JP3681187B2 - Air liquefaction separation method and apparatus - Google Patents

Air liquefaction separation method and apparatus Download PDF

Info

Publication number
JP3681187B2
JP3681187B2 JP18480194A JP18480194A JP3681187B2 JP 3681187 B2 JP3681187 B2 JP 3681187B2 JP 18480194 A JP18480194 A JP 18480194A JP 18480194 A JP18480194 A JP 18480194A JP 3681187 B2 JP3681187 B2 JP 3681187B2
Authority
JP
Japan
Prior art keywords
air
tower
column
liquefied
reboiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18480194A
Other languages
Japanese (ja)
Other versions
JPH07318240A (en
Inventor
康浩 村田
俊幸 野島
修 宇多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP18480194A priority Critical patent/JP3681187B2/en
Publication of JPH07318240A publication Critical patent/JPH07318240A/en
Application granted granted Critical
Publication of JP3681187B2 publication Critical patent/JP3681187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、空気液化分離方法及び装置に関し、詳しくは、空気を原料として、酸素,窒素,アルゴン等の空気成分を精留により分離して採取する装置における製品収率の改善に関するものである。
【0002】
【従来の技術】
図10は、従来の空気液化分離装置の一例を示すものである。圧縮機で約6kgf/cm2 absに圧縮され、水分及び二酸化炭素を除去された原料空気は、露点付近まで冷却されて導管1から複精留塔の下部塔2に導入される。この原料空気は、下部塔2での精留作用により液化窒素,窒素ガス,酸素に富む液化空気に分離される。下部塔上部の液化窒素は、導管3,過冷器4,導管5,膨張弁6,導管7を通り、複精留塔の上部塔8に還流液として導入される。また、窒素ガスは、下部塔2の上部から導管9に導出されて、図示しない主熱交換器,膨張タービンに送られ,装置を冷却する寒冷を得るために使用される。
【0003】
前記下部塔2の下部から導管10に導出された酸素に富む液化空気は、過冷器11で冷却された後、導管12,膨張弁13,導管14を通り、アルゴン凝縮器15に導入され、一部ガス化することにより寒冷を与えた後、導管16を通り上部塔8に導入される。
【0004】
上部塔8では、導管7,16によって導入された液が上部塔内を下降し、主凝縮器17で略全量が気化して上部塔内を上昇する。この下降液と上昇ガスとによって精留が進み、酸素,アルゴン,窒素の分離が行われる。その結果、上部塔上部から窒素ガスが、その十数段下から廃ガスが、下部から酸素ガスがぞれぞれ導出される。
【0005】
また、上部塔8の中段からは、原料アルゴンガスが導出され、導管18を通りアルゴン塔19に導入される。アルゴン塔19に導入された原料アルゴンガスは、塔内を上昇してアルゴン凝縮器15で液化され、一部は液化アルゴンとして導管20から取出され、残りの液は塔内を下降する。アルゴン塔内を下降した液は、塔下部から導管21を通って上部塔8に戻される。
【0006】
上部塔8の頂部から導管22に導出された窒素ガスは、過冷器4,過冷器11を通り、主熱交換器に送られて常温まで昇温される。また、上部塔8から導管23に導出された廃ガスは、窒素ガスと同様に過冷器4,過冷器11を通り、主熱交換器で常温まで昇温される。さらに、上部塔8の下部からは、導管24により酸素ガスが導出され、導管25により液化酸素が導出される。
【0007】
【発明が解決しようとする課題】
従来から、上述のような空気液化分離装置における上部塔8及びアルゴン塔19の精留状態を改善してアルゴン収率を向上させるため、多くの方法が提案されている。例えば、上部塔8から導管18でアルゴン塔19に導入する原料アルゴンガス量を増やすことによりアルゴン収率が改善できる。しかし、この場合、アルゴン凝縮器15の出口の液化空気の状態が変化することなどにより、上部塔8の精留条件が変化して他の製品収率や組成に影響が出る。また、他の構成の空気液化分離装置においても、窒素や酸素等の製品収率を改善するため、種々の工夫が成されてきた。
【0008】
そこで本発明は、空気液化分離装置における製品収率の改善を図れ、特に、上部塔から採取する製品の収率や組成に影響を与えることなくアルゴン収率の改善を図れる空気液化分離方法及び装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記した目的を達成するため、本発明の空気液化分離方法は、第1の構成として、圧縮,精製,冷却した原料空気を精留塔に導入して液化精留分離を行い、空気成分を分離採取する空気液化分離方法において、前記精留塔の下部から導出した液化空気を該精留塔の中段に設置したリボイラに加熱源として導入し、該リボイラで精留塔中段部の下降液の一部を気化させるとともに前記液化空気を冷却し、該冷却後の液化空気を、前記精留塔上部のガスを液化させる凝縮器に寒冷源として導入することを特徴としている。
【0010】
本発明方法の第2の構成は、圧縮,精製,冷却した原料空気を複精留塔に導入して液化精留分離を行い、空気成分を分離採取する空気液化分離方法において、前記複精留塔の下部塔から導出した低温液化ガスを、該複精留塔の上部塔における主凝縮器と下部塔からの液化空気が導入される部分との間に設置したリボイラに加熱源として導入し、該リボイラで上部塔内の下降液の一部を気化させるとともに前記低温液化ガスを冷却し、該冷却後の低温液化ガスを上部塔に導入することを特徴とし、特に、前記低温液化ガスが飽和液化窒素であり、前記リボイラで冷却された液化窒素を過冷器を経て上部塔に導入することを特徴としている。
【0011】
本発明方法の第3の構成は、圧縮,精製,冷却した原料空気を複精留塔及びアルゴン塔を備えた空気液化分離装置により、酸素,窒素,アルゴン等の空気成分に分離して採取する空気液化分離方法において、前記複精留塔の下部塔底部から導出した液化空気を、該複精留塔の上部塔における主凝縮器と下部塔からの液化空気が導入される部分との間に設置したリボイラに加熱源として導入し、該リボイラで上部塔内の下降液の一部を気化させるとともに前記液化空気を冷却し、該冷却後の液化空気を前記アルゴン塔の凝縮器を経て上部塔に導入することを特徴としている。
【0012】
さらに本発明方法の第4の構成は、圧縮,精製,冷却した原料空気を複精留塔及びアルゴン塔を備えた空気液化分離装置により、酸素,窒素,アルゴン等の空気成分に分離して採取する空気液化分離方法において、前記複精留塔の下部塔底部から導出した液化空気を分岐し、分岐した一方の液化空気を、複精留塔の上部塔における主凝縮器と下部塔からの液化空気が導入される部分との間、又は前記下部塔内に設置したリボイラに加熱源として導入し、該リボイラで塔内の下降液の一部を気化させるとともに前記液化空気を冷却し、前記分岐した他方の液化空気を、前記上部塔から導出した低温ガスを寒冷源とする過冷器に導入して冷却し、冷却された両液化空気の少なくとも一部を前記アルゴン塔の凝縮器を経て上部塔に導入することを特徴としている。
【0013】
また、本発明の空気液化分離装置は、複精留塔及びアルゴン塔を備えた空気液化分離装置において、前記複精留塔に設けられている主凝縮器に、複精留塔下部塔から導出した低温液化ガスを加熱源とするリボイラを一体に設けるとともに、該リボイラを導出した低温液化ガスを前記上部塔に導入する経路を設けたことを特徴とし、さらに、前記リボイラに導入される低温液化ガスが下部塔からの液化空気であり、該リボイラで冷却された液化空気を前記上部塔に導入する経路が、前記アルゴン塔の凝縮器を経て上部塔に至る経路であることを特徴としている。
【0014】
【実施例】
以下、本発明を、図面に示す実施例に基づいてさらに詳細に説明する。なお、以下の各実施例の説明において、前記従来例と同一要素のものには同一符号を付して、その詳細な説明は省略する。
【0015】
まず、図1は、本発明の第1実施例を示すもので、複精留塔の上部塔8における主凝縮器17と下部塔2からの液化空気を導入する導管16の接続部分との間で、アルゴン塔19に供給する原料アルゴンガスを導出する精留段部分にリボイラ31を設置したものである。
【0016】
下部塔2から導管10に導出され、過冷器11で冷却された液化空気は、導管32を通り前記リボイラ31に導入される。リボイラ31で冷却された液化空気は、導管33,膨張弁13,導管14を通ってアルゴン凝縮器15に導入され,寒冷を与えた後、一部は液の状態で導管16aを通り、残りはガス化して導管16bを通り、それぞれ上部塔8に導入される。
【0017】
上部塔8では、導管16aにより液化空気が供給される段とリボイラ31との間(図1でAと示してある部分、以下、区間Aという)における精留条件が以下の理由により改善される。
【0018】
まず、区間Aでは、主凝縮器17で気化したガスと、リボイラ31で気化したガスとが上昇するため、前記図10に示した従来装置に比較して多くなる。また、リボイラ31から導管33に流れる液化空気は、導管32における状態と比較して、リボイラ31によって更に冷却された状態になっている。このため、アルゴン凝縮器15における交換熱量を従来装置と同じにすることにより、アルゴン凝縮器15から導管16aを経て上部塔8に導入する液化空気の量を従来装置よりも多くすることができる。なお、アルゴン凝縮器15における交換熱量の調整は、該アルゴン凝縮器15に導入する液化空気量を、例えば液量制御で調節し、さらに、例えば、該アルゴン凝縮器15内の液量を検出する液面調節計を設け、該液面調節計からの信号により導管16aから導出する液化空気量を調節することにより行うことができる。
【0019】
そして、区間Aにおける下降液量は、前記導管7から上部塔上部に供給された液化窒素と、前記導管16aによって供給される液化空気との和である。この場合、この下降液量は、導管16aによって供給される液化空気の量が従来装置に比べて多い分だけ多くなる。したがって、区間Aにおける上昇ガス量、下降液量共に従来装置に比べて多くなり、この部分の精留条件が改善され、アルゴン収率を向上させることができる。しかも、リボイラ31における交換熱量の分だけ、導管16aにおける液化空気の量が増加するので、区間A以外の他のプロセスに基本的に悪影響を及ぼさない。
【0020】
図2は、上記図1に示した第1実施例装置及び前記図10に示した従来装置のそれぞれの上部塔における上昇ガスと下降液の状態を示すものである。これらの値は、導管1によって下部塔2に導入される原料空気量を22400Nm3 /hrとした場合の値である。また、図2の横軸でa,b,c、d、eと表示してあるのは、それぞれ
a:導管22によって窒素ガスが導出される位置(塔頂部)
b:導管23によって廃ガスが導出される位置
c:導管16aによって下部塔からの液化空気が導入される位置
d:導管18,21によりアルゴン塔19と液・ガスの導入導出がある位置
e:導管24によって酸素ガスが導出される位置
を示している。以後、図4,図6においても同様である。図1における区間Aは、図2ではcd間に相当する。
【0021】
まず、リボイラ31において、液化空気からの伝熱によって上部塔8のd点を下降する液の一部が気化し(約350〜450Nm3 /h)、cd間の上昇ガス量が従来装置と比較して約350〜450Nm3 /h多くなる(効果1)。
【0022】
一方、リボイラ31で過冷却となった液化空気は、導管33,膨張弁13,導管14,アルゴン凝縮器15,導管16a,16bを経て、従来装置よりも約3%液が多い状態で上部塔8に導入される。このため、上部塔8のc点より下の部分では、下降液量が従来装置よりも多くなる(効果2)。このcd間の上昇ガス量及び下降液量の増加により、cd間の精留条件が改善され、アルゴン収率(液化アルゴン中のアルゴン量/原料空気中のアルゴン量) を従来装置に比較して約0.5%多くすることができる。
【0023】
図3は、本発明の第2実施例を示すものであり、上部塔8に設置したリボイラ31aの加熱源を、前記液化空気に代えて下部塔2からの飽和液化窒素としたものである。下部塔2から導管34に導出された液化窒素は、リボイラ31aに導入されて冷却され、導管35に導出されて過冷器4で冷却された後、導管5,膨張弁6,導管7を通り上部塔8に還流液として導入される。リボイラ31aでは、前記同様に、上部塔8内の下降液が液化窒素の伝熱により気化して上昇ガスとなるので上昇ガス量が増加する。
【0024】
図4は、前記図2と同様に、図3に示した第2実施例装置及び前記図10に示した従来装置のそれぞれの上部塔における上昇ガスと下降液の状態を示すものである。
【0025】
基本的には、第1実施例と同様であり、下部塔2からの飽和の液化窒素は、導管34でリボイラ31aに導入されて過冷却の状態となり過冷器4に導入される。リボイラ31aでの液化窒素からの放熱により、上部塔8のd部分を上昇するガス量が従来装置に比べて約130〜160Nm3 /h増加する(効果3)。
【0026】
また、過冷器4では、温流体である液化窒素が従来装置よりも低い温度で導入されるので、冷流体の窒素ガス及び廃ガスの導管22a,23aにおける温度は、従来装置よりも低くなる。このため、過冷器11を経た導管12における液化空気の温度は、従来装置における温度よりも低温となる。したがって、導管16aにおける液化空気の量は、従来装置における液の量よりも約1%多くなる。このため、上部塔8の導管16によって液化空気を導入する段より下の部分の下降液量が従来装置に比較して約130〜150Nm3 /h増加する(効果4)。これにより、アルゴン収率を、従来装置に比較して約0.3%増加させることができる。
【0027】
図5は、本発明の第3実施例を示すものであり、液化空気による上部塔8の加熱量を多くするために過冷器を設置せず、しかも、リボイラ31bと主凝縮器17とを一体構造に形成したものである。
【0028】
下部塔2から導管36に導出された液化空気は、過冷器を経由することなく主凝縮器17と一体構造のリボイラ31bに導入され、該リボイラ31bで上部塔塔底液を気化させることにより冷却される。このリボイラ31bを導出した液化空気は、導管37,膨張弁13,導管14を通りアルゴン凝縮器15に導入され,一部は液の状態で導管16aを、残りはガス化して導管16bを通り、それぞれ上部塔8に導入される。
【0029】
本実施例においても、リボイラ31bを備えた主凝縮器17における気化ガス量の増加により上部塔8内の上昇ガス量が増加する。そして、この塔底部からの上昇ガス量の増加により、上部塔8から導管18に導出されてアルゴン塔19に導入されるガス量が増加し、該アルゴン塔19内の上昇ガス量の増加により、アルゴン塔凝縮器15の交換熱量が増加してアルゴン塔19内の下降液量も増加するので、導管21から上部塔8に導入される下降液量が増加する。これによって上部塔8及びアルゴン塔19の上昇ガス量及び下降液量が増加し、上部塔8及びアルゴン塔19の精留条件が改善される。その結果、アルゴン収率を増加させることができる。
【0030】
なお、本実施例では、下部塔2から導管36に導出された液化空気を冷却する過冷器が無い分、上部塔8から導管22,23に導出した窒素ガス及び廃ガスが低温のまま主熱交換器に流れることになるが、下部塔2の段数を増加するなどにより容易に対応することができる。
【0031】
図6は、前記図2と同様に、図5に示した第3実施例装置及び前記図10に示した従来装置のそれぞれの上部塔における上昇ガスと下降液の状態を示すものである。なお、流量変化位置が異なるのは、各プロセスでアルゴン量が最大となるように段数を一部変更したためである。
【0032】
下部塔2からの飽和の液化空気は、導管36から主凝縮器17に一体に設けられたリボイラ31bに導入されて過冷却の状態になる。このためにリボイラ31bを含めた主凝縮器17全体の交換熱量は約1%増加し、主凝縮器17部分から気化するガス量が増加して上部塔8のde間を上昇するガス量が、従来装置に比べて約170Nm3 /h多くなる(効果5)。
【0033】
このガスの一部は、上部塔8のd点で導管18に導出されてアルゴン塔19に導入され、これによりアルゴン塔19内の上昇ガス量が増加する。さらに、上昇ガスの増加により、アルゴン塔凝縮器15の交換熱量が従来装置に比較して約2%増加し、アルゴン塔19内の下降液量も増加する。この下降液は、導管21により上部塔8に導入され、上部塔のde間の下降液量が増加する(効果6)。
【0034】
このde間及びアルゴン塔19内の上昇ガス量及び下降液量の増加により、de間及びアルゴン塔内の精留条件が改善される。その結果、アルゴン収率を従来装置に比較して約0.7%増加させることができる。
【0035】
この図5に示した実施例装置においては、さらに多くの応用が考えられる。すなわち、典型的な例として、次の各プロセスが考えられる。まず、第1のプロセスは、導管18によってアルゴン塔19に導入する原料アルゴンガス量を従来のプロセス(例えば前記従来装置)と同じとし、液化空気を熱源として新たに主凝縮器17に一体構造で設置したリボイラ31bにより増加した上昇ガスを全量上部塔8内を上昇させるプロセスがある。このプロセスでは、アルゴン塔19の凝縮器15の交換熱量を、例えば、凝縮器15の液面位置を低い位置で運転することにより、従来のプロセスと略同じとしながら、下部塔2からの液化空気の上部塔入口における液の量を多くすることができる。すなわち、図6におけるce間の上昇ガス量と下降液量が従来プロセスよりも多くなり、上部塔8の精留条件が改善される。
【0036】
第2に、導管18によってアルゴン塔19に導入する原料アルゴンガス量を従来のプロセス(例えば前記従来装置)よりも増加させるプロセスがある。すなわち、液化空気を熱源として新たに主凝縮器17に一体構造に設置したリボイラ31bにより増加した上昇ガスの全量を導管18を通じてアルゴン塔19に導入するプロセスである。このプロセスでは、図6のde間及びアルゴン塔内の上昇ガス量及び下降液量が多くなり、この部分における精留条件が改善される。この場合、下部塔2からの液化空気は、リボイラ31bで液化酸素に与えた熱を、全てアルゴン凝縮器15で得るために、上部塔入口における液の量は従来のプロセスとほぼ同じとなる。つまり、上部塔8のcd間の精留条件の改善は行われない。
【0037】
第3に、上記第1,第2のプロセスの中間のプロセスがある。すなわち、液化空気を熱源として新たに主凝縮器17に一体構造で設置したリボイラ31bにより増加した上昇ガスの一部を導管18を通じてアルゴン塔19に導入するプロセスである。このプロセスでは、新たに増加した上昇ガスの内、導管18を通ってアルゴン塔19に導入するガスの割合によって、図6におけるcd間,de間及びアルゴン塔19の精留条件の改善が可能となる。
【0038】
第4に、アルゴン塔19に導入する原料アルゴンガス量をリボイラ31bにより増加したガス量以上に増加させるプロセスがある。このプロセスは、上部塔8の導管18から導管24までの間における精留条件の改善効果が、導管16aと導管18との間における上昇ガス量及び下降液量の減少による精留条件の低下を補うことができ、アルゴン塔19に導入する原料アルゴンガスの増加により、アルゴン収率を前記第2のプロセスと比較して大幅に向上させることができる。
【0039】
図7は本発明の第4実施例を示すものであり、下部塔2から管10に導出した液化空気を導管41と導管42とに分岐し、導管41に分岐した液化空気を主凝縮器17部分に一体構造で設置したリボイラ31cに加熱源として導入し、導管42に分岐した液化空気を過冷器11に導入するように構成し、さらに、リボイラ31c及び過冷器11で冷却され、過冷状態となって導管43に合流した液化空気を導管44と導管45とに分岐し、導管44に分岐した液化空気を膨張弁13,導管14によりアルゴン凝縮器15に導入し、一部は液の状態で導管16aにより、残りはガス化して導管16bにより、それぞれ上部塔8に導入するとともに、導管45に分岐した液化空気を膨張弁46で膨張させて導管47から上部塔8に導入するように構成したものである。
【0040】
また、この場合、下部塔2から導出する液化空気を、リボイラ31c経由と過冷器11経由とに別系統で導出し、必要とする量に分配してアルゴン凝縮器15及び上部塔8へ単独で導入するように構成してもよい。
【0041】
上記のように、下部塔2から導出した液化空気を分岐して一方をそのままリボイラ31cに導入することにより、過冷器を通らない飽和温度の液化空気をリボイラ31cの熱源として用いることができ、上部塔8底部の液化酸素に対して十分な温度差を得ることができる。これにより、液化空気の全量をリボイラ31cの熱源として用いないので、量的にも温度差の点からもリボイラ31cの伝熱面積を小さくして小型化が図れ、主凝縮器17との一体化も容易に行える。
【0042】
しかも、分岐した他方の液化空気を過冷器11に導入することにより、該過冷器11を通る窒素ガス及び廃ガスの出口温度を従来と同じ温度にすることができるので、主熱交換器における原料空気の冷却温度を従来と同じ温度にすることができ、下部塔2の精留条件に影響を与えることがなくなる。
【0043】
過冷器11及びリボイラ31cで熱を与えて過冷状態となった液化空気は、従来よりも低温のため、アルゴン凝縮器15に導入する量を少なくしても従来と同じ交換熱量を得ることができ、残りの液化空気をそのまま上部塔8に導入することが可能となる。このアルゴン凝縮器15を通らない液化空気は、アルゴン凝縮器15を経由する導管16a,16bより高い位置に設けた導管47から上部塔8に導入する。
【0044】
したがって、上部塔8では、主凝縮器17で気化するガスにリボイラ31cで気化するガスが加わるために上昇ガス量が従来より増加するとともに、導管16及び導管47から上部塔8内に流入する液化空気量が増加することから、上部塔8のリボイラ31cと導管47との間の区間Bにおける上昇ガス量及び下降液量が増加し、上部塔8の精留条件が改善される。このとき、導管16より高い位置の導管47から液化空気を導入しているので、上部塔8における精留条件の改善幅を広げることができる。
【0045】
本実施例においても、前記同様にいくつかのプロセスが考えられる。まず、第1のプロセスは、前記第1のプロセスと同様に、導管18でアルゴン塔19に導入する原料アルゴンガス量を従来と同じとし、リボイラ31cにより増加した上昇ガスを全量上部塔8内を上昇させるプロセスである。このプロセスでは、アルゴン凝縮器15の交換熱量は従来と略同じとなり、下部塔2から上部塔8に導入される液の比率が多くなる。したがって、導管47より下方の上昇ガス量と下降液量が多くなり、上部塔8の精留条件が改善される。
【0046】
第2のプロセスは、前記第2のプロセスと同様に、リボイラ31cで増加した上昇ガスの全量をアルゴン塔19に導入するプロセスである。このプロセスでは、導管18からアルゴン塔19に導入されるガス量が増加するため、アルゴン凝縮器15における交換熱量が増加し、該アルゴン塔19内の下降液量も増加する。これにより、アルゴン塔19における上昇ガス及び下降液量が増加し、該塔内の精留条件が改善される。また、アルゴン塔19の下降液量の増加により、導管21から上部塔8に導入される液量が増加するため、導管21より下方の下降液量が増加し、前記上昇ガス量の増加と合わせて、この部分の精留条件が改善される。一方、前述の通り、導管16から上部塔8に導入する液化空気量は従来と略同量になるため、導管16と導管21との間の精留条件は改善されない。
【0047】
第3のプロセスは、前記第3のプロセスと同様、上記第1及び第2のプロセスの中間のプロセスであり、リボイラ31cで増加した上昇ガスの一部をアルゴン塔19に導入するプロセスである。このプロセスでは、上部塔8及びアルゴン塔19の精留条件を僅かづつ改善することができる。
【0048】
さらに、第4のプロセスは、前記第4のプロセスと同様、アルゴン塔19に導入する原料アルゴンガス量を、リボイラ31cにより増加したガス量以上に増加させるプロセスであり、このプロセスは、上部塔8の導管18から導管24までの間における精留条件の改善効果が、導管47と導管18との間における上昇ガス及び下降液量の減少による精留条件の低下を補うことができ、アルゴン塔19に導入する原料アルゴンガスの増加により、アルゴン収率をプロセス2と比較して大幅に向上させることができる。
【0049】
なお、以上の上部塔8内にリボイラを設置した各実施例において、リボイラを設置する位置は、主凝縮器17と液化空気が上部塔8内に供給される位置の間で任意の位置に設定することが可能である。精留塔では、上の段ほど低温であるために、リボイラを上段に設置する方が、リボイラにおける温流体と冷流体の温度差が大きくなり、リボイラ設置による精留条件の改善がより期待できる。しかし、リボイラを上に設置するほど改善される段数が少なくなる。したがって、リボイラを設置する位置は、操作条件によって異なる。
【0050】
また、リボイラを上部塔8の下部に設置するプロセスにおいて、前記実施例では、主凝縮器とリボイラとを一体構造としたが、必要に応じて主凝縮器とは別に単体のリボイラを設置するようにしてもよい。
【0051】
図8は、本発明の第5実施例を示すものであり、下部塔2の中段にリボイラ31dを設置し、前記第4実施例と同様に、下部塔2から管10に導出した液化空気を導管51と導管52とに分岐し、導管51に分岐した液化空気を前記リボイラ31dに加熱源として導入し、導管52に分岐した液化空気を過冷器11に導入するように構成し、さらに、リボイラ31d及び過冷器11で冷却され、過冷状態となって導管53に合流した液化空気を導管54と導管55とに分岐し、導管54に分岐した液化空気を膨張弁13,導管14によりアルゴン凝縮器15に導入し、一部は液の状態で導管16aにより、残りはガス化して導管16bにより、それぞれ上部塔8に導入するとともに、導管55に分岐した液化空気を膨張弁56で膨張させて導管57から上部塔8に導入するように構成したものである。この場合も、下部塔2から導出する液化空気を、リボイラ31dと過冷器11とにそれぞれ独立して導出し、必要な量に応じてアルゴン凝縮器15と上部塔8とに単独で導入するようにしてもよい。
【0052】
上記リボイラ31dは、下部塔2における下降液と導管51から導入される液化空気との温度差がリボイラ31dの運転に必要な温度差(通常約0.5℃以上)が得られるような位置に設置する。
【0053】
このように下部塔2にリボイラ31dを設置すると、該リボイラ31dにおける液化空気との熱交換により塔内を下降する液の一部が気化し、凝縮器17を通るガス量が増加するため、該ガスにより加熱されて生成する上部塔8の上昇ガス量が増加する。一方、リボイラ31d及び過冷器11で従来より過冷却状態となった液化空気が、前記第4実施例と同様にして上部塔8に導入されるので、結果として、前記第4実施例と同様に上部塔8内の上昇ガスと下降液量が増加する。したがって、前記各プロセスのいずれかを行うことにより、上部塔8及び/又はアルゴン塔19の精留条件を改善できる。
【0054】
図9は、本発明の第6実施例を示すものであり、液化空気によるリボイラ31eを単精留塔71に設置した実施例を示すものである。単精留塔71の下部から導管72に導出された液化空気は、精留塔中段に設置されたリボイラ31eに導入される。このリボイラ31eは、単精留塔71内における下降液と液化空気との温度差がリボイラ31eの運転に必要な温度差が得られるような位置に設置されており、液化空気との熱交換により塔内を下降する液の一部が気化して上昇ガス量が増加し、塔頂部から導出されて導管73から凝縮器74に導入されるガス量が増加する。一方、リボイラ31eで過冷却となった液化空気は、導管75,膨張弁76,導管77を通り、凝縮器74で前記ガスに寒冷を与えた後、導管78に導出される。これにより、凝縮器74で液化して単精留塔71の還流液となる液量が増加するので、本実施例では、リボイラ31fから精留塔頂部までの間の上昇ガス量及び下降液量が増加し、この間の精留条件が改善される。
【0055】
なお、前記下部塔,アルゴン塔及び上記単精留塔においては、液化空気と下降液との温度差がとれればリボイラを任意の位置に設置することが可能である。
【0056】
【発明の効果】
以上説明したように、本発明によれば、精留塔内に液化空気によるリボイラを設置したことにより、他のプロセスに影響を及ぼすことなく精留条件を改善することができ、窒素,酸素,アルゴン等の製品収率を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示す空気液化分離装置の系統図である。
【図2】 第1実施例装置及び従来装置の上部塔における上昇ガスと下降液の状態を示す図である。
【図3】 本発明の第2実施例を示す空気液化分離装置の系統図である。
【図4】 第2実施例装置及び従来装置の上部塔における上昇ガスと下降液の状態を示す図である。
【図5】 本発明の第3実施例を示す空気液化分離装置の系統図である。
【図6】 第3実施例装置及び従来装置の上部塔における上昇ガスと下降液の状態を示す図である。
【図7】 本発明の第4実施例を示す空気液化分離装置の系統図である。
【図8】 本発明の第5実施例を示す空気液化分離装置の系統図である。
【図9】 本発明の第6実施例を示す空気液化分離装置の系統図である。
【図10】 従来の空気液化分離装置の一例を示す系統図である。
【符号の説明】
2…下部塔、4,11…過冷器、6,13…膨張弁、8…上部塔、15…アルゴン凝縮器、17…主凝縮器、19…アルゴン塔、31,31a,31b,31c,31d,31e…リボイラ、71…単精留塔、74…凝縮器
[0001]
[Industrial application fields]
The present invention relates to an air liquefaction separation method and apparatus, and more particularly to an improvement in product yield in an apparatus that separates and collects air components such as oxygen, nitrogen, and argon using air as a raw material.
[0002]
[Prior art]
FIG. 10 shows an example of a conventional air liquefaction separation apparatus. About 6kgf / cm with a compressor 2 The raw material air compressed to abs and freed of moisture and carbon dioxide is cooled to near the dew point and introduced into the lower column 2 of the double rectification column from the conduit 1. This raw material air is separated into liquefied air rich in liquefied nitrogen, nitrogen gas and oxygen by the rectifying action in the lower column 2. The liquefied nitrogen in the upper part of the lower column passes through the conduit 3, the supercooler 4, the conduit 5, the expansion valve 6 and the conduit 7, and is introduced as a reflux liquid into the upper column 8 of the double rectification column. Further, nitrogen gas is led out to the conduit 9 from the upper part of the lower column 2 and sent to a main heat exchanger and an expansion turbine (not shown) to be used for obtaining coldness for cooling the apparatus.
[0003]
The liquefied air rich in oxygen led out from the lower part of the lower column 2 to the conduit 10 is cooled by the supercooler 11 and then introduced into the argon condenser 15 through the conduit 12, the expansion valve 13, and the conduit 14, After being cooled by partially gasifying, it is introduced into the upper tower 8 through the conduit 16.
[0004]
In the upper column 8, the liquid introduced by the conduits 7 and 16 descends in the upper column, and substantially the entire amount is vaporized in the main condenser 17 and rises in the upper column. The rectification proceeds by the descending liquid and the ascending gas, and oxygen, argon, and nitrogen are separated. As a result, nitrogen gas is led out from the upper part of the upper column, waste gas is drawn from a dozen or more stages below, and oxygen gas is drawn out from the lower part.
[0005]
Further, from the middle stage of the upper column 8, raw material argon gas is led out and introduced into the argon column 19 through the conduit 18. The raw material argon gas introduced into the argon tower 19 rises in the tower and is liquefied by the argon condenser 15, a part is taken out from the conduit 20 as liquefied argon, and the remaining liquid falls in the tower. The liquid descending in the argon column is returned to the upper column 8 through the conduit 21 from the lower column.
[0006]
The nitrogen gas led out from the top of the upper column 8 to the conduit 22 passes through the supercoolers 4 and 11 and is sent to the main heat exchanger to be heated to room temperature. Further, the waste gas led out from the upper tower 8 to the conduit 23 passes through the supercoolers 4 and 11 like the nitrogen gas, and is heated to room temperature in the main heat exchanger. Further, oxygen gas is led out from the lower part of the upper column 8 through a conduit 24, and liquefied oxygen is led out through a conduit 25.
[0007]
[Problems to be solved by the invention]
Conventionally, many methods have been proposed for improving the rectification state of the upper column 8 and the argon column 19 in the air liquefaction separation apparatus as described above to improve the argon yield. For example, the argon yield can be improved by increasing the amount of raw material argon gas introduced from the upper column 8 into the argon column 19 through the conduit 18. However, in this case, due to a change in the state of the liquefied air at the outlet of the argon condenser 15, the rectification conditions of the upper column 8 change to affect other product yields and compositions. In addition, in the air liquefaction separation apparatus having other configurations, various ideas have been made in order to improve the yield of products such as nitrogen and oxygen.
[0008]
Therefore, the present invention can improve the product yield in the air liquefaction separation apparatus, and in particular, the air liquefaction separation method and apparatus capable of improving the argon yield without affecting the yield and composition of the product collected from the upper column. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, the air liquefaction separation method of the present invention, as a first configuration, introduces compressed, refined, and cooled raw material air into a rectification column to perform liquefaction rectification separation to separate air components. In the air liquefaction separation method to be collected, liquefied air led out from the lower part of the rectifying column is introduced as a heating source into a reboiler installed in the middle stage of the rectifying tower, and the reboiler is used to lower one of the descending liquid in the middle part of the rectifying tower. The liquefied air is cooled while the liquefied air is cooled, and the cooled liquefied air is introduced as a cold source into a condenser for liquefying the gas in the upper part of the rectifying tower.
[0010]
A second configuration of the method of the present invention is an air liquefaction separation method in which compressed, refined, and cooled raw material air is introduced into a double rectification column to perform liquefaction rectification separation to separate and collect air components. The low-temperature liquefied gas derived from the lower tower of the tower is introduced as a heating source into a reboiler installed between the main condenser in the upper tower of the double rectifying tower and the part into which the liquefied air from the lower tower is introduced, The reboiler vaporizes a part of the descending liquid in the upper tower, cools the low-temperature liquefied gas, and introduces the cooled low-temperature liquefied gas into the upper tower. In particular, the low-temperature liquefied gas is saturated. It is liquefied nitrogen, and liquefied nitrogen cooled by the reboiler is introduced into the upper tower through a supercooler.
[0011]
In the third configuration of the method of the present invention, the compressed, refined and cooled raw material air is separated into air components such as oxygen, nitrogen and argon by an air liquefaction separation apparatus equipped with a double rectification column and an argon column. In the air liquefaction separation method, the liquefied air derived from the bottom of the lower column of the double rectifying column is disposed between the main condenser in the upper column of the double rectifying column and the portion into which the liquefied air from the lower column is introduced. The reboiler is introduced as a heating source, the reboiler vaporizes a part of the descending liquid in the upper tower and cools the liquefied air, and the cooled liquefied air passes through the condenser of the argon tower to the upper tower. It is characterized by being introduced to.
[0012]
Furthermore, the fourth configuration of the method of the present invention is to collect the compressed, purified and cooled raw material air by separating it into air components such as oxygen, nitrogen and argon by an air liquefaction separation apparatus equipped with a double rectification tower and an argon tower. In the air liquefaction separation method, the liquefied air derived from the bottom of the lower column of the double rectifying column is branched, and one of the branched liquefied air is liquefied from the main condenser and the lower column in the upper column of the double rectifying column. The air is introduced into a reboiler installed in the lower tower or as a heating source between the part into which the air is introduced, the reboiler vaporizes a part of the descending liquid in the tower and cools the liquefied air, and the branch The other liquefied air is cooled by introducing it into a supercooler using a low-temperature gas derived from the upper tower as a cold source, and at least a part of the cooled liquefied air is passed through the condenser of the argon tower. Specially introduced to the tower It is set to.
[0013]
Further, the air liquefaction separation apparatus of the present invention is an air liquefaction separation apparatus including a double rectification column and an argon tower, and is led out from a lower column of the double rectification column to a main condenser provided in the double rectification column. A reboiler using the low-temperature liquefied gas as a heating source is provided integrally, and a path for introducing the low-temperature liquefied gas derived from the reboiler into the upper tower is provided. The gas is liquefied air from the lower tower, and the path for introducing the liquefied air cooled by the reboiler into the upper tower is a path leading to the upper tower through the condenser of the argon tower.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In the following description of each embodiment, the same components as those in the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.
[0015]
FIG. 1 shows a first embodiment of the present invention, in which a main condenser 17 in an upper column 8 of a double rectification column and a connection portion of a conduit 16 for introducing liquefied air from a lower column 2 are shown. Thus, the reboiler 31 is installed in the rectification stage portion for deriving the raw material argon gas supplied to the argon tower 19.
[0016]
The liquefied air led out from the lower tower 2 to the conduit 10 and cooled by the supercooler 11 is introduced into the reboiler 31 through the conduit 32. The liquefied air cooled by the reboiler 31 is introduced into the argon condenser 15 through the conduit 33, the expansion valve 13 and the conduit 14, and after being cooled, a part of the liquefied air passes through the conduit 16a in the liquid state, and the rest It is gasified and introduced into the upper column 8 through the conduit 16b.
[0017]
In the upper column 8, the rectification conditions between the stage supplied with the liquefied air by the conduit 16a and the reboiler 31 (the portion indicated by A in FIG. 1, hereinafter referred to as section A) are improved for the following reason. .
[0018]
First, in the section A, the gas vaporized by the main condenser 17 and the gas vaporized by the reboiler 31 rise, and therefore increase in comparison with the conventional apparatus shown in FIG. Further, the liquefied air flowing from the reboiler 31 to the conduit 33 is further cooled by the reboiler 31 as compared with the state in the conduit 32. For this reason, the amount of liquefied air introduced into the upper column 8 from the argon condenser 15 through the conduit | pipe 16a can be made larger than the conventional apparatus by making the amount of exchange heat in the argon condenser 15 into the same as the conventional apparatus. The exchange heat quantity in the argon condenser 15 is adjusted by adjusting the amount of liquefied air introduced into the argon condenser 15 by, for example, liquid quantity control, and further detecting, for example, the liquid quantity in the argon condenser 15. A liquid level controller can be provided, and the amount of liquefied air led out from the conduit 16a can be adjusted by a signal from the liquid level controller.
[0019]
The descending liquid amount in the section A is the sum of liquefied nitrogen supplied from the conduit 7 to the upper part of the upper tower and liquefied air supplied by the conduit 16a. In this case, the amount of the descending liquid is increased by the amount of the liquefied air supplied by the conduit 16a as compared with the conventional apparatus. Accordingly, the amount of rising gas and the amount of falling liquid in the section A are increased as compared with the conventional apparatus, and the rectification conditions in this part are improved, and the argon yield can be improved. Moreover, since the amount of liquefied air in the conduit 16a increases by the amount of exchange heat in the reboiler 31, there is basically no adverse effect on processes other than the section A.
[0020]
FIG. 2 shows the state of the rising gas and the falling liquid in the upper column of the first embodiment apparatus shown in FIG. 1 and the conventional apparatus shown in FIG. These values indicate that the amount of raw material air introduced into the lower column 2 by the conduit 1 is 22400 Nm. Three This is the value when / hr. In addition, a, b, c, d, e displayed on the horizontal axis in FIG.
a: Position where nitrogen gas is led out by conduit 22 (top of tower)
b: Position where waste gas is led out by the conduit 23
c: Position where liquefied air from the lower column is introduced by the conduit 16a
d: Argon tower 19 and the position where the introduction / extraction of liquid / gas is performed by conduits 18 and 21
e: position where oxygen gas is led out by the conduit 24
Is shown. Thereafter, the same applies to FIGS. 4 and 6. The section A in FIG. 1 corresponds to the interval cd in FIG.
[0021]
First, in the reboiler 31, a part of the liquid descending the point d of the upper tower 8 is vaporized by heat transfer from the liquefied air (about 350 to 450 Nm). Three / H), the rising gas amount between cd is about 350 to 450 Nm as compared with the conventional device. Three / H increase (effect 1).
[0022]
On the other hand, the liquefied air supercooled by the reboiler 31 passes through the conduit 33, the expansion valve 13, the conduit 14, the argon condenser 15, and the conduits 16a and 16b, and is about 3% more liquid than in the conventional apparatus. 8 is introduced. For this reason, in the part below the point c of the upper column 8, the amount of descending liquid is larger than that of the conventional apparatus (effect 2). By increasing the amount of rising gas and the amount of falling liquid between cd, the rectification condition between cd is improved, and the argon yield (argon amount in liquefied argon / argon amount in raw air) is compared with the conventional device. It can be increased by about 0.5%.
[0023]
FIG. 3 shows a second embodiment of the present invention, in which the heating source of the reboiler 31a installed in the upper column 8 is replaced with the liquefied air, and saturated liquefied nitrogen from the lower column 2 is used. The liquefied nitrogen led out from the lower column 2 to the conduit 34 is introduced into the reboiler 31a and cooled. After being led out to the conduit 35 and cooled by the subcooler 4, the liquid nitrogen passes through the conduit 5, the expansion valve 6 and the conduit 7. It is introduced into the upper column 8 as a reflux liquid. In the reboiler 31a, as described above, the descending liquid in the upper column 8 is vaporized by the heat transfer of liquefied nitrogen and becomes rising gas, so that the amount of rising gas increases.
[0024]
4 shows the state of the rising gas and the descending liquid in the upper column of each of the second embodiment apparatus shown in FIG. 3 and the conventional apparatus shown in FIG.
[0025]
Basically, it is the same as in the first embodiment, and the saturated liquefied nitrogen from the lower column 2 is introduced into the reboiler 31a through the conduit 34 to be in a supercooled state and introduced into the supercooler 4. Due to the heat release from the liquefied nitrogen in the reboiler 31a, the amount of gas rising in the portion d of the upper tower 8 is about 130 to 160 Nm compared to the conventional apparatus. Three / H increase (effect 3).
[0026]
Further, in the supercooler 4, liquefied nitrogen, which is a warm fluid, is introduced at a temperature lower than that of the conventional device, so that the temperature of the cold fluid nitrogen gas and waste gas in the conduits 22a and 23a is lower than that of the conventional device. . For this reason, the temperature of the liquefied air in the conduit | pipe 12 which passed through the supercooler 11 becomes a low temperature rather than the temperature in a conventional apparatus. Therefore, the amount of liquefied air in the conduit 16a is about 1% greater than the amount of liquid in the conventional device. For this reason, the descending liquid amount in the portion below the stage where the liquefied air is introduced by the conduit 16 of the upper tower 8 is about 130 to 150 Nm as compared with the conventional apparatus. Three / H increase (effect 4). Thereby, the argon yield can be increased by about 0.3% compared to the conventional apparatus.
[0027]
FIG. 5 shows a third embodiment of the present invention, in which a supercooler is not installed in order to increase the heating amount of the upper tower 8 by liquefied air, and the reboiler 31b and the main condenser 17 are connected. It is formed in an integral structure.
[0028]
The liquefied air led out from the lower column 2 to the conduit 36 is introduced into the reboiler 31b integrated with the main condenser 17 without passing through the supercooler, and the reboiler 31b vaporizes the bottom column bottom liquid. To be cooled. The liquefied air derived from the reboiler 31b is introduced into the argon condenser 15 through the conduit 37, the expansion valve 13 and the conduit 14, and a part of the liquefied air passes through the conduit 16a and the rest is gasified to pass through the conduit 16b. Each is introduced into the upper tower 8.
[0029]
Also in the present embodiment, the amount of gas rising in the upper column 8 increases due to the increase in the amount of vaporized gas in the main condenser 17 equipped with the reboiler 31b. And, by increasing the amount of rising gas from the bottom of this tower, the amount of gas led out from the upper column 8 to the conduit 18 and introduced into the argon tower 19 increases, and by increasing the amount of rising gas in the argon tower 19, Since the amount of exchange heat of the argon tower condenser 15 increases and the amount of descending liquid in the argon tower 19 also increases, the amount of descending liquid introduced into the upper tower 8 from the conduit 21 increases. As a result, the amount of ascending gas and the amount of descending liquid in the upper column 8 and the argon column 19 are increased, and the rectification conditions of the upper column 8 and the argon column 19 are improved. As a result, the argon yield can be increased.
[0030]
In this embodiment, the nitrogen gas and waste gas led out from the upper column 8 to the conduits 22 and 23 are kept at a low temperature because there is no supercooler for cooling the liquefied air led out from the lower column 2 to the conduit 36. Although it flows to the heat exchanger, it can be easily handled by increasing the number of stages of the lower tower 2.
[0031]
FIG. 6 shows the state of the rising gas and the descending liquid in the upper column of each of the third embodiment apparatus shown in FIG. 5 and the conventional apparatus shown in FIG. 10 as in FIG. The flow rate change position is different because the number of stages is partially changed so that the argon amount is maximized in each process.
[0032]
The saturated liquefied air from the lower column 2 is introduced into the reboiler 31b provided integrally with the main condenser 17 from the conduit 36, and is in a supercooled state. For this reason, the exchange heat amount of the entire main condenser 17 including the reboiler 31b is increased by about 1%, the amount of gas evaporated from the main condenser 17 portion is increased, and the amount of gas rising between the de in the upper column 8 is increased. Approximately 170Nm compared to conventional equipment Three / H increase (effect 5).
[0033]
A part of this gas is led out to the conduit 18 at the point d of the upper column 8 and introduced into the argon column 19, whereby the amount of ascending gas in the argon column 19 increases. Furthermore, due to the increase of the rising gas, the exchange heat amount of the argon column condenser 15 is increased by about 2% compared to the conventional apparatus, and the amount of descending liquid in the argon column 19 is also increased. This descending liquid is introduced into the upper column 8 through the conduit 21, and the amount of descending liquid between the de in the upper column increases (effect 6).
[0034]
By increasing the amount of rising gas and the amount of descending liquid between de and in the argon column 19, rectification conditions between de and in the argon column are improved. As a result, the argon yield can be increased by about 0.7% compared to the conventional apparatus.
[0035]
In the embodiment apparatus shown in FIG. 5, many more applications are conceivable. That is, the following processes can be considered as typical examples. First, in the first process, the amount of the raw material argon gas introduced into the argon column 19 by the conduit 18 is the same as that of the conventional process (for example, the conventional apparatus), and the liquefied air is used as a heat source and is newly integrated with the main condenser 17. There is a process in which the rising gas increased by the installed reboiler 31b is entirely raised in the upper column 8. In this process, the exchange heat quantity of the condenser 15 of the argon column 19 is made substantially the same as that of the conventional process by operating the liquid level of the condenser 15 at a low position, for example, and the liquefied air from the lower column 2 is used. The amount of liquid at the upper tower inlet can be increased. That is, the amount of rising gas and the amount of falling liquid between ce in FIG. 6 are larger than in the conventional process, and the rectification conditions of the upper column 8 are improved.
[0036]
Secondly, there is a process for increasing the amount of raw material argon gas introduced into the argon column 19 by the conduit 18 as compared with the conventional process (for example, the conventional apparatus). That is, this is a process of introducing the entire amount of the rising gas increased by the reboiler 31 b newly installed in the main condenser 17 as a heat source using the liquefied air into the argon column 19 through the conduit 18. In this process, the amount of ascending gas and the amount of descending liquid between de in FIG. 6 and in the argon column increase, and the rectification conditions in this part are improved. In this case, since the liquefied air from the lower column 2 obtains all the heat given to the liquefied oxygen by the reboiler 31b by the argon condenser 15, the amount of the liquid at the upper column inlet is almost the same as in the conventional process. That is, the rectification condition between cd of the upper column 8 is not improved.
[0037]
Third, there is an intermediate process between the first and second processes. That is, this is a process of introducing a part of the rising gas newly increased by the reboiler 31 b newly installed in the main condenser 17 as a heat source using the liquefied air to the argon column 19 through the conduit 18. In this process, it is possible to improve the rectification conditions between cd and de in FIG. 6 and between the argon column 19 by the ratio of the newly increased rising gas to the argon column 19 through the conduit 18. Become.
[0038]
Fourthly, there is a process for increasing the amount of raw material argon gas introduced into the argon tower 19 to be greater than the amount of gas increased by the reboiler 31b. In this process, the effect of improving the rectification conditions between the pipe 18 and the pipe 24 in the upper column 8 is reduced by reducing the amount of rising gas and the amount of falling liquid between the pipe 16a and the pipe 18. This can be supplemented, and the increase in the raw material argon gas introduced into the argon tower 19 can greatly improve the argon yield as compared with the second process.
[0039]
FIG. 7 shows a fourth embodiment of the present invention. The liquefied air led out from the lower column 2 to the pipe 10 is branched into a conduit 41 and a conduit 42, and the liquefied air branched into the conduit 41 is converted into the main condenser 17. The reboiler 31c installed as a part of the structure is introduced as a heating source, and the liquefied air branched into the conduit 42 is introduced into the supercooler 11, and further cooled by the reboiler 31c and the supercooler 11, The liquefied air that has been cooled and merged into the conduit 43 is branched into a conduit 44 and a conduit 45, and the liquefied air that is branched into the conduit 44 is introduced into the argon condenser 15 through the expansion valve 13 and the conduit 14, and part of the liquefied air is liquid. In this state, the remainder is gasified by the conduit 16a and introduced into the upper column 8 by the conduit 16b, and the liquefied air branched into the conduit 45 is expanded by the expansion valve 46 and introduced from the conduit 47 to the upper column 8. In Are those that form.
[0040]
Further, in this case, the liquefied air led out from the lower column 2 is led out separately through the reboiler 31c and the supercooler 11, and is distributed to the required amount and supplied to the argon condenser 15 and the upper column 8 alone. You may comprise so that it may introduce.
[0041]
As described above, by branching the liquefied air derived from the lower tower 2 and introducing one into the reboiler 31c as it is, liquefied air having a saturation temperature that does not pass through the supercooler can be used as a heat source for the reboiler 31c. A sufficient temperature difference can be obtained with respect to the liquefied oxygen at the bottom of the upper column 8. As a result, since the entire amount of liquefied air is not used as a heat source for the reboiler 31c, the heat transfer area of the reboiler 31c can be reduced in size and in terms of temperature difference, and can be integrated with the main condenser 17. Can also be done easily.
[0042]
In addition, by introducing the other branched liquefied air into the supercooler 11, the outlet temperatures of the nitrogen gas and the waste gas passing through the supercooler 11 can be made the same as those in the prior art, so that the main heat exchanger Thus, the cooling temperature of the raw material air can be set to the same temperature as before, and the rectification conditions of the lower column 2 are not affected.
[0043]
Since the liquefied air that has been cooled by applying heat in the subcooler 11 and the reboiler 31c has a lower temperature than before, the same amount of exchange heat as before can be obtained even if the amount introduced into the argon condenser 15 is reduced. The remaining liquefied air can be introduced into the upper column 8 as it is. The liquefied air which does not pass through the argon condenser 15 is introduced into the upper column 8 from a conduit 47 provided at a position higher than the conduits 16a and 16b passing through the argon condenser 15.
[0044]
Therefore, in the upper column 8, the gas to be vaporized in the reboiler 31 c is added to the gas vaporized in the main condenser 17, so that the amount of rising gas increases as compared with the conventional case, and the liquefaction flowing into the upper column 8 from the conduit 16 and the conduit 47. Since the amount of air increases, the amount of ascending gas and the amount of descending liquid in the section B between the reboiler 31c of the upper column 8 and the conduit 47 increase, and the rectification conditions of the upper column 8 are improved. At this time, since the liquefied air is introduced from the conduit 47 located higher than the conduit 16, the improvement range of the rectification condition in the upper column 8 can be widened.
[0045]
In the present embodiment, several processes can be considered as described above. First, in the first process, as in the first process, the amount of raw material argon gas introduced into the argon column 19 through the conduit 18 is the same as that in the prior art, and the rising gas increased by the reboiler 31c is entirely fed into the upper column 8. It is a process of raising. In this process, the exchange heat amount of the argon condenser 15 becomes substantially the same as the conventional one, and the ratio of the liquid introduced from the lower column 2 to the upper column 8 increases. Therefore, the amount of ascending gas and the amount of descending liquid below the conduit 47 are increased, and the rectification conditions of the upper column 8 are improved.
[0046]
Similar to the second process, the second process is a process of introducing the entire amount of the rising gas increased in the reboiler 31c into the argon column 19. In this process, since the amount of gas introduced from the conduit 18 into the argon column 19 increases, the amount of exchange heat in the argon condenser 15 increases and the amount of descending liquid in the argon column 19 also increases. Thereby, the amount of ascending gas and descending liquid in the argon column 19 increases, and the rectification conditions in the column are improved. Further, since the amount of liquid introduced into the upper column 8 from the conduit 21 increases due to the increase in the descending liquid amount in the argon column 19, the descending liquid amount below the conduit 21 increases, and this increases with the increase in the ascending gas amount. Thus, the rectification conditions in this part are improved. On the other hand, as described above, since the amount of liquefied air introduced from the conduit 16 into the upper column 8 is substantially the same as the conventional amount, the rectifying conditions between the conduit 16 and the conduit 21 are not improved.
[0047]
Similar to the third process, the third process is an intermediate process between the first and second processes, and is a process of introducing a part of the rising gas increased in the reboiler 31c into the argon column 19. In this process, the rectification conditions of the upper column 8 and the argon column 19 can be improved little by little.
[0048]
Further, the fourth process is a process for increasing the amount of raw material argon gas introduced into the argon column 19 to be larger than the amount of gas increased by the reboiler 31c, as in the fourth process. The effect of improving the rectification conditions between the conduit 18 and the conduit 24 can compensate for the decrease in the rectification conditions due to the decrease in the amount of ascending gas and the descending liquid between the conduit 47 and the conduit 18. As a result, the argon yield can be greatly improved as compared with the process 2.
[0049]
In each of the embodiments in which the reboiler is installed in the upper tower 8 described above, the position where the reboiler is installed is set to an arbitrary position between the main condenser 17 and the position where the liquefied air is supplied into the upper tower 8. Is possible. In the rectification tower, the lower the temperature is, the lower the temperature, so the higher the temperature difference between the hot fluid and the cold fluid in the reboiler, the better the rectification conditions can be improved by installing the reboiler. . However, the number of stages to be improved is reduced as the reboiler is installed on the upper side. Therefore, the position where the reboiler is installed varies depending on the operating conditions.
[0050]
Further, in the process of installing the reboiler in the lower part of the upper tower 8, in the above embodiment, the main condenser and the reboiler are integrated. However, if necessary, a single reboiler is installed separately from the main condenser. It may be.
[0051]
FIG. 8 shows a fifth embodiment of the present invention, in which a reboiler 31d is installed in the middle stage of the lower tower 2, and the liquefied air led out from the lower tower 2 to the pipe 10 is discharged as in the fourth embodiment. The liquefied air branched into the conduit 51 and the conduit 52 is introduced into the reboiler 31d as a heating source, and the liquefied air branched into the conduit 52 is introduced into the supercooler 11, The liquefied air cooled by the reboiler 31d and the supercooler 11 and brought into the supercooled state and merged into the conduit 53 is branched into the conduit 54 and the conduit 55, and the liquefied air branched into the conduit 54 is expanded by the expansion valve 13 and the conduit 14. The gas is introduced into the argon condenser 15, partly in liquid state by the conduit 16 a, and the rest is gasified and introduced into the upper column 8 by the conduit 16 b, and the liquefied air branched into the conduit 55 is expanded by the expansion valve 56. Let me guide 57 is obtained by adapted to introduce into the upper tower 8. Also in this case, the liquefied air led out from the lower column 2 is led out independently to the reboiler 31d and the supercooler 11 and introduced independently into the argon condenser 15 and the upper column 8 according to the required amount. You may do it.
[0052]
The reboiler 31d is positioned such that the temperature difference between the descending liquid in the lower column 2 and the liquefied air introduced from the conduit 51 provides the temperature difference necessary for the operation of the reboiler 31d (usually about 0.5 ° C. or more). Install.
[0053]
When the reboiler 31d is installed in the lower tower 2 in this way, a part of the liquid descending in the tower is vaporized by heat exchange with the liquefied air in the reboiler 31d, and the amount of gas passing through the condenser 17 increases. The amount of ascending gas in the upper column 8 generated by heating with the gas increases. On the other hand, the liquefied air that has been supercooled by the reboiler 31d and the supercooler 11 is introduced into the upper column 8 in the same manner as in the fourth embodiment. As a result, the same as in the fourth embodiment. Further, the rising gas and the falling liquid amount in the upper column 8 are increased. Therefore, the rectification conditions of the upper column 8 and / or the argon column 19 can be improved by performing any of the above processes.
[0054]
FIG. 9 shows a sixth embodiment of the present invention, and shows an embodiment in which a reboiler 31e using liquefied air is installed in a single rectifying column 71. The liquefied air led out from the lower part of the single rectification column 71 to the conduit 72 is introduced into a reboiler 31e installed in the middle stage of the rectification column. The reboiler 31e is installed at a position where the temperature difference between the descending liquid and the liquefied air in the single rectification column 71 can obtain a temperature difference necessary for the operation of the reboiler 31e. A part of the liquid descending in the column is vaporized to increase the amount of rising gas, and the amount of gas led out from the top of the column and introduced into the condenser 74 from the conduit 73 increases. On the other hand, the liquefied air that has been supercooled by the reboiler 31 e passes through the conduit 75, the expansion valve 76, and the conduit 77, cools the gas by the condenser 74, and then is led out to the conduit 78. As a result, the amount of liquid that is liquefied by the condenser 74 and becomes the reflux liquid of the single rectifying column 71 increases. And the rectification conditions during this period are improved.
[0055]
In the lower column, the argon column, and the single rectification column, the reboiler can be installed at any position as long as the temperature difference between the liquefied air and the descending liquid can be obtained.
[0056]
【The invention's effect】
As described above, according to the present invention, by installing a reboiler with liquefied air in the rectification column, rectification conditions can be improved without affecting other processes, and nitrogen, oxygen, The yield of products such as argon can be improved.
[Brief description of the drawings]
FIG. 1 is a system diagram of an air liquefaction separation apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing states of rising gas and falling liquid in the upper tower of the first embodiment apparatus and the conventional apparatus.
FIG. 3 is a system diagram of an air liquefaction separation apparatus showing a second embodiment of the present invention.
FIG. 4 is a diagram showing the state of rising gas and falling liquid in the upper tower of the second embodiment apparatus and the conventional apparatus.
FIG. 5 is a system diagram of an air liquefaction separation apparatus showing a third embodiment of the present invention.
FIG. 6 is a diagram showing the state of rising gas and falling liquid in the upper tower of the third embodiment apparatus and the conventional apparatus.
FIG. 7 is a system diagram of an air liquefaction separation apparatus showing a fourth embodiment of the present invention.
FIG. 8 is a system diagram of an air liquefaction separation apparatus showing a fifth embodiment of the present invention.
FIG. 9 is a system diagram of an air liquefaction separation apparatus showing a sixth embodiment of the present invention.
FIG. 10 is a system diagram showing an example of a conventional air liquefaction separation apparatus.
[Explanation of symbols]
2 ... Lower tower, 4, 11 ... Supercooler, 6, 13 ... Expansion valve, 8 ... Upper tower, 15 ... Argon condenser, 17 ... Main condenser, 19 ... Argon tower, 31, 31a, 31b, 31c, 31d, 31e ... reboiler, 71 ... single fractionator, 74 ... condenser

Claims (7)

圧縮,精製,冷却した原料空気を精留塔に導入して液化精留分離を行い、空気成分を分離採取する空気液化分離方法において、前記精留塔の下部から導出した液化空気を該精留塔の中段に設置したリボイラに加熱源として導入し、該リボイラで精留塔中段部の下降液の一部を気化させるとともに前記液化空気を冷却し、該冷却後の液化空気を、前記精留塔上部のガスを液化させる凝縮器に寒冷源として導入することを特徴とする空気液化分離方法。In an air liquefaction separation method in which compressed, refined, and cooled raw material air is introduced into a rectification column to perform liquefaction rectification separation to separate and collect air components, the liquefied air derived from the lower part of the rectification column The reboiler installed in the middle stage of the tower is introduced as a heating source, the reboiler vaporizes a part of the descending liquid in the middle stage of the rectification tower and cools the liquefied air, and the cooled liquefied air is used as the rectification An air liquefaction separation method, which is introduced as a cold source into a condenser for liquefying gas in an upper part of the tower. 圧縮,精製,冷却した原料空気を複精留塔に導入して液化精留分離を行い、空気成分を分離採取する空気液化分離方法において、前記複精留塔の下部塔から導出した低温液化ガスを、該複精留塔の上部塔における主凝縮器と下部塔からの液化空気が導入される部分との間に設置したリボイラに加熱源として導入し、該リボイラで上部塔内の下降液の一部を気化させるとともに前記低温液化ガスを冷却し、該冷却後の低温液化ガスを上部塔に導入することを特徴とする空気液化分離方法。Low-temperature liquefied gas derived from the lower column of the double rectification column in the air liquefaction separation method for separating and collecting the air components by introducing the compressed, purified, and cooled raw material air into the double rectification column and performing liquefaction rectification separation Is introduced as a heating source to a reboiler installed between the main condenser in the upper column of the double rectifying column and the portion where the liquefied air from the lower column is introduced, and the reboiler is used to reduce the descending liquid in the upper column. An air liquefaction separation method characterized by evaporating a part and cooling the low-temperature liquefied gas and introducing the cooled low-temperature liquefied gas into the upper column. 前記低温液化ガスが飽和液化窒素であり、前記リボイラで冷却された液化窒素を過冷器を経て上部塔に導入することを特徴とする請求項2記載の空気液化分離方法。3. The air liquefaction separation method according to claim 2, wherein the low-temperature liquefied gas is saturated liquefied nitrogen, and the liquefied nitrogen cooled by the reboiler is introduced into the upper tower through a subcooler. 圧縮,精製,冷却した原料空気を複精留塔及びアルゴン塔を備えた空気液化分離装置により、酸素,窒素,アルゴン等の空気成分に分離して採取する空気液化分離方法において、前記複精留塔の下部塔底部から導出した液化空気を、該複精留塔の上部塔における主凝縮器と下部塔からの液化空気が導入される部分との間に設置したリボイラに加熱源として導入し、該リボイラで上部塔内の下降液の一部を気化させるとともに前記液化空気を冷却し、該冷却後の液化空気を前記アルゴン塔の凝縮器を経て上部塔に導入することを特徴とする空気液化分離方法。In the air liquefaction separation method in which the compressed, purified and cooled raw material air is separated and collected into air components such as oxygen, nitrogen, and argon by an air liquefaction separation apparatus equipped with a double rectification tower and an argon tower. The liquefied air led out from the bottom of the lower tower of the tower is introduced as a heating source into a reboiler installed between the main condenser in the upper tower of the double rectifying tower and the part where the liquefied air from the lower tower is introduced, A part of the descending liquid in the upper tower is vaporized by the reboiler, the liquefied air is cooled, and the cooled liquefied air is introduced into the upper tower through the condenser of the argon tower. Separation method. 圧縮,精製,冷却した原料空気を複精留塔及びアルゴン塔を備えた空気液化分離装置により、酸素,窒素,アルゴン等の空気成分に分離して採取する空気液化分離方法において、前記複精留塔の下部塔底部から導出した液化空気を分岐し、分岐した一方の液化空気を、複精留塔の上部塔における主凝縮器と下部塔からの液化空気が導入される部分との間、又は前記下部塔内に設置したリボイラに加熱源として導入し、該リボイラで塔内の下降液の一部を気化させるとともに前記液化空気を冷却し、前記分岐した他方の液化空気を、前記上部塔から導出した低温ガスを寒冷源とする過冷器に導入して冷却し、冷却された両液化空気の少なくとも一部を前記アルゴン塔の凝縮器を経て上部塔に導入することを特徴とする空気液化分離方法。In the air liquefaction separation method in which the compressed, refined and cooled raw material air is separated and collected by an air liquefaction separation apparatus equipped with a double rectification tower and an argon tower, The liquefied air led out from the bottom of the lower tower of the tower is branched, and one of the branched liquefied air is divided between the main condenser in the upper tower of the double rectifying tower and the portion where the liquefied air from the lower tower is introduced, or The reboiler installed in the lower tower is introduced as a heating source, the reboiler vaporizes a part of the descending liquid in the tower and cools the liquefied air, and the other branched liquefied air is taken from the upper tower. Air liquefaction characterized by introducing the cooled low-temperature gas into a supercooler using a cold source and cooling, and introducing at least a part of both cooled liquefied air into the upper column through the condenser of the argon column Separation method. 複精留塔及びアルゴン塔を備えた空気液化分離装置において、前記複精留塔に設けられている主凝縮器に、複精留塔下部塔から導出した低温液化ガスを加熱源とするリボイラを一体に設けるとともに、該リボイラを導出した低温液化ガスを前記上部塔に導入する経路を設けたことを特徴とする空気液化分離装置。In an air liquefaction separation apparatus equipped with a double rectification column and an argon column, a reboiler using a low-temperature liquefied gas derived from the lower column of the double rectification column as a heating source is connected to the main condenser provided in the double rectification column. An air liquefaction separation apparatus characterized by being provided integrally and provided with a path for introducing a low-temperature liquefied gas derived from the reboiler into the upper tower. 前記リボイラに導入される低温液化ガスが下部塔からの液化空気であり、該リボイラで冷却された液化空気を前記上部塔に導入する経路が、前記アルゴン塔の凝縮器を経て上部塔に至る経路であることを特徴とする請求項6記載の空気液化分離装置。The low-temperature liquefied gas introduced into the reboiler is liquefied air from the lower tower, and a path for introducing the liquefied air cooled by the reboiler into the upper tower is a path leading to the upper tower through the condenser of the argon tower The air liquefaction separation apparatus according to claim 6, wherein
JP18480194A 1994-03-31 1994-08-05 Air liquefaction separation method and apparatus Expired - Fee Related JP3681187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18480194A JP3681187B2 (en) 1994-03-31 1994-08-05 Air liquefaction separation method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6423394 1994-03-31
JP6-64233 1994-03-31
JP18480194A JP3681187B2 (en) 1994-03-31 1994-08-05 Air liquefaction separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH07318240A JPH07318240A (en) 1995-12-08
JP3681187B2 true JP3681187B2 (en) 2005-08-10

Family

ID=26405353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18480194A Expired - Fee Related JP3681187B2 (en) 1994-03-31 1994-08-05 Air liquefaction separation method and apparatus

Country Status (1)

Country Link
JP (1) JP3681187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102066396B1 (en) * 2018-11-16 2020-01-15 한국에너지기술연구원 Reboiler Integrated Evaporation Tower

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807826B1 (en) * 2000-04-13 2002-06-14 Air Liquide BATH TYPE CONDENSER VAPORIZER
JP7103816B2 (en) * 2018-03-29 2022-07-20 大陽日酸株式会社 Argon production equipment and method by air liquefaction separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102066396B1 (en) * 2018-11-16 2020-01-15 한국에너지기술연구원 Reboiler Integrated Evaporation Tower

Also Published As

Publication number Publication date
JPH07318240A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
AU654601B2 (en) Process and apparatus for the production of impure oxygen
US2547177A (en) Process of and apparatus for separating ternary gas mixtures
US3371496A (en) Wash liquid production by heat exchange with low pressure liquid oxygen
JP2015169424A (en) Air liquefaction separation device and method
JPH07109348B2 (en) Method and apparatus for high pressure low temperature distillation of air
PL179449B1 (en) Method of and apparatus for separating air components from each other
US4805412A (en) Krypton separation
JP3681187B2 (en) Air liquefaction separation method and apparatus
KR20010105207A (en) Cryogenic air separation system with split kettle recycle
US2940269A (en) Process and apparatus for separating gaseous mixtures by rectification
US2846853A (en) High pressure scrubber liquefier in air separation systems
US3258930A (en) Process and apparatus for separating gaseous mixtures by low-temperature rectification
JPH08247647A (en) Separation of gas mixture
JP2001165566A (en) Air separation
JP4230213B2 (en) Air liquefaction separation apparatus and method
JPS6140909B2 (en)
US2833127A (en) Gas separation control process
JPH1072612A (en) Oxygen steelmaking method
JP4230094B2 (en) Nitrogen production method and apparatus
JP3720863B2 (en) Air liquefaction separation method
JP2781983B2 (en) Air liquefaction separation method and apparatus
JP4150107B2 (en) Nitrogen production method and apparatus
JPH09303959A (en) Oxygen manufacturing method attendant to nitrogen manufacturing device
JPH0399190A (en) Method of manufacturing oxygen
JPH0849968A (en) Air liquefaction separating method and apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050517

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees