JP3681149B2 - Exothermic material - Google Patents

Exothermic material Download PDF

Info

Publication number
JP3681149B2
JP3681149B2 JP14025698A JP14025698A JP3681149B2 JP 3681149 B2 JP3681149 B2 JP 3681149B2 JP 14025698 A JP14025698 A JP 14025698A JP 14025698 A JP14025698 A JP 14025698A JP 3681149 B2 JP3681149 B2 JP 3681149B2
Authority
JP
Japan
Prior art keywords
mosi
glassy
film
heating element
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14025698A
Other languages
Japanese (ja)
Other versions
JPH11322431A (en
Inventor
篤志 福嶋
博 高村
大輔 高垣
建夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP14025698A priority Critical patent/JP3681149B2/en
Priority to KR1019990017973A priority patent/KR100321402B1/en
Priority to TW088108145A priority patent/TW467956B/en
Publication of JPH11322431A publication Critical patent/JPH11322431A/en
Application granted granted Critical
Publication of JP3681149B2 publication Critical patent/JP3681149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、MoSi基材またはMoSiを主成分として70%以上含む基材から成る(以下併せてMoSiを主体とするという)発熱材料に関するものであり、特には発熱材料の表面に形成されるガラス質表面酸化被膜を低酸素拡散性にした発熱材料に関する。
【0002】
【従来の技術】
MoSi基発熱材料は、1000〜1800°Cの酸化性雰囲気下で耐酸化性に優れたガラス質表面酸化被膜(以下ガラス質被膜と呼ぶ)を形成するため、酸化性雰囲気の超高温域まで使用できる数少ない発熱材料の一つである。
MoSi基発熱材料の成分は、抵抗値調整、成型助剤またはガラス質被膜の生成助剤等のためMoSiに数%〜数十%の多成分系のガラス成分等が添加されている。
MoSi基材は表面酸化あるいはコーティング等の適切な方法でガラス質の保護被膜を形成させた後、ヒーターとして使用されるのが通常である。
またMoSi基発熱材料は例えば図1のような形状に加工した後、炉体に装着され、ヒーターとして使用される。
【0003】
図中の(a)は電極部と呼ばれ、MoSi基材と完全な電気的接続をするためガラス質被膜を取り除いた母材に通常Al等の金属が溶射されている。電極部は、MoSi基発熱体を抵抗加熱する時の端子の役割を担う。また図の(b)はグリップ部と呼ばれ、(c)の発熱部より径を太くすることにより抵抗を下げ、抵抗発熱を迎えている。
グリップ部は発熱部との電極部間に熱勾配を生じさせ、電極部が高温にさらされ酸化されることを防止している。図の(c)は発熱部と呼ばれ、まさに炉を昇温する時のヒーターの役割を担う。
【0004】
【発明が解決しようとする課題】
従来のMoSi基発熱材料を電気炉の発熱体(ヒーター)として使用する場合、大別すると二つの問題点が挙げられる。
一つは、300〜600°Cの酸化性雰囲気下で長時間保持されたMoSi基発熱材料は、1000〜1800°Cの領域で生じる酸化挙動と異なり、ガラス質被膜中を拡散してきた酸素によりMoとSiの同時酸化を起こし酸化物粉末を生成し、ペストと呼ばれる粉状化現象を引き起こすことである。この現象は一般に抵抗発熱体のグリップ部で多く見られ、しばしば通電不良を起こし発熱体の破断の原因となる。
もう一つは、抵抗発熱体を繰り返し昇降温しながら使用すると発熱部の径が減少し、発熱体性能が劣化することである。ここでいう性能劣化は、発熱部の径が初期状態より細くなり抵抗値に変化が生じることや、発熱部の表面積が小さくなり炉の昇温速度に支障をきたすこと等である。
本発明の課題は、上記の問題点を改良し、耐ペスト性に優れ、且つ長期間性能が劣化しないMoSiを主体とする発熱材料を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意研究を行った結果、以下のような知見を得た。
従来のMoSi基発熱材料でペスト現象や径の減少が生じる原因は、MoSi基発熱材料の表面に生成されるガラス質被膜の耐酸化特性が必ずしも十分でないためである。
そのため課題を解決するためには、耐酸化性に十分に優れたガラス質被膜を生成する発熱材料に改善する必要がある。
すなわち、一般にガラス質被膜形成による耐酸化特性の向上は、ガラス質被膜の低酸素拡散性によるものである。ガラス質被膜中の酸素拡散は、図2(a)に示すようなガラス質被膜の三次元構造の隙間を酸素分子が移動することによって行われる。
【0006】
そして、ガラス中にある種の不適合成分、たとえばAlが存在する場合には、図2(b)に示すように三次元網目構造が断ち切られ網目の隙間が拡大されることになる。その結果三次元網目構造の隙間を酸素分子が移動・拡散し易くなるため耐酸化性が劣化するのである。
そして、従来のMoSi基発熱材料の場合には、これらの不適合成分含有量については特別な管理は行われておらず、耐酸化性の低下をもたらす原因となっていたことが判明した。
不適合成分として、Al、Ca、Mg、Na、K、Li、Ba、B、P、Pb、Mn、Znを確認することができた。従って、MoSi基原料および抵抗値調節等のために加えられる原料として、これらの不適合成分含有量の低い高純度原料を使用することにより網目の細かいガラス質被膜を生成する発熱材料となり、上記の問題を解決し得ることが分かった。
【0007】
この知見に基づき、本発明は、
1. MoSi基材またはMoSiを主成分として70%以上含む基材から成る発熱材料において、基材中に含まれるAl、Ca、Mg、Na、K、Li、Ba、B、P、Pb、Mn、Znの含有量の合計量が100ppm以下であり、表面にガラス質表面酸化被膜が形成されていることを特徴とする発熱材料
を提供するものである。
【0008】
MoSi基材中に含まれる不適合成分を低減することにより、ガラス質被膜の、三次元網目構造の隙間の拡大が抑制される。そのためガラス質被膜の、三次元網目構造中の酸素分子の移動も制限される。その結果、耐酸化性は大幅に向上することになるのである。
【0009】
【発明の実施の形態】
本発明は、MoSi基材またはMoSiを主成分として70%以上含む基材を対象とする。本発明の目的では、適当な酸化物や珪化物を成分として選択することによってMoSiの含有量を約70%まで低減させることができるので、MoSiを主成分として70%以上含む基材もここでは含めた。
基材の製法は問わない。基材の形態も任意である。また、この基材と同種のものを被覆材として用いることもできる。
【0010】
抵抗発熱体として使用する場合、適当な方法により棒状に成型し焼成を行う。必要に応じて添加成分(ガラス成分等)を添加するが、重要なことは、MoSiおよび必要に応じて使用される添加成分のいずれも不適合成分、すなわち、Al、Ca、Mg、Na、K、Li、Ba、B、P、Pb、Mn、Znを極力低減させた高純度の原料を使用し、MoSi 基材焼結体中に含まれるAl、Ca、Mg、Na、K、Li、Ba、B、P、Pb、Mn、Znの、これらの不適合成分の合計量を100ppm以下とする
【0011】
そして、MoSi基材には適当な方法により表面酸化被膜の形成処理を施す、通常は、1000〜1800°Cにおいて酸化性雰囲気下で表面の酸化によりガラス質被膜を形成する。
図2(b)に示したように、基材中に上述した不適合元素が多く存在すると、形成されたガラス質被膜の三次元網目構造が断ち切られ網目の隙間が拡大されることになり、その結果三次元網目構造の隙間を酸素分子が移動・拡散し易くなるためガラス質被膜の耐酸化性が劣化するのであるが、基材中の不適合成分の合計含有量を100ppm以下と規制することにより、生成するガラス質被膜を低酸素拡散性にすることが可能となる。
【0012】
【実施例】
以下、実施例に基づいて説明するが、本発明は実施例によって制限されるものではない。実施例と共に、参照例及び比較例を以下に示す
a.グリップ部の耐ペスト性試験
参照例1
高純度原料粉末を使用して、MoSi−15%SiO焼結体からなる直径9mmのMoSi基発熱体を作製した。このMoSi基発熱体の化学分析値を表1に示す。
表1に示すように、不適合成分のAl、Ca、Mg、Na、K、P、Pb、Mnの合計量は39ppm以下であった。また、比較のためAl、Ca、Mg等を多量に含有する従来のMoSi基発熱体を用意した(比較例1)。同様に、表1に示す
【0013】
【表1】

Figure 0003681149
【0014】
これらについて、耐ペスト試験を行った。各発熱体は100mmの長さに切断し、ガラス質被膜が形成されていない両端の切断面は酸化防止剤を塗布した。各発熱材料は図3に示す温度サイクル(200〜480°C)を繰り返す大気炉内に放置しガラス質被膜で覆われた母材が粉状にペストしていく程度を比較した。
【0015】
その結果、参照例1では、80サイクル終了後でも健全であった。すなわち、不適合成分であるAl、Ca、Mg、Na、K、P、Pb、Mnの合計量が10 0ppm以下である高純度MoSi 基発熱体は耐ペスト性に優れていることが分かる。
一方、比較例1では25サイクル後にガラス質被膜を透過した酸素により母材でMoとSiの同時酸化が生じ、表面近傍が粉状化しガラス質被膜が剥離した。
【0016】
b.ガラス質被膜の成長速度試験
実施例1、参照例2
不適合成分の異なる2種類のMoSi−5%SiO焼結体からなる直径4mmのMoSi基発熱体を作製した(実施例1)。このMoSi 基発熱体の化学分析値を表2に示す。
表2から分かるように、実施例1における不適合成分であるAl、Ca、Mg、Na、K、Li、Ba、B、P、Pb、Mn、Znの合計量は48ppm、すなわち100ppm以下である。
参照例2としてAl及びBが比較的多く含有されているMoSi 基発熱体の化学分析値を、同様に表2に示す
【0017】
【表2】
Figure 0003681149
【0018】
(比較例2)
比較のために、Al、Ca、Mg、Naが多量に含有されている従来のMoSi基発熱体を用意した。これを、同様に表2に示す
【0019】
本試験では、ガラス質被膜の成長速度を測定することにより高温でのガラス質被膜の耐酸化性を比較した。試験手順は、まず発熱体を抵抗加熱により1650°Cまで昇温し、大気中で10、30、90、120時間保持した後室温に戻した。そして、発熱体のガラス質被膜の膜厚を求めるため、フッ酸に浸漬し表面のガラス質被膜を溶解した。
ガラス質被膜の膜厚は、溶解前後の発熱体の径を測定し、その差から算出した。1650°Cの保持時間に対するガラス質被膜の膜厚変化を図4に示した。図4において、●は比較例2、△は参照例2、○は実施例1を示す
【0020】
比較例2では、ガラス質被膜中を酸素が拡散しやすく耐酸化性が不十分のため、120時間後の膜厚は42μmであった。
一方、本発明品である実施例1、参照例2では低酸素拡散性のガラス質被膜を有するため、酸化の進行を意味するガラス被膜の成長を抑制し、ともに16μm以下であった。また、参照例2より高純度である実施例1はさらに耐酸化性に優れていた。
【0021】
一般にガラス質被膜はある厚み以上に成長すると、発熱体を昇降温する時に生じる熱歪み等の影響で母材表面から剥離する。剥離後の新生面には新たにガラス質被膜が生成され、そのガラス質被膜は成長を重ねるが、ある厚み以上でまた剥離する。このサイクルにより発熱体の径が次第に減少し発熱部の性能劣化が生じる。
本発明品は、低酸素拡散性ガラス被膜であるため被膜の成長速度を抑制する。すなわち、本発明品はガラス質被膜が剥離する膜厚まで成長するのに長時間を要し、発熱部の径が減少するサイクルを著しく低速化し、長期間性能劣化が生じない発熱体となる。
以上から、不適合成分であるAl、Ca、Mg、Na、K、Li、Ba、B、P、Pb、Mn、Znの合計量が100ppm以下である本発明は、耐ペスト性及び低酸素拡散性に優れていることが分かる。
【0022】
c.最高使用温度試験
(参照例3)
高純度原料粉末を使用して、MoSi−5%SiO焼結体からなる直径4mm、長さ200mmのMoSi基発熱体を作製した。
このMoSi基発熱体の化学分析値を表3に示す。表3に示す通り、参照例3に示す高純度MoSi 基発熱体の不適合成分であるAl、Ca、Mg、Na、K、P、Pb、Mnの合計量は68ppm以下、すなわち100ppm以下である
【0023】
【表3】
Figure 0003681149
【0024】
(比較例3)
また、比較のため不適合成分であるAl、Ca、Mg等を多く含有している従来のMoSi基発熱体を用意した。
【0025】
これらについて最高使用温度付近での高温耐酸化性試験を行った。試験は、抵抗加熱により1650°Cまで60秒で昇温し、そこから1825°Cまで0.5°C/secで加熱するプログラムを用意した。ただし昇温中破断もしくはガラス質被膜が破壊された場合は、その時点で終了とした。温度管理は放射温度計により、行った。
不適合成分のAl、Ca、Mg、Na、K、P、Pb、Mnの合計量が68ppm以下である高純度MoSi 基発熱体の参照例3では、1825°C到達後300秒保持してもガラス質被膜表面の変化は見られなかった。
一方、不適合成分であるAl、Ca、Mg等を多く含有している従来材では1750°C付近で内部酸化により発生したガス成分の吹き出しが生じ、ガラス質被膜が破壊された。
【0026】
d.化学反応性試験
上記の参照例3及び比較例3と同一のサンプルを用いて、耐火煉瓦等に用いられるジルコニアおよびシリマイトと大気中1650°Cで接触させ化学反応性を調べる試験を行った。
その結果、参照例3に示す不適合成分であるAl、Ca、Mg、Na、K、P、Pb、Mnの合計量が100ppm以下である高純度MoSi 基発熱体については、耐火物との接触部で反応は起こらないが、不適合成分が多量にガラス質被膜に含まれる従来材は、それらの耐火物と反応し融着した。電気炉の発熱体として使用する場合、耐火煉瓦等との融着は破損の原因となる。この点においても参照例3に示す高純度MoSi 基発熱体の性質が優れていることが明らかである。
【0027】
【発明の効果】
本発明の不適合成分含有量を低減した低酸素拡散性ガラス質被膜を有するMoSiを主体とする発熱材料は、耐ペスト性に優れ、酸化の進行を意味するガラス被膜の成長を抑制し、最高使用温度付近での高温耐酸化性及び化学反応性にも優れ、長期間でも性能の劣化が少ないものである。
【図面の簡単な説明】
【図1】MoSi基からなる電気炉用発熱体(ヒーター)の模式図である。
【図2】(a)は、ガラス質被膜の三次元網目構造を示す説明図、そして(b)は三次元網目構造が断ち切られ網目の隙間が拡大された状態を示す説明図である。
【図3】耐ペスト試験で使用した繰り返し加熱試験の温度サイクル(200〜480°C)を示すグラフである。
【図4】大気中1650°Cの保持時間に対するガラス質被膜の膜厚変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the heat generating material consisting of a substrate comprising more than 70% of MoSi 2 substrate or MoSi 2 as a main component (hereinafter referred to collectively as a main component MoSi 2), in particular formed on the surface of the heat generating material The present invention relates to a heat-generating material in which a glassy surface oxide film is made to have low oxygen diffusibility.
[0002]
[Prior art]
Since the MoSi 2- based heat generating material forms a glassy surface oxide film (hereinafter referred to as a glassy film) excellent in oxidation resistance in an oxidizing atmosphere of 1000 to 1800 ° C., it can be used in an ultra-high temperature region of an oxidizing atmosphere. It is one of the few heat generating materials that can be used.
As a component of the MoSi 2 -based heat generating material, a multicomponent glass component of several percent to several tens of percent is added to MoSi 2 for resistance value adjustment, a molding aid, or a glassy coating formation aid.
The MoSi 2 substrate is usually used as a heater after a glassy protective film is formed by an appropriate method such as surface oxidation or coating.
Further, the MoSi 2 base heat generating material is processed into a shape as shown in FIG. 1, for example, and then mounted on the furnace body to be used as a heater.
[0003]
(A) in the figure is called an electrode portion, and a metal such as Al is usually sprayed on the base material from which the vitreous coating is removed in order to make a complete electrical connection with the MoSi 2 substrate. An electrode part plays the role of a terminal at the time of carrying out resistance heating of the MoSi 2 group heating element. Further, (b) in the figure is called a grip part, and the resistance is lowered by making the diameter larger than that of the heat generating part in (c), and resistance heat is generated.
The grip portion generates a thermal gradient between the electrode portion and the heat generating portion, thereby preventing the electrode portion from being exposed to high temperature and being oxidized. (C) in the figure is called a heat generating part, and plays the role of a heater when the temperature of the furnace is raised.
[0004]
[Problems to be solved by the invention]
When using a conventional MoSi 2 base heating material as a heating element (heater) of an electric furnace, there are two major problems.
One is that the MoSi 2 base exothermic material kept for a long time in an oxidizing atmosphere of 300 to 600 ° C. differs from the oxidation behavior that occurs in the region of 1000 to 1800 ° C., and has diffused oxygen in the glassy film. This causes simultaneous oxidation of Mo and Si to generate an oxide powder, which causes a powdering phenomenon called plague. In general, this phenomenon is often observed in the grip portion of the resistance heating element, and often causes energization failure and causes the heating element to break.
The other is that when the resistance heating element is used while repeatedly raising and lowering the temperature, the diameter of the heating part decreases and the heating element performance deteriorates. The performance deterioration here is that the diameter of the heat generating portion becomes thinner than the initial state and the resistance value changes, or the surface area of the heat generating portion becomes small, which hinders the temperature increase rate of the furnace.
An object of the present invention is to improve the above-mentioned problems, and to provide a heat generating material mainly composed of MoSi 2 which has excellent pest resistance and does not deteriorate in performance for a long period of time.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have obtained the following findings.
The cause of the pest phenomenon and the decrease in the diameter of the conventional MoSi 2 -based heat generating material is that the oxidation resistance characteristic of the vitreous film formed on the surface of the MoSi 2 -based heat generating material is not always sufficient.
Therefore, in order to solve the problem, it is necessary to improve the heat generating material to produce a vitreous film sufficiently excellent in oxidation resistance.
That is, the improvement of the oxidation resistance characteristic by the formation of the glassy film is generally due to the low oxygen diffusibility of the glassy film. Oxygen diffusion in the glassy film is performed by movement of oxygen molecules through a gap in the three-dimensional structure of the glassy film as shown in FIG.
[0006]
When a certain incompatible component, for example, Al is present in the glass, the three-dimensional network structure is cut off as shown in FIG. As a result, oxygen molecules easily move and diffuse through the gaps in the three-dimensional network structure, so that the oxidation resistance deteriorates.
And in the case of the conventional MoSi 2 group exothermic material, it turned out that special management was not performed about content of these nonconforming components, and it became the cause of causing a fall of oxidation resistance.
As incompatible components, Al, Ca, Mg, Na, K, Li, Ba, B, P, Pb, Mn, and Zn could be confirmed. Therefore, by using these high-purity raw materials with a low content of incompatible components as raw materials added for MoSi 2 group raw materials and resistance value adjustment, etc., it becomes a heat generating material that generates a fine glassy film, It turns out that the problem can be solved.
[0007]
Based on this finding, the present invention
1. In a heat generating material comprising a MoSi 2 substrate or a substrate containing 70% or more of MoSi 2 as a main component, Al, Ca, Mg, Na, K, Li, Ba, B, P, Pb, Mn contained in the substrate , there is provided a heat generating material total amount of content of Zn is Ri der less 100 ppm, characterized that you have been formed glassy surface oxidation film on the surface.
[0008]
By reducing the incompatible component contained in the MoSi 2 substrate, the expansion of the gap in the three-dimensional network structure of the glassy coating is suppressed. Therefore, the movement of oxygen molecules in the three-dimensional network structure of the glassy film is also limited. As a result, the oxidation resistance is greatly improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to a MoSi 2 substrate or a substrate containing 70% or more of MoSi 2 as a main component. For the purposes of the present invention, it is possible to reduce a suitable oxide or silicide to about 70% content of MoSi 2 by selecting as component, also a substrate comprising 70% or more MoSi 2 as a main component Included here.
The manufacturing method of a base material is not ask | required. The form of the substrate is also arbitrary. Moreover, the same kind as this base material can also be used as a coating material.
[0010]
When used as a resistance heating element, it is molded into a rod shape by an appropriate method and fired. Additive components (glass components, etc.) are added as necessary, but importantly, both MoSi 2 and optional additive components used are incompatible components, ie, Al, Ca, Mg, Na, K , Li, Ba, B, P, Pb, Mn, Zn using high purity raw materials as much as possible, Al, Ca, Mg, Na, K, Li, contained in the MoSi 2 base sintered body The total amount of these incompatible components of Ba, B, P, Pb, Mn, and Zn is set to 100 ppm or less .
[0011]
Then, a surface oxide film is formed on the MoSi 2 substrate by an appropriate method. Usually, a glassy film is formed by oxidation of the surface in an oxidizing atmosphere at 1000 to 1800 ° C.
As shown in FIG. 2 (b), when there are many incompatible elements described above in the base material, the three-dimensional network structure of the formed glassy film is cut off, and the gaps of the network are enlarged. As a result, the oxidation resistance of the glassy coating deteriorates because oxygen molecules easily move and diffuse through the gaps in the three-dimensional network structure, but by restricting the total content of incompatible components in the base material to 100 ppm or less Thus, it becomes possible to make the vitreous coating film to be low oxygen diffusive.
[0012]
【Example】
Hereinafter, although demonstrated based on an Example, this invention is not restrict | limited by an Example. A reference example and a comparative example are shown below with an Example .
a. Pest resistance test of grip part ( Reference example 1 )
Using high purity raw material powder, to prepare a MoSi 2 group heating elements with a diameter of 9mm consisting MoSi 2 -15% SiO 2 sintered body. Table 1 shows the chemical analysis values of the MoSi 2 base heating element.
As shown in Table 1, the total amount of incompatible components Al, Ca, Mg, Na, K, P, Pb, and Mn was 39 ppm or less. For comparison, a conventional MoSi 2 -based heating element containing a large amount of Al, Ca, Mg, etc. was prepared (Comparative Example 1). Similarly, it shows in Table 1 .
[0013]
[Table 1]
Figure 0003681149
[0014]
About these, the plague-proof test was done. Each heating element was cut to a length of 100 mm, and an antioxidant was applied to the cut surfaces at both ends where the vitreous film was not formed. Each exothermic material was left in an atmospheric furnace in which the temperature cycle (200 to 480 ° C.) shown in FIG. 3 was repeated, and the extent to which the base material covered with the vitreous coating was pasted into powder was compared.
[0015]
As a result, Reference Example 1 was sound even after the end of 80 cycles. That is, it can be seen that the high-purity MoSi 2 -based heating element in which the total amount of Al, Ca, Mg, Na, K, P, Pb, and Mn, which are incompatible components, is 100 ppm or less is excellent in pest resistance.
On the other hand, in Comparative Example 1, Mo and Si were simultaneously oxidized in the base material by oxygen permeated through the glassy coating after 25 cycles, and the vicinities of the surface became powdery and the glassy coating peeled off.
[0016]
b. Glassy film growth rate test ( Example 1, Reference Example 2 )
To prepare a MoSi 2 group heating elements with a diameter of 4mm of different two kinds of MoSi 2 -5% SiO 2 sintered body incompatible component (Example 1). Table 2 shows the chemical analysis values of this MoSi 2 base heating element.
As can be seen from Table 2, the total amount of Al, Ca, Mg, Na, K, Li, Ba, B, P, Pb, Mn, and Zn, which are incompatible components in Example 1, is 48 ppm, that is, 100 ppm or less.
Table 2 shows the chemical analysis values of a MoSi 2 base heating element containing a relatively large amount of Al and B as Reference Example 2.
[0017]
[Table 2]
Figure 0003681149
[0018]
(Comparative Example 2)
For comparison, a conventional MoSi 2 base heating element containing a large amount of Al, Ca, Mg, and Na was prepared. This is also shown in Table 2 .
[0019]
In this test, the oxidation resistance of the glassy coating at high temperatures was compared by measuring the growth rate of the glassy coating. The test procedure was as follows. First, the heating element was heated to 1650 ° C. by resistance heating, held in the atmosphere for 10, 30, 90, and 120 hours, and then returned to room temperature. And in order to obtain | require the film thickness of the glassy film of a heat generating body, it immersed in the hydrofluoric acid and melt | dissolved the glassy film of the surface.
The film thickness of the glassy coating was calculated from the difference between the diameters of the heating elements before and after dissolution. The change in film thickness of the vitreous coating film with respect to the holding time of 1650 ° C. is shown in FIG. In FIG. 4, ● represents Comparative Example 2, Δ represents Reference Example 2, and ○ represents Example 1 .
[0020]
In Comparative Example 2 , the film thickness after 120 hours was 42 μm because oxygen easily diffused in the vitreous film and oxidation resistance was insufficient.
On the other hand, Example 1 and Reference Example 2 , which are products of the present invention, have a low oxygen diffusible glassy coating, so that the growth of the glass coating meaning the progress of oxidation was suppressed, and both were 16 μm or less. Further, Example 1 having higher purity than Reference Example 2 was further excellent in oxidation resistance.
[0021]
In general, when a glassy film grows to a certain thickness or more, it peels off from the surface of the base material due to the influence of thermal distortion or the like generated when the heating element is heated or lowered. A new glassy film is formed on the new surface after peeling, and the glassy film grows up again, but peels off again at a certain thickness or more. By this cycle, the diameter of the heating element is gradually reduced, and the performance of the heating part is deteriorated.
Since the product of the present invention is a low oxygen diffusible glass coating, the growth rate of the coating is suppressed. That is, the product of the present invention takes a long time to grow to a film thickness at which the vitreous film peels off, and the cycle in which the diameter of the heat generating portion decreases is remarkably slowed down, so that the heating element does not cause long-term performance deterioration.
From the above, the present invention in which the total amount of incompatible components Al, Ca, Mg, Na, K, Li, Ba, B, P, Pb, Mn, Zn is 100 ppm or less is pest resistance and low oxygen diffusibility. It turns out that it is excellent in.
[0022]
c. Maximum operating temperature test (Reference example 3)
Using high purity raw material powder, the diameter 4mm consisting MoSi 2 -5% SiO 2 sintered body was produced MoSi 2 groups heating element length 200 mm.
Table 3 shows the chemical analysis values of this MoSi 2 base heating element. As shown in Table 3, the total amount of Al, Ca, Mg, Na, K, P, Pb, and Mn, which are incompatible components of the high purity MoSi 2 heating element shown in Reference Example 3, is 68 ppm or less, that is, 100 ppm or less. [0023]
[Table 3]
Figure 0003681149
[0024]
(Comparative Example 3)
For comparison, a conventional MoSi 2 -based heating element containing a large amount of incompatible components such as Al, Ca, and Mg was prepared.
[0025]
These were subjected to a high-temperature oxidation resistance test near the maximum operating temperature. In the test, a program was prepared in which the temperature was raised to 1650 ° C. by resistance heating in 60 seconds and then heated to 1825 ° C. at 0.5 ° C / sec. However, when the breakage during the temperature rise or the glassy film was broken, the process was terminated at that point. Temperature control was performed with a radiation thermometer.
In Reference Example 3 of the high-purity MoSi two- base heating element in which the total amount of the incompatible components Al, Ca, Mg, Na, K, P, Pb, and Mn is 68 ppm or less, even if it is held for 300 seconds after reaching 1825 ° C. No change in the glassy coating surface was observed.
On the other hand, in a conventional material containing a large amount of incompatible components such as Al, Ca, and Mg, a gas component generated by internal oxidation was blown out near 1750 ° C., and the glassy coating was destroyed.
[0026]
d. Chemical Reactivity Test Using the same samples as in Reference Example 3 and Comparative Example 3 above, a test was conducted to check chemical reactivity by contacting zirconia and sillimite used for refractory bricks and the like at 1650 ° C. in the atmosphere.
As a result, the high-purity MoSi 2 base heating element in which the total amount of Al, Ca, Mg, Na, K, P, Pb, and Mn, which are incompatible components shown in Reference Example 3, is 100 ppm or less is in contact with a refractory. However, the conventional materials in which a large amount of incompatible components are contained in the glassy coating reacted with those refractories and fused. When used as a heating element of an electric furnace, fusion with refractory bricks or the like causes damage. Also in this respect, it is clear that the properties of the high-purity MoSi 2- based heating element shown in Reference Example 3 are excellent.
[0027]
【The invention's effect】
The heat-generating material mainly composed of MoSi 2 having a low oxygen diffusible glassy film with a reduced content of incompatible components according to the present invention is excellent in pest resistance, suppresses the growth of the glass film which means the progress of oxidation, and is the best Excellent high-temperature oxidation resistance and chemical reactivity in the vicinity of the operating temperature, and little deterioration in performance over a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic view of a heating element (heater) for an electric furnace composed of two MoSi.
2A is an explanatory diagram showing a three-dimensional network structure of a glassy coating, and FIG. 2B is an explanatory diagram showing a state in which the three-dimensional network structure is cut off and the mesh gap is enlarged.
FIG. 3 is a graph showing a temperature cycle (200 to 480 ° C.) of a repeated heating test used in the pest resistance test.
FIG. 4 is a graph showing a change in the thickness of a glassy film with respect to a holding time of 1650 ° C. in the atmosphere.

Claims (1)

MoSi基材またはMoSiを主成分として70%以上含む基材から成る発熱材料において、基材中に含まれるAl、Ca、Mg、Na、K、Li、Ba、B、P、Pb、Mn、Znの含有量の合計量が100ppm以下であり、表面にガラス質表面酸化被膜が形成されていることを特徴とする発熱材料。In a heat generating material comprising a MoSi 2 substrate or a substrate containing 70% or more of MoSi 2 as a main component, Al, Ca, Mg, Na, K, Li, Ba, B, P, Pb, Mn contained in the substrate state, and are the total amount of content 100ppm or less of Zn, heat generating material which is characterized that you have been formed glassy surface oxidation film on the surface.
JP14025698A 1998-05-21 1998-05-21 Exothermic material Expired - Fee Related JP3681149B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14025698A JP3681149B2 (en) 1998-05-21 1998-05-21 Exothermic material
KR1019990017973A KR100321402B1 (en) 1998-05-21 1999-05-19 Molybdenum silicide based heater which has the glassy surface layer with low oxygen diffusivity
TW088108145A TW467956B (en) 1998-05-21 1999-05-19 MoSi2 based heating material which has the vitreous film with low oxygen diffusivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14025698A JP3681149B2 (en) 1998-05-21 1998-05-21 Exothermic material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002077682A Division JP4090767B2 (en) 2002-03-20 2002-03-20 Heat-generating material mainly composed of MoSi2 having a low oxygen diffusible glassy coating

Publications (2)

Publication Number Publication Date
JPH11322431A JPH11322431A (en) 1999-11-24
JP3681149B2 true JP3681149B2 (en) 2005-08-10

Family

ID=15264564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14025698A Expired - Fee Related JP3681149B2 (en) 1998-05-21 1998-05-21 Exothermic material

Country Status (3)

Country Link
JP (1) JP3681149B2 (en)
KR (1) KR100321402B1 (en)
TW (1) TW467956B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160380A (en) * 2001-11-22 2003-06-03 Nikko Materials Co Ltd HEAT GENERATOR HAVING MAIN INGREDIENT OF MoSi2
JP2004214075A (en) * 2003-01-07 2004-07-29 Nikko Materials Co Ltd HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141162A (en) * 1989-10-26 1991-06-17 Riken Corp Production of molybdenum disilicide heater
JPH10324571A (en) * 1997-05-23 1998-12-08 Riken Corp Molybdenum disilicide ceramic heat generating body and its production
JP3657800B2 (en) * 1998-02-20 2005-06-08 株式会社リケン Molybdenum disilicide-based composite ceramic heating element and manufacturing method thereof

Also Published As

Publication number Publication date
KR100321402B1 (en) 2002-01-24
TW467956B (en) 2001-12-11
JPH11322431A (en) 1999-11-24
KR19990088388A (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JPH10324571A (en) Molybdenum disilicide ceramic heat generating body and its production
EP0369464B1 (en) Method of producing superconducting ceramic wire
JP4090767B2 (en) Heat-generating material mainly composed of MoSi2 having a low oxygen diffusible glassy coating
JP3681149B2 (en) Exothermic material
JPH04101380A (en) Disk ceramics heater and its manufacture
JP3129383B2 (en) Oxide-coated silicon carbide material and its manufacturing method
JP2000086361A (en) Heat resistant material and its production
TWI231261B (en) Silicon plate, method for producing silicon plate, solar cell and substrate for producing silicon plate
JP4515038B2 (en) MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element
JPH06111862A (en) Solid substance composed of ceramic high- temperature superconducting material connected to metal conductor and its manufacture
JPH0790619A (en) High temperature heat resistant member
JP2537606B2 (en) Ceramic Heater
JP2752706B2 (en) Thin high temperature heater
WO2023145138A1 (en) MoSi2 HEATER
JP2001052526A (en) Electric insulating member and manufacture thereof
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JP4043732B2 (en) Heater and oxide superconductor thin film manufacturing equipment
JPS63291485A (en) Manufacture of oxide superconducting circuit
JPH07230875A (en) Silicon carbide ceramic heater and manufacture of silicon carbide ceramic base body
JP2003013195A (en) Platinum-coated refractory
JPS63274018A (en) Structure of superconductor and its manufacture
JP4658523B2 (en) Oxidation-resistant composite material
JP4396931B2 (en) FIBER-REINFORCED PLATINUM COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND FIBER-REINFORCED PLATINUM PRODUCT
JPH11130541A (en) Regeneration of protective film for molybdenum disilicide-base exothermic element
JPH0815047A (en) Production for temperature measuring sensor in which thermocouple and protection tube are integrated

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371