0 ° of this optical fiber, 10 degrees, 15 degrees, 20 degrees, respectively theta = 0 degrees outgoing light of 6.7 degrees, 10.0 degrees, 13.3 degrees, delay of τ relative to the 0 ° 0 nsec, 1.7 nsec, 3.8 nsec, and 7.8 nsec.
[0027]
Since the spread of the pulse when the exit angle as can be seen from the experimental results is about 20 degrees is significantly increased, the component is not available, for example, using the method shown in FIGS. 6 to 3 (the number of divisions FIG The light was divided into two components having an emission angle of 0 to 10 degrees and 10 to 15 degrees, and a signal of 0 to 10 degrees was delayed by about 2 nsec, and then added to the signal of 10 to 15 degrees. As a result, the transmission bandwidth was improved by about 2.5 times.
[0028]
【The invention's effect】
According to the present invention, in the optical signal transmission using the SI type fiber, the deterioration of the pulse signal can be suppressed by the optical system on the light receiving side or the optical system and the electric circuit, and the transmission band can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining deterioration of a pulse waveform in optical transmission.
FIG. 2 is a diagram for explaining a difference in transmission pulse depending on a propagation mode;
FIG. 3 is a diagram showing an optical system according to an embodiment of the present invention.
FIG. 4 is a signal processing circuit diagram according to an embodiment of the present invention.
FIG. 5 is a signal processing circuit diagram according to an embodiment of the present invention.
FIG. 6 is a diagram showing an optical system according to an embodiment of the present invention.
FIG. 7 is a diagram illustrating the principle of an optical system according to an embodiment of the present invention.
8 is a layout diagram of an optical system in Embodiment 1. FIG.
FIG. 9 is a plan view of the circular slit of FIG.
10 is a view showing a mask having a circular window used in Example 1. FIG.

Claims (1)

マルチモードステップインデックス型光ファイバの入射端から光を入射させ出射端から光を出射させる信号伝送において、出射光を出射光軸となす角度毎の複数の成分に分け、各成分をそれぞれ異なる受光器にて受光して電気信号に変換し、角度が小さい成分の信号をそれぞれ所定の時間遅らせる遅延処理した後、角度が大きい成分の信号と加算することを特徴とする伝達情報量の増加方法。 In signal transmission in which light is incident from the incident end of the multimode step index type optical fiber and is emitted from the output end, the output light is divided into a plurality of components for each angle with respect to the output optical axis, and each component is different from each other. A method of increasing the amount of transmitted information, comprising: delaying a signal having a component having a small angle by delaying the signal having a component having a small angle, and adding the component signal having a component having a large angle.
JP04554997A 1997-02-28 1997-02-28 Increasing the amount of information transmitted in an optical fiber Expired - Fee Related JP3682140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04554997A JP3682140B2 (en) 1997-02-28 1997-02-28 Increasing the amount of information transmitted in an optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04554997A JP3682140B2 (en) 1997-02-28 1997-02-28 Increasing the amount of information transmitted in an optical fiber

Publications (2)

Publication Number Publication Date
JPH10239566A JPH10239566A (en) 1998-09-11
JP3682140B2 true JP3682140B2 (en) 2005-08-10

Family

ID=12722453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04554997A Expired - Fee Related JP3682140B2 (en) 1997-02-28 1997-02-28 Increasing the amount of information transmitted in an optical fiber

Country Status (1)

Country Link
JP (1) JP3682140B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630643B2 (en) 2004-08-05 2009-12-08 Panasonic Corporation Multimode optical transmission system and multimode optical transmission method
JP2007116437A (en) * 2005-10-20 2007-05-10 Nikon Corp Imaging device and imaging system
JP2018194723A (en) * 2017-05-19 2018-12-06 矢崎総業株式会社 Optical connector

Also Published As

Publication number Publication date
JPH10239566A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US6304382B1 (en) Virtually imaged phased array (VIPA) having a varying reflectivity surface to improve beam profile
US4291976A (en) Digital fiber optic position sensor
US5999320A (en) Virtually imaged phased array as a wavelength demultiplexer
JP4396868B2 (en) Optical device using VIPA (virtual imaged phased array) for chromatic dispersion
WO2001090784A2 (en) Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US8035888B2 (en) Frequency shifter in an optical path containing a pulsed laser source
JP3682140B2 (en) Increasing the amount of information transmitted in an optical fiber
US6147799A (en) Physically compact variable optical delay element having wide adjustment range
US20050213215A1 (en) Wavelength dispersion compensating apparatus
JP3994737B2 (en) Optical device
US6169630B1 (en) Virtually imaged phased array (VIPA) having lenses arranged to provide a wide beam width
US3988614A (en) Equalization of chromatic pulse dispersion in optical fibres
JPS596092B2 (en) Multiplex optical communication equipment
US4077701A (en) Method and arrangements for dispersion equalization of optical fiber transmission lines
US3643097A (en) Optical filter for suppressing noise which utilizes a graded optical fiber and means for controlling transverse position of iris
JPH0272335A (en) Dual balance type light receiving device
JP2004165592A (en) Tunable optical source module
JP4984996B2 (en) Deflection device, condensing device using the same, and spatial light receiving device using the same
JPH11133273A (en) Optical device for optical wiring
EP0119116B1 (en) Apparatus for transmitting optical signals between optical fibres
JPS6054650B2 (en) Optical path switching device
JPH01177004A (en) Optical communication device
JPH05224005A (en) Refractive index distribution type lens array body
SU1190301A1 (en) Apparatus for locating microwave break-down in transmitting sections
JPH05257081A (en) Optical transmitter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees