JP3680203B2 - Process for producing 4-acetylaminobenzenesulfonyl azide - Google Patents

Process for producing 4-acetylaminobenzenesulfonyl azide Download PDF

Info

Publication number
JP3680203B2
JP3680203B2 JP19221899A JP19221899A JP3680203B2 JP 3680203 B2 JP3680203 B2 JP 3680203B2 JP 19221899 A JP19221899 A JP 19221899A JP 19221899 A JP19221899 A JP 19221899A JP 3680203 B2 JP3680203 B2 JP 3680203B2
Authority
JP
Japan
Prior art keywords
acetylaminobenzenesulfonyl
azide
reaction
salt
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19221899A
Other languages
Japanese (ja)
Other versions
JP2000344735A (en
Inventor
亮三 宮重
順 光井
進 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kasei Kogyo Co Ltd
Original Assignee
Toyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kasei Kogyo Co Ltd filed Critical Toyo Kasei Kogyo Co Ltd
Priority to JP19221899A priority Critical patent/JP3680203B2/en
Publication of JP2000344735A publication Critical patent/JP2000344735A/en
Application granted granted Critical
Publication of JP3680203B2 publication Critical patent/JP3680203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、4−アセチルアミノベンゼンスルホニルクロライドを原料とする、4−アセチルアミノベンゼンスルホニルアジドの新規な製造方法に関する。4−アセチルアミノベンゼンスルホニルアジドは、医薬品、光磁気記憶材料等の原料として有用なジアゾ化剤である。
【0002】
【従来の技術】
従来、4−アセチルアミノベンゼンスルホニルアジドを製造する方法としては、4−アセチルアミノベンゼンスルホニルクロライドに無機アジ化塩を反応させる方法が一般的であり、数多くの文献に記載されている。
【0003】
例えば、J.Org.Chem.,61,2540−2541(1996年)においては、アセトンを反応溶媒に用い、4−アセチルアミノベンゼンスルホニルクロライドに固形のアジ化ナトリウムを反応させて、収率94%を得ている。
【0004】
しかしながら、上記方法には以下の問題点がある。
(1)同一条件で反応を行っても、反応が速やかに完結する場合と、途中で全く転換反応が進まなくなる場合があり、反応の定量的安定性が得られていない。
(2)反応を完結させるためには、反応溶媒のアセトンに不溶なアジ化ナトリウムを過剰に使用することから、その過剰分のアジ化ナトリウムに汚染された反応副生物の塩化ナトリウムが発生し、その無害化処理を行うために多くの時間と費用が必要となる。
【0005】
また、米国特許5,610,314号においては、4−アセチルアミノベンゼンスルホニルクロライドをアセトンに溶解し、アジ化ナトリウム水溶液を滴下して転換反応を行っている。この場合、 4−アセチルアミノベンゼンスルホニルクロライドが水に不安定で加水分解を受けることから、収率は79%と工業的には高い収率とは言い難い。
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決して高収率で高品質の4−アセチルアミノベンゼンスルホニルアジドを、容易かつ安全に製造することのできる方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために工業的に有利な方法を鋭意研究したところ、出発原料の4−アセチルアミノベンゼンスルホニルクロライドが加水分解を受けないように非水反応系とし、出発原料をアセトニトリル、アセトン、塩化メチレン等の有機溶媒に溶解させ、固形の無機アジ化塩との反応において、転換反応が定量的安定に進行し、且つ、反応完結に必要な無機アジ化塩の過剰分をできるだけ少なくするために、上記転換反応をアミン塩触媒の存在下で行うことで、上記課題を解決し、本発明を完成するに至った。
【0008】
すなわち、本発明は、下記式(1)の4−アセチルアミノベンゼンスルホニルクロライドと一般式(2)で表される無機アジ化塩とを、触媒にアミン塩を用い、4−アセチルアミノベンゼンスルホニルクロライドを溶解する溶媒中に於いて反応させることを特徴とする下記式(3)で表される4−アセチルアミノベンゼンスルホニルアジドの製造方法である。
【化3】

Figure 0003680203
Figure 0003680203
(式中、Mはアルカリ金属またはアルカリ土類金属であり、nは1または2である。)
【化4】
Figure 0003680203
Figure 0003680203
【0009】
アミン塩触媒を用いたこの新規な方法は、定量的に安定して4−アセチルアミノベンゼンスルホニルアジドを製造することができ、更に、大過剰量の無機アジ化塩は不必要となったため、副生塩中に存在する無機アジ化塩の公害処理が容易となった。また、非水反応系であるため、4−アセチルアミノベンゼンスルホニルクロライドの加水分解反応が起こらないことから、高収率に4−アセチルアミノベンゼンスルホニルアジドを得ることができる。
【0010】
【発明の実施の形態】
本発明において、出発原料となる4−アセチルアミノベンゼンスルホニルクロライドは、どのような方法で製造されたものであってもよく、また、市販品を使用してもよい。
【0011】
一般式(2)で表わされる無機アジ化塩としては、具体的にはナトリウム、カリウム、リチウム、カルシウム、マグネシウム等のアルカリ金属またはアルカリ土類金属のアジ化物が挙げられるが、アジ化ナトリウムが工業的に好適である。
【0012】
無機アジ化塩の使用量は、4−アセチルアミノベンゼンスルホニルクロライド1モルに対し、アジ化水素換算で通常1.0〜1.1モルの範囲、好ましくは1.01〜1.05モルである。
【0013】
本発明で使用するアミン塩は、アミンと塩から形成される。アミンとしては、第1級、第2級、第3級アミンのいずれでもよいが、特に脂肪族第3級アミンが好ましい。アミン塩としては、例えば、トリメチルアミン塩、トリエチルアミン塩、トリプロピルアミン塩、トリブチルアミン塩、トリアミルアミン塩、トリヘキシルアミン塩、トリアリルアミン塩、ヒリジン塩、トリエタノールアミン塩、N−メチルモルホリン塩、N,N−ジメチルシクロヘキシルアミン塩、N,N−ジメチルアニリン塩、N,N,N’,N’−テトラメチルエチレンジアミン塩、4−ジメチルアミノピリジン塩などの第3級アミン等が挙げられるが、これらに限定されるわけではない。また、これらのアミン塩の2種以上を併用してもよい。
【0014】
塩を形成する酸としては、基本的にはアミンと塩を形成する酸であればよい。酸としては、例えば、塩酸、臭化水素、硫酸、硝酸、リン酸、ホウ酸、アジ化水素、塩素酸、炭酸、硫化水素等の無機酸等が挙げられるが、これらに限定されるわけではない。好ましい酸は、塩酸、臭化水素、硫酸等である。
【0015】
好ましいアミン塩は、トリエチルアミン塩酸塩である。
【0016】
アミン塩は、市販のものを使用してもよいし、または反応系内でアミンと酸を反応させて塩を合成して作用させてもよい。
【0017】
アミン塩の使用量は、反応が進行するのに必要な最低限度量でよいが、4−アセチルアミノベンゼンスルホニルクロライド1モルに対し、通常0.002〜0.02モルの範囲、好ましくは0.002〜0.004モルの範囲である。アミン塩のモル比は、反応速度、反応生成率に影響する。
【0018】
反応溶媒としては、4−アセチルアミノベンゼンスルホニルクロライドに対する溶解性の良いことから、アセトニトリル、N,N−ジメチルホルムアミド、アセトン、エチルメチルケトン、塩化メチレン、クロロホルム等が挙げられるが、これらに限定されるわけではない。好ましくは、アミン塩触媒の効果が最も高い非プロトン極性溶媒類であり、更に好ましくはアセトニトリルである。反応溶媒の使用量は、4−アセチルアミノベンゼンスルホニルクロライド1gに対し、通常1〜10mlの範囲、好ましくは3〜5mlの範囲である。
【0019】
反応温度は、原料の4−アセチルアミノベンゼンスルホニルクロライドが完全溶解し、生成した4−アセチルアミノベンゼンスルホニルアジドが熱分解しない程度の温度であればよく、特に限定されるものではない。通常20〜60℃の範囲、好ましくは35〜50℃の範囲である。
【0020】
反応時間は、特に限定されないが、通常1〜120時間であり、好ましくは3〜5時間の範囲である。
【0021】
反応後、副生する塩化物と少量過剰仕込した無機アジ化塩が混ざる固相を濾別した後、濾液を減圧下、溶媒と生成された4−アセチルアミノベンゼンスルホニルアジドが容積比で1対1になる程度まで濃縮する。留出溶媒はそのまま反応に再使用することも可能である。
【0022】
晶析は、温度0〜20℃の範囲で、晶析溶媒として水を加えて行う。その水量は生成した4−アセチルアミノベンゼンスルホニルアジド1容量に対し容積比が3〜5になる範囲で添加する。但し、塩化メチレン溶媒使用時のみ晶析溶媒としてトルエンを使用する。結晶を濾取し、温風乾燥後、4−アセチルアミノベンゼンスルホニルアジドを得ることができる。
【0023】
【実施例】
以下の実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に何等限定されるものではない。
【0024】
実施例1
メカニカルシール攪拌機を備え付けた500Lガラスライニング製のオートクレーブにアセトニトリル219kg、4−アセチルアミノベンゼンスルホニルクロライド80kg、アジ化ナトリウム23.5kg、トリエチルアミン塩酸塩0.16kgを仕込み、強攪拌を開始した。缶内温度は反応熱の発生により20℃から徐々に上昇し42℃まで達した。反応物を攪拌している間、反応を高速液体クロマトグラフィーでモニターした。反応は強攪拌開始後約5時間で完結した。反応混合物をガラスライニング製の濾過器に通し、固相を濾別し、この固相をアセトニトリル30kgで洗浄した。反応溶液326kgを得た。この反応溶液を別の500Lガラスライニング製のオートクレーブに仕込み、内温30〜45℃で減圧濃縮を行いアセトニトリル約180kgを系内から留去した。濃縮後、系内を10℃まで冷却した後、水280kgを滴下し晶析を行った。晶析スラリーを遠心分離し、湿結晶82kgを得た。この湿結晶を40℃で温風乾燥し、4−アセチルアミノベンゼンスルホニルアジド79kgを得た。得られた4−アセチルアミノベンゼンスルホニルアジドの収率は96.%(4−アセチルアミノベンゼンスルホニルクロライド)で、純度は99.8%であった。
【0025】
実施例2
メカニカルオーバーヘッド攪拌機を備え付けた500ml四つ口フラスコにアセトン219g、4−アセチルアミノベンゼンスルホニルクロライド80g、アジ化ナトリウム23.5g、トリエチルアミン塩酸塩0.20gを仕込み、強攪拌を開始した。缶内温度は反応熱の発生により20℃から徐々に上昇し43℃まで達した。反応物を攪拌している間、反応を高速液体クロマトグラフィーでモニターした。反応は強攪拌開始後約5時間で完結した。ヌッチェを用い反応混合物中から固相を濾別し、この固相をアセトン30gで洗浄した。反応溶液320gを得た。この反応溶液を別のメカニカルオーバーヘッド攪拌機を備え付けた500ml四つ口フラスコに仕込み、内温30〜45℃で減圧濃縮を行いアセトン約180gを系内から留去した。濃縮後、系内を10℃まで冷却した後、水280gを滴下し晶析を行った。晶析スラリーを濾取し、湿結晶82gを得た。この湿結晶を40℃で温風乾燥し、4−アセチルアミノベンゼンスルホニルアジド76gを得た。得られた4−アセチルアミノベンゼンスルホニルアジドの収率は92.4%(4−アセチルアミノベンゼンスルホニルクロライド)で、純度は99.8%であった。
【0026】
実施例3
メカニカルオーバーヘッド攪拌機を備え付けた500ml四つ口フラスコに塩化メチレン370g、4−アセチルアミノベンゼンスルホニルクロライド80g、アジ化ナトリウム23.5g、トリエチルアミン塩酸塩0.20gを仕込み、強攪拌を開始した。缶内温度は反応熱の発生により20℃から徐々に上昇し、冷却を行い45℃を超えない範囲で攪拌を続けた。反応物を攪拌している間、反応を高速液体クロマトグラフィーでモニターした。反応は強攪拌開始後約5時間で完結した。ヌッチェを用い反応混合物中から固相を濾別し、この固相を塩化メチレン50gで洗浄した。反応溶液490gを得た。この反応溶液を別のメカニカルオーバーヘッド攪拌機を備え付けた500ml四つ口フラスコに仕込み、内温30〜45℃で減圧濃縮を行い塩化メチレン約305gを系内から留去した。濃縮後、系内を10℃まで冷却した後、トルエン400gを滴下し晶析を行った。晶析スラリーを濾取し、湿結晶82gを得た。この湿結晶を40℃で温風乾燥し、4−アセチルアミノベンゼンスルホニルアジド75gを得た。得られた4−アセチルアミノベンゼンスルホニルアジドの収率は91.2%(4−アセチルアミノベンゼンスルホニルクロライド)で、純度は99.7%であった。
【0027】
【発明の効果】
本発明によって、大過剰の無機アジ化塩を必要とせず、安全、安価に、安定して高品質の4−アセチルアミノベンゼンスルホニルアジドを製造することができる。従って、経済的、工業的価値が極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing 4-acetylaminobenzenesulfonyl azide using 4-acetylaminobenzenesulfonyl chloride as a raw material. 4-acetylaminobenzenesulfonyl azide is a diazotizing agent useful as a raw material for pharmaceuticals, magneto-optical storage materials and the like.
[0002]
[Prior art]
Conventionally, as a method for producing 4-acetylaminobenzenesulfonyl azide, a method of reacting 4-acetylaminobenzenesulfonyl chloride with an inorganic azide salt is generally used and described in many documents.
[0003]
For example, J. et al. Org. Chem. , 61, 2540-2541 (1996), acetone is used as a reaction solvent, and 4-acetylaminobenzenesulfonyl chloride is reacted with solid sodium azide to obtain a yield of 94%.
[0004]
However, the above method has the following problems.
(1) Even if the reaction is performed under the same conditions, the reaction may be completed quickly, or the conversion reaction may not proceed at all during the process, and the quantitative stability of the reaction is not obtained.
(2) In order to complete the reaction, an excessive amount of sodium azide insoluble in acetone as a reaction solvent is used, so that reaction by-product sodium chloride contaminated with the excess sodium azide is generated, It takes a lot of time and money to perform the detoxification process.
[0005]
In US Pat. No. 5,610,314, 4-acetylaminobenzenesulfonyl chloride is dissolved in acetone, and an aqueous sodium azide solution is added dropwise to carry out a conversion reaction. In this case, since 4-acetylaminobenzenesulfonyl chloride is unstable in water and undergoes hydrolysis, the yield is 79%, which is difficult to say industrially.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of easily and safely producing 4-acetylaminobenzenesulfonyl azide with high yield and high quality by solving the above-mentioned problems.
[0007]
[Means for Solving the Problems]
The present inventors diligently studied an industrially advantageous method for solving the above-mentioned problems. As a result, the starting material 4-acetylaminobenzenesulfonyl chloride was used as a non-aqueous reaction system so as not to be hydrolyzed. The raw material is dissolved in an organic solvent such as acetonitrile, acetone, methylene chloride, etc., and in the reaction with the solid inorganic azide salt, the conversion reaction proceeds quantitatively and stably, and the excess of inorganic azide salt necessary for the completion of the reaction In order to reduce the amount as much as possible, the above-described conversion reaction is performed in the presence of an amine salt catalyst, thereby solving the above-mentioned problems and completing the present invention.
[0008]
That is, the present invention uses 4-acetylaminobenzenesulfonyl chloride represented by the following formula (1) and an inorganic azide salt represented by the general formula (2), an amine salt as a catalyst, and 4-acetylaminobenzenesulfonyl chloride. Is a method for producing 4-acetylaminobenzenesulfonyl azide represented by the following formula (3).
[Chemical 3]
Figure 0003680203
Figure 0003680203
(In the formula, M is an alkali metal or alkaline earth metal, and n is 1 or 2.)
[Formula 4]
Figure 0003680203
Figure 0003680203
[0009]
This new method using an amine salt catalyst can quantitatively and stably produce 4-acetylaminobenzenesulfonyl azide, and further, a large excess of inorganic azide salt is unnecessary. Pollution treatment of inorganic azide salt present in raw salt became easy. Moreover, since it is a non-aqueous reaction system, 4-acetylaminobenzenesulfonyl azide can be obtained in a high yield since hydrolysis reaction of 4-acetylaminobenzenesulfonyl chloride does not occur.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, 4-acetylaminobenzenesulfonyl chloride as a starting material may be produced by any method, and a commercially available product may be used.
[0011]
Specific examples of the inorganic azide salt represented by the general formula (2) include alkali metal or alkaline earth metal azides such as sodium, potassium, lithium, calcium and magnesium. It is particularly suitable.
[0012]
The amount of the inorganic azide salt used is usually in the range of 1.0 to 1.1 mol, preferably 1.01 to 1.05 mol in terms of hydrogen azide, with respect to 1 mol of 4-acetylaminobenzenesulfonyl chloride. .
[0013]
The amine salt used in the present invention is formed from an amine and a salt. The amine may be any of primary, secondary, and tertiary amines, but aliphatic tertiary amines are particularly preferable. Examples of the amine salt include trimethylamine salt, triethylamine salt, tripropylamine salt, tributylamine salt, triamylamine salt, trihexylamine salt, triallylamine salt, hydridine salt, triethanolamine salt, N-methylmorpholine salt, Tertiary amines such as N, N-dimethylcyclohexylamine salt, N, N-dimethylaniline salt, N, N, N ′, N′-tetramethylethylenediamine salt, 4-dimethylaminopyridine salt, etc. However, it is not limited to these. Two or more of these amine salts may be used in combination.
[0014]
The acid that forms a salt may be basically an acid that forms a salt with an amine. Examples of the acid include, but are not limited to, inorganic acids such as hydrochloric acid, hydrogen bromide, sulfuric acid, nitric acid, phosphoric acid, boric acid, hydrogen azide, chloric acid, carbonic acid, and hydrogen sulfide. Absent. Preferred acids are hydrochloric acid, hydrogen bromide, sulfuric acid and the like.
[0015]
A preferred amine salt is triethylamine hydrochloride.
[0016]
A commercially available amine salt may be used, or a salt may be synthesized by reacting an amine and an acid in a reaction system.
[0017]
The amount of the amine salt used may be the minimum amount necessary for the reaction to proceed, but is usually in the range of 0.002 to 0.02 mol, preferably 0.000, per 1 mol of 4-acetylaminobenzenesulfonyl chloride. It is the range of 002-0.004 mol. The molar ratio of the amine salt affects the reaction rate and the reaction production rate.
[0018]
Examples of the reaction solvent include acetonitrile, N, N-dimethylformamide, acetone, ethyl methyl ketone, methylene chloride, chloroform and the like because of their good solubility in 4-acetylaminobenzenesulfonyl chloride, but are not limited thereto. Do not mean. Preferred are aprotic polar solvents having the highest effect of the amine salt catalyst, and more preferred is acetonitrile. The amount of the reaction solvent to be used is generally in the range of 1 to 10 ml, preferably in the range of 3 to 5 ml, with respect to 1 g of 4-acetylaminobenzenesulfonyl chloride.
[0019]
The reaction temperature is not particularly limited as long as the raw material 4-acetylaminobenzenesulfonyl chloride is completely dissolved and the produced 4-acetylaminobenzenesulfonyl azide is not thermally decomposed. Usually, it is in the range of 20-60 ° C, preferably in the range of 35-50 ° C.
[0020]
Although reaction time is not specifically limited, Usually, it is 1-120 hours, Preferably it is the range of 3-5 hours.
[0021]
After the reaction, the solid phase in which the by-produced chloride and the inorganic azide salt added in a small amount are mixed is filtered off, and the filtrate is reduced under reduced pressure, so that the solvent and the produced 4-acetylaminobenzenesulfonyl azide have a volume ratio of 1: Concentrate to 1 The distillate solvent can be reused in the reaction as it is.
[0022]
Crystallization is performed at a temperature in the range of 0 to 20 ° C. by adding water as a crystallization solvent. The amount of water is added in such a range that the volume ratio is 3 to 5 with respect to 1 volume of the produced 4-acetylaminobenzenesulfonyl azide. However, toluene is used as a crystallization solvent only when a methylene chloride solvent is used. Crystals are collected by filtration and dried with warm air to give 4-acetylaminobenzenesulfonyl azide.
[0023]
【Example】
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
[0024]
Example 1
A 500 L glass-lined autoclave equipped with a mechanical seal stirrer was charged with 219 kg of acetonitrile, 80 kg of 4-acetylaminobenzenesulfonyl chloride, 23.5 kg of sodium azide, and 0.16 kg of triethylamine hydrochloride, and strong stirring was started. The inside temperature of the can gradually increased from 20 ° C. to 42 ° C. due to generation of reaction heat. While the reaction was stirred, the reaction was monitored by high performance liquid chromatography. The reaction was completed about 5 hours after the start of strong stirring. The reaction mixture was passed through a filter made of glass lining, the solid phase was filtered off, and this solid phase was washed with 30 kg of acetonitrile. 326 kg of reaction solution was obtained. This reaction solution was charged into another autoclave made of 500 L glass lining, concentrated under reduced pressure at an internal temperature of 30 to 45 ° C., and about 180 kg of acetonitrile was distilled off from the system. After concentration, the system was cooled to 10 ° C., and 280 kg of water was added dropwise for crystallization. The crystallization slurry was centrifuged to obtain 82 kg of wet crystals. This wet crystal was dried in warm air at 40 ° C. to obtain 79 kg of 4-acetylaminobenzenesulfonyl azide. The yield of the obtained 4-acetylaminobenzenesulfonyl azide was 96. % (4-acetylaminobenzenesulfonyl chloride) and the purity was 99.8%.
[0025]
Example 2
A 500 ml four-necked flask equipped with a mechanical overhead stirrer was charged with 219 g of acetone, 80 g of 4-acetylaminobenzenesulfonyl chloride, 23.5 g of sodium azide, and 0.20 g of triethylamine hydrochloride, and intense stirring was started. The inside temperature of the can gradually increased from 20 ° C. to 43 ° C. due to generation of reaction heat. While the reaction was stirred, the reaction was monitored by high performance liquid chromatography. The reaction was completed in about 5 hours after the start of strong stirring. The solid phase was filtered off from the reaction mixture using Nutsche, and this solid phase was washed with 30 g of acetone. 320 g of reaction solution was obtained. This reaction solution was charged into a 500 ml four-necked flask equipped with another mechanical overhead stirrer, concentrated under reduced pressure at an internal temperature of 30 to 45 ° C., and about 180 g of acetone was distilled off from the system. After concentration, the system was cooled to 10 ° C., and 280 g of water was added dropwise for crystallization. The crystallization slurry was collected by filtration to obtain 82 g of wet crystals. This wet crystal was dried in warm air at 40 ° C. to obtain 76 g of 4-acetylaminobenzenesulfonyl azide. The yield of the obtained 4-acetylaminobenzenesulfonyl azide was 92.4% (4-acetylaminobenzenesulfonyl chloride), and the purity was 99.8%.
[0026]
Example 3
A 500 ml four-necked flask equipped with a mechanical overhead stirrer was charged with 370 g of methylene chloride, 80 g of 4-acetylaminobenzenesulfonyl chloride, 23.5 g of sodium azide, and 0.20 g of triethylamine hydrochloride, and strong stirring was started. The internal temperature of the can gradually increased from 20 ° C. due to the generation of heat of reaction. While the reaction was stirred, the reaction was monitored by high performance liquid chromatography. The reaction was completed in about 5 hours after the start of strong stirring. The solid phase was filtered off from the reaction mixture using Nutsche, and this solid phase was washed with 50 g of methylene chloride. 490 g of reaction solution was obtained. This reaction solution was charged into a 500 ml four-necked flask equipped with another mechanical overhead stirrer, and concentrated under reduced pressure at an internal temperature of 30 to 45 ° C. to distill off about 305 g of methylene chloride from the system. After concentration, the system was cooled to 10 ° C., and 400 g of toluene was added dropwise for crystallization. The crystallization slurry was collected by filtration to obtain 82 g of wet crystals. This wet crystal was dried in warm air at 40 ° C. to obtain 75 g of 4-acetylaminobenzenesulfonyl azide. The yield of the obtained 4-acetylaminobenzenesulfonyl azide was 91.2% (4-acetylaminobenzenesulfonyl chloride), and the purity was 99.7%.
[0027]
【The invention's effect】
According to the present invention, high-quality 4-acetylaminobenzenesulfonyl azide can be produced stably and inexpensively without requiring a large excess of inorganic azide salt. Therefore, the economic and industrial value is extremely large.

Claims (5)

下記式(1)の4−アセチルアミノベンゼンスルホニルクロライドと一般式(2)で表される無機アジ化塩とを、触媒にアミン塩を用い、4−アセチルアミノベンゼンスルホニルクロライドを溶解する溶媒中に於いて反応させることを特徴とする下記式(3)で表される4−アセチルアミノベンゼンスルホニルアジドの製造方法。
Figure 0003680203
Figure 0003680203
(式中、Mはアルカリ金属またはアルカリ土類金属であり、nは1または2である。)
Figure 0003680203
Figure 0003680203
In a solvent in which 4-acetylaminobenzenesulfonyl chloride represented by the following formula (1) and an inorganic azide salt represented by the general formula (2) are used as a catalyst, and 4-acetylaminobenzenesulfonyl chloride is dissolved. A process for producing 4-acetylaminobenzenesulfonyl azide represented by the following formula (3):
Figure 0003680203
Figure 0003680203
(In the formula, M is an alkali metal or alkaline earth metal, and n is 1 or 2.)
Figure 0003680203
Figure 0003680203
無機アジ化塩がアジ化ナトリウムであることを特徴とする請求項1に記載の方法。2. The method of claim 1, wherein the inorganic azide salt is sodium azide. アミン塩がトリエチルアミン塩酸塩であることを特徴とする請求項1または2に記載の方法。The process according to claim 1 or 2, wherein the amine salt is triethylamine hydrochloride. 4−アセチルアミノベンゼンスルホニルクロライドを溶解する溶媒が、非プロトン極性溶媒、ケトン類溶媒、クロル化合物類溶媒であることを特徴とする請求項1〜3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein the solvent for dissolving 4-acetylaminobenzenesulfonyl chloride is an aprotic polar solvent, a ketone solvent, or a chloro compound solvent. 非プロトン極性溶媒がアセトニトリル、ケトン類溶媒がアセトン、クロル化合物溶媒が塩化メチレンであることを特徴とする請求項1〜3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein the aprotic polar solvent is acetonitrile, the ketone solvent is acetone, and the chloro compound solvent is methylene chloride.
JP19221899A 1999-06-01 1999-06-01 Process for producing 4-acetylaminobenzenesulfonyl azide Expired - Fee Related JP3680203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19221899A JP3680203B2 (en) 1999-06-01 1999-06-01 Process for producing 4-acetylaminobenzenesulfonyl azide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19221899A JP3680203B2 (en) 1999-06-01 1999-06-01 Process for producing 4-acetylaminobenzenesulfonyl azide

Publications (2)

Publication Number Publication Date
JP2000344735A JP2000344735A (en) 2000-12-12
JP3680203B2 true JP3680203B2 (en) 2005-08-10

Family

ID=16287638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19221899A Expired - Fee Related JP3680203B2 (en) 1999-06-01 1999-06-01 Process for producing 4-acetylaminobenzenesulfonyl azide

Country Status (1)

Country Link
JP (1) JP3680203B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324015B (en) 2007-03-29 2018-08-28 第一三共株式会社 Pharmaceutical composition
RU2464271C1 (en) 2008-12-17 2012-10-20 Дайити Санкио Компани, Лимитед Method of producing diamine derivative
EP2383272A4 (en) 2009-01-13 2012-07-25 Daiichi Sankyo Co Ltd Active blood coagulation factor inhibitor
CN102348688B (en) 2009-03-10 2014-07-09 第一三共株式会社 Process for producing diamine derivative
CN102348680B (en) * 2009-03-13 2014-11-05 第一三共株式会社 Method for producing optically active diamine derivative
WO2010147169A1 (en) 2009-06-18 2010-12-23 第一三共株式会社 Pharmaceutical composition having improved solubility
WO2011115066A1 (en) 2010-03-19 2011-09-22 第一三共株式会社 Crystal of diamine derivative and method of producing same
HUE031961T2 (en) 2010-07-02 2017-09-28 Daiichi Sankyo Co Ltd Process for preparation of optically active diamine derivative salt
CN114940657B (en) * 2022-05-09 2023-10-27 三峡大学 Amidine compound synthesized from N, N, N ', N' -tetramethyl ethylenediamine

Also Published As

Publication number Publication date
JP2000344735A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JPH0371431B2 (en)
JP3680203B2 (en) Process for producing 4-acetylaminobenzenesulfonyl azide
JP5649971B2 (en) Process for producing 2-hydroxy-5-phenylalkylaminobenzoic acid derivatives and salts thereof
JP3440129B2 (en) Method for producing glutamine derivative
JP3796280B2 (en) Process for producing 1- (2-chlorophenyl) -5 (4H) -tetrazolinone
JP2000256332A (en) Production of 5,5'-bi-1h-tetrazole salt
JP2001247529A (en) Method of producing alpha-amino acid amide
JPH10114772A (en) Production of 1-(tetrazolylbiphenylmethyl) midazole derivative
JPH01258649A (en) Production of 2,4-dichloro-3-alkyl-6-nitrophenol
JP4913589B2 (en) One-pot production method of 1,2-benzisoxazole-3-methanesulfonamide
JPH10218868A (en) Production of 5-methyltetrazole
JP3486922B2 (en) Method for producing acid amide
JP4207270B2 (en) Method for producing alkyl cyanobenzoate
JP4384315B2 (en) Method for producing 3-nitro-2- (Nt-butoxycarbonyl) aminobenzoic acid esters and production intermediates thereof
JPS6081144A (en) Production of alpha-halogeno-beta-phenylpropionic acid
KR100577874B1 (en) Preparing method for methyl 4-hydroxyiminovenzoate utilizing evaporated residue from DMT preparation
JP3998076B2 (en) Demethylation of podophyllotoxin
JPS5993059A (en) Preparation of cytosines
JP2004067544A (en) Method for producing highly pure bis-(1(2)h-tetrazol-5-yl)amine
JPH10287650A (en) Production of 1-chlorocarbonyl-4-piperidinopiperidine, or hydrochloride salt thereof
JP2004323392A (en) Method for producing bitetrazolamine compound
JP4239251B2 (en) Method for producing alkyl cyanobenzoate
JPH02282345A (en) Production of 2,4,5-trifluorobenzoic acid
JPH09227490A (en) Production of 3-(or 4-)cyanobenzaldehyde
JP2004115403A (en) Method for producing 4,6-dinitroresorcinol

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees