JP3679534B2 - Waste carbonization pyrolysis melting combustion equipment - Google Patents

Waste carbonization pyrolysis melting combustion equipment Download PDF

Info

Publication number
JP3679534B2
JP3679534B2 JP00497697A JP497697A JP3679534B2 JP 3679534 B2 JP3679534 B2 JP 3679534B2 JP 00497697 A JP00497697 A JP 00497697A JP 497697 A JP497697 A JP 497697A JP 3679534 B2 JP3679534 B2 JP 3679534B2
Authority
JP
Japan
Prior art keywords
dry distillation
waste
combustion
steam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00497697A
Other languages
Japanese (ja)
Other versions
JPH10205736A (en
Inventor
大祐 鮎川
彰 田口
美久 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP00497697A priority Critical patent/JP3679534B2/en
Publication of JPH10205736A publication Critical patent/JPH10205736A/en
Application granted granted Critical
Publication of JP3679534B2 publication Critical patent/JP3679534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は都市ごみや産業廃棄物等の燃焼処理に利用されるものであり、蒸気タービン発電装置を備えた廃棄物の乾留熱分解溶融燃焼装置に於いて、廃棄物の加熱用熱源である熱風発生炉に独立過熱器を設けて廃熱ボイラからの蒸気を過熱することにより、簡単な設備でもって経済的により高い発電効率を得られるようにした廃棄物の乾留熱分解溶融燃焼装置に関するものである。
【0002】
【従来の技術】
図6は従前の熱風発生炉を用いた廃棄物の乾留熱分解溶融燃焼装置の一例を示すものであり、供給装置1により乾留熱分解反応器2内へ供給された廃棄物Cは、ここで空気の遮断下に於いて300℃〜600℃の温度に加熱され、乾留ガスGと熱分解残渣Dに変換される。
【0003】
前記乾留熱分解反応器2内の熱分解生成物は、搬出装置3に於いて乾留ガスGと熱分解残渣Dに分離され、前者の乾留ガスGは溶融燃焼装置4へ送られて燃焼される。また、後者の熱分解残渣Dは分離装置5へ送られ、この中から比較的粗い不燃性固形物が除去されると共に、残った可燃性の固形物Iは粉砕装置6に於いて微粉砕されたあと、前記溶融燃焼装置4へ供給され、1200℃以上の温度下で溶融燃焼される。更に、前記溶融燃焼装置4内に形成された溶融スラグFは水砕スラグとして順次取り出されて行くと共に、溶融燃焼装置4からの排ガスGoは廃熱ボイラ7、集じん器8、ガス浄化装置9、煙突10を通して大気中へ排出されて行く。
【0004】
前記乾留熱分解反応器2は加熱管11を備えた回転式の乾留ドラムから形成されており、乾留ドラムの長手方向に配設した複数の加熱管11内へは、熱風発生炉12から廃棄物を加熱するための加熱ガスKが循環流通されている(特公平6−56253号等)。
尚、図6に於いて、13は蒸気タービン発電装置、14は送風機、15は誘引通風機、16は可燃性微粉貯留槽、17は送風機、18は熱交換器、19はオイルバーナ又はガスバーナ、20は廃棄物供給用クレーン。
【0005】
ところで、乾留熱分解反応器2内の廃棄物Cを加熱するためのエネルギ源としては、溶融燃焼装置4からの高温排ガスGoを用い、これを直接に反応器2へ供給するのが熱経済上最も好ましい方策である。
しかし、溶融燃焼装置4からの高温排ガスGo内には、廃棄物Cに含まれている塩化ビニール等の主として有機塩素化合物の燃焼によって生成する塩化水素(HCl)ガスが多量に含有されており、その高温に於ける激しい腐食性のため、これを乾留熱分解反応器2の加熱用熱源として用いることは、一般に忌避されている。
【0006】
そのため、前記図6に示す如く、オイル又はガス焚きの熱風発生炉12を設け、当該熱風発生炉12からの加熱ガスKを乾留熱分解反応器2の加熱管11内へ供給して廃棄物Cを加熱する構成としたり、或は図7に示すように溶融燃焼装置4の出口側に空気加熱器46を設け、定常運転中はこの空気加熱器46で加熱した高温空気を熱分解反応器2内へ流通させるようにした廃棄物の乾留熱分解溶融燃焼装置が、従前から多く使用されている。
何故なら、化石燃料を燃料とする熱風発生炉12内で生成された燃焼ガス(加熱ガスK)は通常所謂クリーンなガスであり、腐食性物質を殆んど含有していない。
【0007】
また、空気加熱器46からの高温空気を熱源とすることにより、乾留熱分解反応器2の加熱管11等の高温腐食は有効に防止できる。
ところが、廃熱ボイラ7の方は、溶融燃焼装置4からの高温排ガスGo内には前述の通り塩化水素(HCl)が含有されているため、廃熱ボイラ7の過熱蒸気温度を上げるとこれに高温腐食を生ずることになる。
そのため、従前の廃棄物乾留溶融燃焼装置に於いては、廃熱ボイラ7の過熱蒸気温度は通常約430℃以下に設定されている。その結果、蒸気タービン発電装置13の発電効率の向上が困難となり、現実には約23%位の統合発電効率しか得られないと云う問題がある。
【0008】
図8は図1に示した従前の廃棄物乾留熱分解溶融燃焼装置に於けるヒートバランスを示すものであり、発熱量N=2000kcal/kg、水分含有量40%の標準的な都市ごみ廃棄物Cを1000kg処理する場合の算定値である。
この場合、乾留熱分解反応器2に於いて必要とする熱量は約410,000kcal(410Mcal/ton廃棄物)となり、従って熱風発生炉12に於ける必要オイル燃焼量Mkg(kg/廃棄物ton)は、オイルの発熱量Qを10,000kcal/kgとすると、約M=41kgとなる。
また、ボイラ効率ηbを83%、タービン発電機効率ηgを80%(タービン効率ηt85%、発電機効率ηm94%)、蒸気条件を温度Ts=400℃・圧力Ps=40ata、エンタルピis=768kcal/kgとすると、発電々力Pは約647kwとなり、その結果、総合的な発電効率ηは、η=発電熱量/全入力熱量=(647kw×860kcal/kw)/(1000kg×2000kcal/kg+41kg×10,000kcal/kg)≒0.231、即ち約23%となる。
【0009】
より詳しくは図8を参照して、ここで下記のように諸量を定めると、
焼却廃棄物量C=1000kg、廃棄物の発熱量N=2000kcal/kg、オイル燃焼量M=41kg/廃棄物ton、オイル発熱量Q=10000kcal/kg、ボイラ効率ηb=0.83、タービン発電機効率ηg=0.8、タービン効率ηt=0.85、発電機効率ηm=0.94、蒸気温度Ts=400(℃)、蒸気圧力Ps=40(ata)、発電々力P(kw)、蒸気発生量S(kg)、蒸気エンタルピーis=768(kcal/kg)、給水エンタルピーiw=150(kcal/kg)、給水温度Tw=150(℃)、タービン排気蒸気量S1 (kg)、タービン抽気蒸気量S2 (kg)
ボイラ7の蒸気発生量Sは、

Figure 0003679534
尚、前記ボイラ効率ηb=0.83は、ボイラ7からの排ガス損失及び乾留熱分解反応器2からの排ガス損失を夫々考慮した値である。
【0010】
また、発電機の発生電力Pは、
Figure 0003679534
【0011】
更に、総合発電効率ηは発電熱量/全入力熱量として算出され、
Figure 0003679534
【0012】
【発明が解決しようとする課題】
本発明は従前の廃棄物の乾留熱分解溶融燃焼装置に於ける上述の如き問題、即ち高温腐蝕の点から廃熱ボイラの過熱蒸気温度が約430℃以下の温度に制限され、蒸気タービン発電装置の発電効率を高めることが出来ないと云う問題を解決せんとするものであり、設備費の大幅な高騰を招くことなしに経済的にしかも発電効率を従前よりも約5%ほど高めることを可能にした廃棄物の乾留熱分解溶融燃焼装置を提供するものである。
【0013】
【課題を解決するための手段】
本願発明者は、▲1▼乾留熱分解反応器2の加熱源である熱風発生炉12は、燃料を石油等の化石燃料とした場合には燃焼ガス(加熱ガスK)内にHCl成分が殆んど存在しないこと、及び▲2▼乾留熱分解反応器2へ供給する加熱ガスKの入口温度は、500℃〜600℃位であることが廃棄物Cの乾留熱分解上最適であり、従って熱風発生炉12の燃焼ガスの出口温度は必然的に500℃〜600℃位の温度になることに着目し、熱風発生炉12の容量を若干大きくすると共に熱風発生炉に独立過熱器を設け、熱風発生炉の燃焼ガスによって廃熱ボイラ7からの蒸気を約500〜550℃位の温度に過熱することにより、設備構造の複雑化や設備費の高騰を招くことなく比較的経済的に発電効率の向上を図り得ることを着想した。
【0014】
本発明は上記着想に基づいて創作されたものであり、請求項1の発明は、乾留熱分解反応器と、化石燃料を燃料とする熱風発生炉と、前記乾留熱分解反応器で生成された熱分解残渣から分離した可燃性細粒及び乾留熱分解反応器で生成された乾留ガスが供給される溶融燃焼装置と、過熱器を備えた廃熱ボイラと蒸気タービン発電装置とを備え、熱風発生炉の燃焼ガスを乾留熱分解反応器の加熱用熱源とすると共に、廃熱ボイラからの蒸気により蒸気タービン発電装置を稼動する廃棄物の乾留熱分解溶融燃焼装置に於いて、前記熱風発生炉内に独立過熱器を設け、当該熱風発生炉の燃焼ガスにより廃熱ボイラからの過熱蒸気を約500〜550℃の温度に過熱すると共に、蒸気を過熱した後の燃焼ガスを乾留熱分解反応器へ加熱ガスとして供給することを特徴とするものである。
【0015】
請求項2の発明は、乾留熱分解反応器と溶融燃焼装置と空気加熱器と廃熱ボイラと蒸気タービン発電装置とを備え、溶融燃焼装置からの高温排ガスにより加熱した加熱空気を乾留熱分解反応器の加熱用熱源とすると共に、廃熱ボイラからの蒸気により蒸気タービン発電装置を稼動する廃棄物の乾留熱分解溶融燃焼装置に於いて、独立過熱器を設け、廃熱ボイラからの蒸気を約500〜550℃の温度に過熱すると共に、蒸気を過熱した後の燃焼ガスを乾留熱分解反応器へ加熱ガスとして加熱空気と共に、供給することを特徴とするものである。
【0016】
また、請求項3の発明は、請求項1及び請求項2の発明に於いて熱風発生炉を、乾留熱分解反応器に於いて廃棄物の加熱に必要とする熱量の約1.3〜1.5倍の熱量を供給可能な熱風発生炉としたものである。
【0017】
請求項4の発明は、乾留熱分解反応器と熱風発生炉と溶融燃焼装置と廃熱ボイラと蒸気タービン発電装置とを備え、熱風発生炉の燃焼ガスを乾留熱分解反応器の加熱用熱源とすると共に廃熱ボイラからの蒸気により蒸気タービン発電装置を稼動する廃棄物の乾留熱分解溶融燃焼装置に於いて、前記熱風発生炉と並列にバーナ装置と蒸気過熱管とを備えた独立過熱器を設け、当該独立過熱器により廃熱ボイラからの蒸気を過熱すると共に独立過熱器からの燃焼ガスを熱風発生炉からの燃焼ガスに合流せしめ、前記乾留熱分解反応器へ加熱ガスとして供給することを特徴とするものである。
【0018】
また、請求項5の発明は、請求項2及び請求項4の発明に於いて独立過熱器を、乾留熱分解反応器からの低温加熱ガスの流入量を調整することにより出口に於ける燃焼ガスの温度を熱風発生器の出口に於ける燃焼ガスの温度とほぼ等しい温度とすると共に、バーナ装置の燃焼量を調整することにより出口に於ける過熱蒸気の温度を約500〜550℃に保持する構成の独立過熱器としたものである。
【0019】
【発明の実施の形態】
以下、図面に基づいて本発明の各実施態様を説明する。
図1は本発明の第1実施態様に係る廃棄物の乾留熱分解溶融燃焼装置の全体系統図であり、熱風発生炉12の部分を除いてその他の部分の構成は、図6に示した従来の廃棄物の乾留熱分解溶融燃焼装置の場合と同一である。従って、図1に於いては、前記図6と同じ機器・装置にはこれと同一の参照番号が付されている。
【0020】
図1に於いて、1は廃棄物Cの供給装置、2は乾留熱分解反応器、3は搬出装置、4は溶融燃焼装置、5は分離装置、6は粉砕装置、7は廃熱ボイラ、8は集じん器、9はガス浄化装置、10は煙突、11は加熱管、12は熱風発生炉、13は蒸気タービン発電装置、14は送風機、15は誘引通風機、16は可燃性微粉貯留槽、17は送風機、18は熱交換器、19はオイルバーナ又はガスバーナ、20は廃棄物供給用クレーンであり、前記図6の場合と全く同じである。
また、図1に於いて21は独立過熱器、22は空気予熱器、23は送風機、24は燃料供給弁、25は減温器、26は水量調整弁、27は復水器、28は脱気器、29はボイラ給水ポンプ、30・31・32は温度検出器、33・34・35はコントローラ、36a・36b・36c・36dは蒸気配管、37a・37bは給水配管であり、本発明に於いて新たに付加された部分である。
【0021】
前記乾留熱分解反応器2は水平に対して約1.5度の傾斜角度で入口側を上方に、出口側を下方に位置せしめた状態で回転自在に軸支されており、運転中は約1〜3RPMの回転速度で回転駆動される。また、乾留熱分解反応器2の内部には複数本の加熱管11がドラムの軸芯方向に平行に配設されており、且つ各加熱管11は、両端部を入口ケーシング2a及び出口ケーシング2bへ夫々連通せしめた状態で支持固定されており、乾留熱分解反応器2と一体となって回転する。
【0022】
前記加熱管11には加熱用熱媒体として熱風発生炉12からの高温加熱ガスKが流通され、これによって乾留熱分解反応器2内の廃棄物Cを間接加熱する。即ち、約500〜600℃の加熱ガスKは入口ケーシング2a、加熱管11、出口ケーシング2b、送風機17を通して流通し、約270〜330℃(通常300℃)の温度となって出口ケーシング2bより流出する。
【0023】
前記熱風発生炉12は、石油や天然ガス等の化石燃料を燃料とするものであり、従って高温加熱ガスKはHCl等の腐蝕性物質を含有しないクリーンなガス体である。
【0024】
図2は本発明の第2実施態様に係る廃棄物の乾留熱分解溶融燃焼装置の全体系統図であり、溶融燃焼装置4の高温燃焼排ガスGo内に空気加熱器46を設け、当該空気加熱器46で加熱した加熱空気AHを乾留熱分解反応器2の入口ケーシング2a内へ供給する構成となっている。
尚、図面では省略されているが、加熱空気AHの循環通路には循環空気量の制御用ダンパやバイパスラインや温度検出装置等が設けられていることは勿論である。また、前記空気加熱器46を除くその他の構成は図1の場合とほぼ同一であるため、ここではその説明を省略する。
【0025】
次に、本発明に係る廃棄物の乾留熱分解溶融燃焼装置の作動を第1実施態様に基づいて説明する。
図1を参照して、トラック等により搬入されて来た廃棄物Cは先ず廃棄物ピットに貯えられる。ピット内の廃棄物Cはシュレッダーにより約150mm以下の大きさに破砕されたあと、クレーン20を介してホッパー内へ移送され、供給装置1によって順次乾留熱分解反応器2内へ供給されて行く。
乾留熱分解反応器2内へ供給された廃棄物Cは、ほぼ酸素が遮断された状態の下で常温から300℃〜600℃、好ましくは400℃〜500℃の温度に加熱され、約1時間程度反応器2内に回転による攪拌混合を受け乍ら滞留する。この間に乾留熱分解反応器2内の廃棄物Cは熱分解されることにより、乾留ガスGと固形の熱分解残渣Dが乾留熱分解反応器2内に生成される。
尚、乾留熱分解反応器2内での廃棄物Cの熱分解は通常約1時間程度で完了し、概ね75wt%の乾留ガスGと25wt%の熱分解残渣Dとが生成される。また、生成された熱分解残渣Dは、乾留熱分解反応器2内で攪拌・混合されることにより均一化され、一様な大きさの粒子となる。
【0026】
乾留熱分解反応器2内に発生した乾留ガスGは水分、CO、CO2 、H2 及び炭化水素を主成分とするものであり、ダスト及びタールが若干含まれている。その低位発熱量は約1500〜2000kcal/kgである。
また、発生した熱分解残渣Dは炭素と灰分がその主体を成すものであるが、炭素含有量は熱分解残渣Dの粒径によって変化し、粒径が小さいものほど炭素の含有量が増加する。例えば、熱分解残渣Dの粒径が5mm以下の場合には、炭素の含有量は概ね35wt%となる。
【0027】
乾留熱分解反応器2内の乾留ガスGと熱分解残渣Dは、乾留熱分解反応器2に隣接する搬出装置3内へ排出され、ここで分離された乾留ガスGは溶融燃焼装置4へ供給され、所謂溶融燃焼が行なわれる。また、熱分解残渣Dの方は、冷却コンベア上で約400℃〜500℃の温度から約100℃の温度にまで冷却されたあと、分離装置5において可燃物を主体とする細粒Iと砂、ガラス、金属等の不燃物に分離され、更に可燃物を主体とする細粒Iは破砕装置6で微粒化されたあと貯留槽16に貯えられる。
【0028】
前記貯留槽16に貯えられた可燃性細粒Iは、廃熱ボイラ7や集塵装置8等からのダストEと共に空気輸送によって溶融燃焼装置4へ送られ、ここで乾留ガスGと共に燃焼される。
即ち、溶融燃焼装置4内へ供給された炭素含有量の高かい細粒Iは、乾留ガスGと共に溶融燃焼装置4内で約1300℃の高温燃焼をされる。尚、前記燃焼温度(約1300℃)は灰の溶融温度より100〜150℃ほど高いので、細粒Iは溶融スラグFとなり、スラグ冷却槽内へ排出されることによって所謂水砕スラグとなる。
【0029】
前記溶融燃焼装置4内では、その高温度と比較的長い炉内滞留時間とにより、廃棄物C内の全ての有機物は完全に破壊される。
尚、溶融燃焼装置4に於いては、燃焼用空気の多段階供給方式や排ガス再燃焼法、サイクロン燃焼法などの良好な燃焼を維持するための各種の公知の手段を単独又は組合せ使用することができることは勿論であり、例えば平均空気過剰率λ=1.3に於いて、燃焼室内の均等な温度分布と攪拌効果によって低NOx状態下で、乾留ガスG及び細粒I等を完全に溶融燃焼させることができると共に、水砕スラグ中の未燃炭素分も0.2wt%以下に抑えることができる。
【0030】
溶融燃焼装置4から排出される高温排ガスGo中の熱エネルギーは、廃熱ボイラ7で回収され、発生蒸気は後述するように独立過熱器21で過熱されたあと、蒸気タービン発電装置13へ供給される。
また、廃熱ボイラ7での熱回収により約200℃位にまで冷却された排ガスG1 は、集じん装置8によってダストEが除去されたあと、ガス浄化装置9例えばスクラバーなどで洗浄され、HClやSOx、NOxなどの有害物質が除去されたあと、煙突10より排出されて行く。
【0031】
前記熱風発生炉12のオイルバーナ又はガスバーナ19へは、石油等の燃料オイル又はガスLと空気予熱器22により約150〜250℃に加熱された燃焼用空気Aが供給され、所謂バーナ燃焼によって熱風発生炉12内の燃焼温度は約800℃以上の温度になっている。
また、熱風発生炉12内へは、乾留熱分解反応器2から排出された270〜330℃の低温加熱ガスKoの一部が、熱交換器(蒸気過熱器)18により約300〜360℃に昇温されたうえ供給されている。
【0032】
前記オイルバーナ又はガスバーナ19での燃料オイル又はガスLの燃焼により発生した高温燃焼ガスは、熱風発生炉12内に設けられた独立過熱器21との熱交換により約500〜600℃の温度となり、乾留熱分解反応器2の入口ケーシング2a内へ供給されて行く。
即ち、熱風発生炉12のオイルバーナ又はガスバーナ19は、コントローラ33を介して燃料供給弁24を開閉制御することにより、温度検出器30により検出した乾留熱分解反応器2の入口側の加熱ガスKの温度を500℃〜600℃の温度に保持するように燃焼制御されている。
【0033】
また、前記乾留熱分解反応器2内を流通する加熱ガスKの流量は、コントローラ34を介して送風機17の送風量を調整することにより、温度計31により検出した反応器出口側の低温加熱ガスKoの温度を270℃〜330℃に保持するように制御されている。
【0034】
一方、前記廃熱ボイラ7で発生した蒸気Sは、配管36aを通して熱交換器18へ送られ、ここで低温加熱ガスKoを約330℃〜360℃に加熱したあと配管36bを通して廃熱ボイラ7内の過熱器へ戻され、ここで約400℃〜430℃位にまで再過熱される。
また、前記再過熱された蒸気Sは蒸気配管36cを通して熱風発生炉12内に設けた独立過熱器21へ送られ、発生炉内の燃焼ガスによって約500〜550℃に過熱されたあと、蒸気配管36dを通して蒸気タービン発電装置13へ送られる。
【0035】
前記独立過熱器21の出口に於ける蒸気温度は、温度検出器32からの検出信号によってコントローラ35を介して水量調整弁の開度を調整し、減温器25へ注入するボイラ給水Wの水量制御を行なうことにより約500〜550℃の一定温度に制御されている。
また、前記約500°〜550℃に加熱された過熱蒸気Sは、蒸気タービン発電装置13の蒸気タービンを駆動したあと復水器27及び脱気器28を通してボイラ給水Wとして回収され、給水ポンプ29により管路37aを通して廃熱ボイラ7へ給水される。
【0036】
図3は、図1に示した本発明に係る廃棄物の乾留熱分解溶融燃焼装置に於けるヒートバランスの概要を示すものである。
廃棄物Cを水分約40%、発熱量約2000Mcal/tonの都市ごみとし、これが乾留熱分解反応器2内へ送入されて常温から約450℃に加熱され乍ら酸素遮断下で乾留される。
乾留に必要とする熱量Qdは約410Mcal/ton廃棄物であり、この熱量Qdは熱風発生炉12からの加熱ガスKの熱によってまかなわれる。
【0037】
今、400℃、62ata、is=759kcal/kgの蒸気Sを500℃、60ata、is=818kcal/kgの蒸気にするために必要な追加オイル燃焼量をYkg(kg/ton廃棄物)とすると、当該追加オイル量Yの燃焼による排ガス量はY×13.3Nm3 となり、排ガスの比熱を0.3kcal/Nm3 ・℃、排ガス温度を150℃とすると、排ガス損失熱量はY×13.3×0.3×150kcalとなる。
ここで、前記排ガス損失熱量に相当する分を必要追加オイル量Yに含めるとすると、熱バランスから下記の式が成立する。
必要追加オイル量Y×発熱量Q−排ガス損失熱量=加熱蒸気量(加熱前の蒸気エンタルピー−加熱後の蒸気エンタルピー)
Y×10000−Y×13.3×0.3×150=S(818−759)
S=159.4Y −▲1▼となる。
【0038】
一方、ボイラ7に於ける蒸気発生量(即ち、加熱蒸気量)Sは、前記図8の場合と同様に、
Figure 0003679534
前記▲1▼式と▲2▼式より、必要追加オイル量Y=22.5kg、蒸気発生量S=3591kgとなる。
尚、廃棄物Cやその発熱量N等の諸元は、前記図8に於けるヒートバランスの場合と同様である。
【0039】
また、発電機の発生電力Pは、
Figure 0003679534
【0040】
その結果、統合発電効率ηは、
Figure 0003679534
また、この時のリパワーリング率Z(発電kwの増加分の熱量/追加熱量)は、Z=(861−647)×860/22.5×10000=81.8%となる。
【0041】
図4は、図2に示した本発明の第2実施態様の場合のヒートバランスを示すものであり、必要追加オイル量Y=22.8kg、蒸気発生量S=3073kg、発生電力P=736kw、発電効率η=28.4%、リパワーリング率R=75.1%となる。尚、必要追加オイル量Yや蒸気発生量Sの算出方法は、第1実施態様に係る図3の場合と全く同様であるため、ここではその説明を省略する。
【0042】
図5は本発明の第3実施態様を示すものであり、この第3実施態様に於いては、第1実施態様及び第2実施態様の独立過熱器21を熱風発生炉12から完全に分離させ、オイルバーナ又はガスバーナ39と熱交換管38aを有する熱風発生炉12とほぼ同型式の独立過熱器38を設けると共に、独立過熱器38の燃焼ガスを熱風発生炉12からの燃焼ガスに合流せしめて、乾留熱分解反応器2へ加熱ガスKとして供給する構成としたものである。
尚、図5に於いて40は風量調整用ダンパー、41は燃料調整弁、42・43は温度検出器、44・45はコントローラである。
【0043】
前記独立過熱器38の運転に際しては、独立過熱器38の出口に於ける蒸気温度が約500°〜550℃となるように、温度検出器43からの信号によってコントローラ45を介して燃料調整弁41の開度が調整され、バーナ39の燃焼制御が行なわれる。
また、独立過熱器38の出口に於ける燃焼ガスの温度が約500〜600℃となるように、温度検出器42からの信号によりコントローラ44を介して風量調整用ダンパー40の開度が調整され、低温加熱ガスKoの取り込み風量が調整される。
【0044】
【発明の効果】
本発明に於いては、標準的な発熱量(又は水分含有量)を有する所定量の廃棄物を乾留熱分解するのに必要な熱源として化石燃料を燃料とする熱風発生炉からのクリーンな燃焼ガスを利用すると共に、当該熱風発生炉に独立過熱器を併設して前記クリーンな燃焼ガスにより廃熱ボイラからの蒸気を過熱し、独立過熱器で約500〜550℃又はそれ以上の温度に過熱した高温・高圧蒸気を蒸気タービン発電装置へ供給する構成としている。
その結果、HClを含まないクリーンな燃焼ガスを用いるので独立過熱器にHClに起因する高温腐蝕を生ずることなしに、蒸気を約500〜550℃程度の高温・高圧蒸気とすることができ、従前のこの種の乾留熱分解溶融燃焼装置に於ける平均的な統合発電効率約23%を、約28%程度にまで上昇させることが可能となる。
【0045】
また、独立過熱器を熱風発生炉と一体化する構成とした場合には、単に熱風発生炉の容量を約30〜40%程度増加して過熱器を設けるだけでよく、設備費等の大幅な高騰を招くことが無いうえ、乾留熱分解反応器へ供給する加熱ガスKの温度や風量の制御が複雑化することも無く、安定した廃棄物の乾留熱分解溶融燃焼を行なうことができる。
本発明は上述の通り、優れた実用的効用を奏するものである。
【図面の簡単な説明】
【図1】本発明の第1実施態様に係る廃棄物の乾留熱分解溶融燃焼装置の全体系統図である。
【図2】本発明の第2実施態様に係る廃棄物の乾留熱分解溶融燃焼装置の全体系統図である。
【図3】図1の廃棄物乾留熱分解溶融燃焼装置のヒートバランス図である。
【図4】図2の廃棄物乾留熱分解溶融燃焼装置のヒートバランス図である。
【図5】本発明の第3実施態様に係る廃棄物乾留熱分解溶融燃焼装置の要部を示す系統図である。
【図6】従前の廃棄物乾留熱分解溶融燃焼装置の一例を示す全体系統図である。
【図7】従前の廃棄物乾留熱分解溶融燃焼装置の他の例を示す全体系統図である。
【図8】図7の従前の廃棄物乾留熱分解溶融燃焼装置のヒートバランス図である。
【符号の説明】
1は供給装置、2は乾留熱分解反応器、3は搬出装置、4は溶融燃焼装置、5は分離装置、6は粉砕装置、7は廃熱ボイラ、8は集じん器、9はガス浄化装置、10は煙突、11は加熱管、12は熱風発生炉、13は蒸気タービン発電装置、14は送風機、15は誘引通風機、16は可燃性微粉貯留槽、17は送風機、18は熱交換器(蒸気加熱器)、19はオイルバーナ、20は廃棄物供給用クレーン、21は独立過熱器、22は空気予熱器、23は送風機、24は燃料供給弁、25は減温器、26は水量調整弁、27は復水器、28は脱気器、29はボイラ給水ポンプ、30・31・32は温度検出器、33・34・35は温度コントローラ、36a・36b・36c・36dは、蒸気配管、37a・37bは給水配管、38は独立過熱器、39はオイルバーナ又はガスバーナ、40は風量調整用ダンパー、41は燃料調整弁、42・43は温度検出器、44・45はコントローラ、46は空気加熱器、Aは燃焼用空気、Cは廃棄物、Dは熱分解残渣、Eはダスト、Fは溶融スラグ、Gは乾留ガス、Goは高温排ガス、Iは可燃性細粒、Kは加熱ガス、Koは低温加熱ガス、Lは燃料オイル又はガス、Sは蒸気、Wはボイラ給水。[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used for combustion treatment of municipal waste, industrial waste, etc., and in a dry distillation pyrolysis melting combustion apparatus for waste having a steam turbine power generator, hot air is a heat source for heating waste. It is related to the dry distillation pyrolysis melting and combustion equipment for waste, which has an independent superheater in the generator and superheats the steam from the waste heat boiler to achieve higher power generation efficiency with simple equipment. is there.
[0002]
[Prior art]
FIG. 6 shows an example of a carbonization pyrolysis melting and combustion apparatus for waste using a conventional hot air generating furnace, and the waste C supplied into the carbonization pyrolysis reactor 2 by the supply device 1 is shown here. It is heated to a temperature of 300 ° C. to 600 ° C. under the shut-off of air and converted into a dry distillation gas G and a pyrolysis residue D.
[0003]
The pyrolysis product in the dry distillation pyrolysis reactor 2 is separated into a dry distillation gas G and a thermal decomposition residue D in the carry-out device 3, and the former dry distillation gas G is sent to the melting combustion device 4 and burned. . The latter pyrolysis residue D is sent to the separation device 5 from which relatively coarse incombustible solids are removed, and the remaining combustible solids I are pulverized in the pulverizer 6. After that, it is supplied to the melt combustion apparatus 4 and melted and combusted at a temperature of 1200 ° C. or higher. Further, the molten slag F formed in the molten combustion device 4 is sequentially taken out as a granulated slag, and the exhaust gas Go from the molten combustion device 4 is discharged from a waste heat boiler 7, a dust collector 8, and a gas purification device 9. , It is discharged into the atmosphere through the chimney 10.
[0004]
The dry distillation pyrolysis reactor 2 is formed of a rotary dry distillation drum provided with a heating tube 11, and the waste from the hot air generator 12 is discharged into a plurality of heating tubes 11 arranged in the longitudinal direction of the dry distillation drum. A heating gas K for heating the gas is circulated (Japanese Patent Publication No. 6-56253, etc.).
In FIG. 6, 13 is a steam turbine power generator, 14 is a blower, 15 is an induction fan, 16 is a combustible fine powder storage tank, 17 is a blower, 18 is a heat exchanger, 19 is an oil burner or gas burner, 20 is a waste supply crane.
[0005]
Incidentally, as an energy source for heating the waste C in the dry distillation pyrolysis reactor 2, it is thermoeconomical to use the high-temperature exhaust gas Go from the molten combustion device 4 and supply it directly to the reactor 2. This is the most preferable policy.
However, the high-temperature exhaust gas Go from the melt combustion apparatus 4 contains a large amount of hydrogen chloride (HCl) gas produced mainly by combustion of an organic chlorine compound such as vinyl chloride contained in the waste C, The use of this as a heat source for heating the dry distillation pyrolysis reactor 2 is generally avoided because of its severe corrosivity at high temperatures.
[0006]
Therefore, as shown in FIG. 6, an oil or gas-fired hot air generating furnace 12 is provided, and the heated gas K from the hot air generating furnace 12 is supplied into the heating tube 11 of the dry distillation pyrolysis reactor 2 to produce waste C Or an air heater 46 is provided on the outlet side of the melt combustion apparatus 4 as shown in FIG. 7, and the high-temperature air heated by the air heater 46 during the steady operation is converted into the pyrolysis reactor 2. Many waste pyrolysis pyrolysis melting and combustion apparatuses that have been made to circulate inside have been used.
This is because the combustion gas (heated gas K) generated in the hot air generating furnace 12 using fossil fuel as fuel is usually a so-called clean gas and hardly contains corrosive substances.
[0007]
Further, by using the high temperature air from the air heater 46 as a heat source, high temperature corrosion of the heating tube 11 of the dry distillation pyrolysis reactor 2 can be effectively prevented.
However, since the waste heat boiler 7 contains hydrogen chloride (HCl) in the high-temperature exhaust gas Go from the melting combustion device 4 as described above, if the superheated steam temperature of the waste heat boiler 7 is raised, Hot corrosion will occur.
Therefore, in the conventional waste dry distillation melting combustion apparatus, the superheated steam temperature of the waste heat boiler 7 is normally set to about 430 ° C. or less. As a result, it is difficult to improve the power generation efficiency of the steam turbine power generation device 13, and there is a problem that only about 23% of the integrated power generation efficiency is actually obtained.
[0008]
FIG. 8 shows the heat balance in the conventional waste carbonization pyrolysis melting combustion apparatus shown in FIG. 1, and a standard municipal waste with a calorific value N = 2000 kcal / kg and a moisture content of 40%. This is a calculated value when 1000 kg of C is processed.
In this case, the amount of heat required in the dry distillation pyrolysis reactor 2 is about 410,000 kcal (410 Mcal / ton waste). Therefore, the required oil combustion amount Mkg (kg / waste ton) in the hot air generator 12. If the calorific value Q of the oil is 10,000 kcal / kg, it becomes about M = 41 kg.
Also, boiler efficiency ηb is 83%, turbine generator efficiency ηg is 80% (turbine efficiency ηt85%, generator efficiency ηm94%), steam conditions are temperature Ts = 400 ° C., pressure Ps = 40 ata, enthalpy is = 768 kcal / kg Then, the power generation power P is about 647 kw, and as a result, the total power generation efficiency η is η = power generation heat amount / total input heat amount = (647 kw × 860 kcal / kw) / (1000 kg × 2000 kcal / kg + 41 kg × 10,000 kcal) /Kg)≈0.231, that is, about 23%.
[0009]
For more details, refer to FIG. 8 and determine the quantities as follows:
Incineration waste amount C = 1000 kg, waste heat generation amount N = 2000 kcal / kg, oil combustion amount M = 41 kg / waste ton, oil heat generation amount Q = 10000 kcal / kg, boiler efficiency ηb = 0.83, turbine generator efficiency ηg = 0.8, turbine efficiency ηt = 0.85, generator efficiency ηm = 0.94, steam temperature Ts = 400 (° C.), steam pressure Ps = 40 (ata), power generation power P (kw), steam Generation amount S (kg), steam enthalpy is = 768 (kcal / kg), feed water enthalpy iw = 150 (kcal / kg), feed water temperature Tw = 150 (° C.), turbine exhaust steam amount S 1 (Kg), turbine extraction steam volume S 2 (Kg)
The steam generation amount S of the boiler 7 is
Figure 0003679534
The boiler efficiency ηb = 0.83 is a value considering the exhaust gas loss from the boiler 7 and the exhaust gas loss from the dry distillation pyrolysis reactor 2, respectively.
[0010]
The generated power P of the generator is
Figure 0003679534
[0011]
Furthermore, the total power generation efficiency η is calculated as the amount of heat generated / total amount of heat input,
Figure 0003679534
[0012]
[Problems to be solved by the invention]
In the present invention, the above-mentioned problem in the dry distillation pyrolysis melting combustion apparatus of waste, that is, the superheated steam temperature of the waste heat boiler is limited to a temperature of about 430 ° C. or less from the viewpoint of high temperature corrosion. It is intended to solve the problem that the power generation efficiency cannot be increased, and it is possible to increase the power generation efficiency by about 5% more economically without incurring a significant increase in equipment costs. The present invention provides a dry distillation pyrolysis melting combustion apparatus for waste.
[0013]
[Means for Solving the Problems]
The inventor of the present application: (1) The hot air generating furnace 12 as the heating source of the dry distillation pyrolysis reactor 2 has almost no HCl component in the combustion gas (heating gas K) when the fuel is fossil fuel such as petroleum. It is optimal for dry distillation pyrolysis of waste C that the temperature of the heated gas K supplied to the dry distillation pyrolysis reactor 2 is about 500 ° C to 600 ° C. Focusing on the fact that the outlet temperature of the combustion gas of the hot air generating furnace 12 inevitably becomes a temperature of about 500 ° C. to 600 ° C., the capacity of the hot air generating furnace 12 is slightly increased and an independent superheater is provided in the hot air generating furnace, By heating the steam from the waste heat boiler 7 to a temperature of about 500 to 550 ° C. with the combustion gas of the hot air generating furnace, the power generation efficiency is relatively economical without incurring complicated equipment structure and high equipment costs. The idea was that improvement could be achieved.
[0014]
The present invention was created based on the above idea, and the invention of claim 1 includes a dry distillation pyrolysis reactor, , Using fossil fuel as fuel With hot air generator The combustible fine particles separated from the pyrolysis residue generated in the dry distillation pyrolysis reactor and the dry distillation gas generated in the dry distillation pyrolysis reactor are supplied. With melt combustion equipment With a superheater Waste heat boiler and , A steam turbine power generator, and the combustion gas of the hot air generator is used as a heat source for heating the dry distillation pyrolysis reactor, and the waste from which the steam turbine power generator is operated by steam from the waste heat boiler is dry distillation pyrolysis melting combustion In the apparatus, an independent superheater is provided in the hot air generating furnace, and the combustion gas of the hot air generating furnace causes the waste heat boiler to Overheating Steam to a temperature of about 500-550 ° C Re While heating, the combustion gas after heating a vapor | steam is supplied to a dry distillation pyrolysis reactor as heating gas, It is characterized by the above-mentioned.
[0015]
The invention of claim 2 includes a dry distillation pyrolysis reactor, a melt combustion apparatus, an air heater, a waste heat boiler, and a steam turbine power generation apparatus, and heats the heated air heated by high-temperature exhaust gas from the melt combustion apparatus. In the dry distillation pyrolysis melting and combustion unit of waste that operates the steam turbine power generator with steam from the waste heat boiler, an independent superheater is provided to reduce the steam from the waste heat boiler. While heating to a temperature of 500 to 550 ° C., the combustion gas after heating the steam is supplied to the dry distillation pyrolysis reactor together with heated air as a heating gas.
[0016]
The invention of claim 3 is the invention of claim 1 and claim 2, wherein the hot air generator is about 1.3 to 1 of the amount of heat necessary for heating waste in the dry distillation pyrolysis reactor. This is a hot air generator that can supply 5 times the amount of heat.
[0017]
The invention of claim 4 comprises a dry distillation pyrolysis reactor, a hot air generator, a melting combustion device, a waste heat boiler, and a steam turbine power generator, and the combustion gas of the hot air generator is used as a heat source for heating the dry distillation pyrolysis reactor; In addition, in a dry distillation pyrolysis melting combustion apparatus for waste which operates a steam turbine power generation device with steam from a waste heat boiler, an independent superheater having a burner device and a steam superheater pipe in parallel with the hot air generating furnace is provided. The steam from the waste heat boiler is superheated by the independent superheater and the combustion gas from the independent superheater is merged with the combustion gas from the hot air generator and supplied to the dry distillation pyrolysis reactor as a heating gas. It is a feature.
[0018]
According to a fifth aspect of the present invention, there is provided an independent superheater according to the second and fourth aspects of the present invention, wherein the flow rate of the low-temperature heating gas from the dry distillation pyrolysis reactor is adjusted so that the combustion gas at the outlet is adjusted. The temperature of the superheated steam at the outlet is maintained at about 500 to 550 ° C. by adjusting the amount of combustion of the burner device by adjusting the combustion amount of the burner device. This is an independent superheater having a configuration.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall system diagram of the dry distillation pyrolysis melting combustion apparatus for waste according to the first embodiment of the present invention. The configuration of the other parts except the hot air generating furnace 12 is the same as that of the prior art shown in FIG. This is the same as in the case of the dry distillation pyrolysis melting combustion apparatus. Therefore, in FIG. 1, the same reference numerals are assigned to the same devices and apparatuses as those in FIG.
[0020]
In FIG. 1, 1 is a waste C supply device, 2 is a carbonization pyrolysis reactor, 3 is an unloading device, 4 is a melt combustion device, 5 is a separation device, 6 is a pulverization device, 7 is a waste heat boiler, 8 is a dust collector, 9 is a gas purification device, 10 is a chimney, 11 is a heating pipe, 12 is a hot air generator, 13 is a steam turbine power generator, 14 is a blower, 15 is an induction fan, and 16 is a combustible fine powder storage The tank, 17 is a blower, 18 is a heat exchanger, 19 is an oil burner or gas burner, and 20 is a waste supply crane, which is exactly the same as in FIG.
In FIG. 1, 21 is an independent superheater, 22 is an air preheater, 23 is a blower, 24 is a fuel supply valve, 25 is a temperature reducer, 26 is a water amount adjusting valve, 27 is a condenser, and 28 is a degasser. Ventilator, 29 is a boiler feed pump, 30, 31 and 32 are temperature detectors, 33, 34 and 35 are controllers, 36a, 36b, 36c and 36d are steam pipes, and 37a and 37b are feed water pipes. It is a newly added part.
[0021]
The dry distillation pyrolysis reactor 2 is rotatably supported at an inclination angle of about 1.5 degrees with respect to the horizontal, with the inlet side positioned upward and the outlet side positioned downward. It is rotationally driven at a rotational speed of 1 to 3 RPM. A plurality of heating tubes 11 are arranged in the dry distillation pyrolysis reactor 2 in parallel with the axial direction of the drum, and each of the heating tubes 11 has an inlet casing 2a and an outlet casing 2b at both ends. Are supported and fixed in a state where they communicate with each other, and rotate integrally with the dry distillation pyrolysis reactor 2.
[0022]
A high-temperature heating gas K from the hot-air generator 12 is circulated through the heating tube 11 as a heating heat medium, whereby the waste C in the dry distillation pyrolysis reactor 2 is indirectly heated. That is, the heated gas K of about 500 to 600 ° C. flows through the inlet casing 2a, the heating pipe 11, the outlet casing 2b, and the blower 17, and reaches a temperature of about 270 to 330 ° C. (usually 300 ° C.) and flows out of the outlet casing 2b. To do.
[0023]
The hot air generating furnace 12 uses fossil fuel such as petroleum or natural gas as a fuel, and therefore the high temperature heating gas K is a clean gas body that does not contain corrosive substances such as HCl.
[0024]
FIG. 2 is an overall system diagram of a dry distillation pyrolysis melting combustion apparatus for waste according to a second embodiment of the present invention. An air heater 46 is provided in the high-temperature combustion exhaust gas Go of the melting combustion apparatus 4, and the air heater The heated air AH heated at 46 is supplied into the inlet casing 2 a of the dry distillation pyrolysis reactor 2.
Although not shown in the drawings, the circulating passage for the heated air AH is naturally provided with a damper for controlling the amount of circulating air, a bypass line, a temperature detection device, and the like. Further, since the other configuration excluding the air heater 46 is almost the same as that in the case of FIG. 1, the description thereof is omitted here.
[0025]
Next, the operation of the dry distillation pyrolysis melting combustion apparatus according to the present invention will be described based on the first embodiment.
Referring to FIG. 1, waste C carried in by a truck or the like is first stored in a waste pit. The waste C in the pit is crushed to a size of about 150 mm or less by a shredder, transferred to the hopper through the crane 20, and sequentially supplied into the dry distillation pyrolysis reactor 2 by the supply device 1.
The waste C supplied into the dry distillation pyrolysis reactor 2 is heated from room temperature to a temperature of 300 ° C. to 600 ° C., preferably 400 ° C. to 500 ° C. for about 1 hour under a state in which oxygen is almost cut off. Remains in the reactor 2 while being stirred and mixed by rotation. During this time, the waste C in the dry distillation pyrolysis reactor 2 is pyrolyzed, whereby a dry distillation gas G and a solid pyrolysis residue D are generated in the dry distillation pyrolysis reactor 2.
The pyrolysis of the waste C in the dry distillation pyrolysis reactor 2 is usually completed in about 1 hour, and approximately 75 wt% of the dry distillation gas G and 25 wt% of the pyrolysis residue D are generated. Further, the generated pyrolysis residue D is homogenized by stirring and mixing in the dry distillation pyrolysis reactor 2 and becomes particles of uniform size.
[0026]
The dry distillation gas G generated in the dry distillation pyrolysis reactor 2 is moisture, CO, CO 2 , H 2 In addition, it is mainly composed of hydrocarbons and contains some dust and tar. The lower heating value is about 1500 to 2000 kcal / kg.
The generated pyrolysis residue D is mainly composed of carbon and ash, but the carbon content varies depending on the particle size of the pyrolysis residue D, and the smaller the particle size, the greater the carbon content. . For example, when the particle size of the pyrolysis residue D is 5 mm or less, the carbon content is approximately 35 wt%.
[0027]
The dry distillation gas G and the thermal decomposition residue D in the dry distillation pyrolysis reactor 2 are discharged into the carry-out device 3 adjacent to the dry distillation pyrolysis reactor 2, and the dry distillation gas G separated here is supplied to the melting combustion device 4. Then, so-called melt combustion is performed. In addition, the pyrolysis residue D is cooled on a cooling conveyor from a temperature of about 400 ° C. to 500 ° C. to a temperature of about 100 ° C. The fine particles I, which are separated into non-combustible materials such as glass and metal and are mainly combustible materials, are atomized by the crushing device 6 and then stored in the storage tank 16.
[0028]
The combustible fine particles I stored in the storage tank 16 are sent together with dust E from the waste heat boiler 7, the dust collector 8 and the like to the melting combustion device 4 by air transportation, where they are burned together with the dry distillation gas G. .
That is, the fine particles I having a high carbon content supplied into the melt combustion apparatus 4 are combusted at a high temperature of about 1300 ° C. in the melt combustion apparatus 4 together with the dry distillation gas G. In addition, since the said combustion temperature (about 1300 degreeC) is about 100-150 degreeC higher than the melting temperature of ash, the fine grain I turns into molten slag F, and it becomes what is called granulated slag by being discharged | emitted in a slag cooling tank.
[0029]
In the molten combustion apparatus 4, all organic substances in the waste C are completely destroyed due to the high temperature and the relatively long residence time in the furnace.
In the melt combustion apparatus 4, various known means for maintaining good combustion, such as a multi-stage supply method of combustion air, an exhaust gas recombustion method, and a cyclone combustion method, may be used alone or in combination. Of course, for example, when the average excess air ratio is λ = 1.3, the dry distillation gas G and fine particles I etc. are completely melted under the low NOx condition by the uniform temperature distribution in the combustion chamber and the stirring effect. While being able to burn, the unburned carbon content in the granulated slag can also be suppressed to 0.2 wt% or less.
[0030]
The thermal energy in the high-temperature exhaust gas Go discharged from the melting combustion device 4 is recovered by the waste heat boiler 7, and the generated steam is superheated by the independent superheater 21, as will be described later, and then supplied to the steam turbine power generator 13. The
Further, the exhaust gas G cooled to about 200 ° C. by heat recovery in the waste heat boiler 7 1 After the dust E is removed by the dust collector 8, it is washed with a gas purifier 9 such as a scrubber, and harmful substances such as HCl, SOx and NOx are removed, and then discharged from the chimney 10.
[0031]
The oil burner or gas burner 19 of the hot air generating furnace 12 is supplied with fuel oil or gas L such as petroleum and combustion air A heated to about 150 to 250 ° C. by the air preheater 22, and hot air is generated by so-called burner combustion. The combustion temperature in the generator 12 is about 800 ° C. or higher.
Further, a part of the low-temperature heating gas Ko of 270 to 330 ° C. discharged from the dry distillation pyrolysis reactor 2 is heated to about 300 to 360 ° C. by the heat exchanger (steam superheater) 18 into the hot air generating furnace 12. The temperature is raised and supplied.
[0032]
The high-temperature combustion gas generated by the combustion of the fuel oil or gas L in the oil burner or gas burner 19 becomes a temperature of about 500 to 600 ° C. by heat exchange with the independent superheater 21 provided in the hot-air generator 12, It is fed into the inlet casing 2a of the dry distillation pyrolysis reactor 2.
That is, the oil burner or gas burner 19 of the hot air generating furnace 12 controls the opening and closing of the fuel supply valve 24 via the controller 33, whereby the heated gas K on the inlet side of the dry distillation pyrolysis reactor 2 detected by the temperature detector 30. The combustion is controlled so as to maintain the temperature of 500 to 600 ° C.
[0033]
In addition, the flow rate of the heating gas K flowing through the dry distillation pyrolysis reactor 2 is adjusted by adjusting the air flow rate of the blower 17 via the controller 34, thereby detecting the low temperature heating gas on the reactor outlet side detected by the thermometer 31. The temperature of Ko is controlled to be maintained at 270 ° C to 330 ° C.
[0034]
On the other hand, the steam S generated in the waste heat boiler 7 is sent to the heat exchanger 18 through the pipe 36a, where the low-temperature heating gas Ko is heated to about 330 ° C. to 360 ° C. and then passed through the pipe 36b. It is returned to the superheater, and is reheated to about 400 ° C to 430 ° C.
The resuperheated steam S is sent to the independent superheater 21 provided in the hot air generating furnace 12 through the steam pipe 36c, and after being heated to about 500 to 550 ° C. by the combustion gas in the generating furnace, the steam pipe It is sent to the steam turbine power generator 13 through 36d.
[0035]
The steam temperature at the outlet of the independent superheater 21 is adjusted according to the detection signal from the temperature detector 32 through the controller 35, and the amount of the boiler feed water W to be injected into the temperature reducer 25 is adjusted through the controller 35. It is controlled to a constant temperature of about 500 to 550 ° C. by performing the control.
The superheated steam S heated to about 500 ° to 550 ° C. is recovered as boiler feed water W through the condenser 27 and the deaerator 28 after driving the steam turbine of the steam turbine power generation device 13, and is supplied to the feed pump 29. Thus, water is supplied to the waste heat boiler 7 through the pipe line 37a.
[0036]
FIG. 3 shows an outline of heat balance in the dry distillation pyrolysis melting combustion apparatus of the present invention shown in FIG.
Waste C is municipal waste with a water content of about 40% and a calorific value of about 2000 Mcal / ton, which is sent into the dry distillation pyrolysis reactor 2 and heated from room temperature to about 450 ° C., and is carbonized with oxygen shut off. .
The amount of heat Qd required for dry distillation is about 410 Mcal / ton waste, and this amount of heat Qd is covered by the heat of the heated gas K from the hot air generator 12.
[0037]
Assuming that Ykg (kg / ton waste) is an additional oil combustion amount required to convert steam S at 400 ° C., 62 ata, is = 759 kcal / kg to steam at 500 ° C., 60 ata, is = 818 kcal / kg. The amount of exhaust gas due to combustion of the additional oil amount Y is Y × 13.3 Nm Three The specific heat of the exhaust gas is 0.3 kcal / Nm Three When the exhaust gas temperature is 150 ° C., the exhaust gas heat loss is Y × 13.3 × 0.3 × 150 kcal.
Here, if the amount corresponding to the exhaust gas heat loss is included in the required additional oil amount Y, the following equation is established from the heat balance.
Necessary additional oil amount Y x calorific value Q-exhaust gas loss heat amount = heating steam amount (steam enthalpy before heating-steam enthalpy after heating)
Y * 10000-Y * 13.3 * 0.3 * 150 = S (818-759)
S = 159.4Y− (1).
[0038]
On the other hand, the steam generation amount (that is, the heating steam amount) S in the boiler 7 is the same as in the case of FIG.
Figure 0003679534
From the formulas (1) and (2), the required additional oil amount Y = 22.5 kg and the steam generation amount S = 3591 kg.
The specifications such as the waste C and the calorific value N thereof are the same as those in the case of the heat balance in FIG.
[0039]
The generated power P of the generator is
Figure 0003679534
[0040]
As a result, the integrated power generation efficiency η is
Figure 0003679534
Further, the repowering rate Z (the amount of heat generated by the increase in power generation kw / the amount of additional heat) at this time is Z = (861-647) × 860 / 22.5 × 10000 = 81.8%.
[0041]
FIG. 4 shows the heat balance in the case of the second embodiment of the present invention shown in FIG. 2, where necessary additional oil amount Y = 22.8 kg, steam generation amount S = 3073 kg, generated power P = 736 kw, The power generation efficiency η = 28.4% and the repowering rate R = 75.1%. In addition, since the calculation method of the required additional oil amount Y and the steam generation amount S is exactly the same as the case of FIG. 3 according to the first embodiment, the description thereof is omitted here.
[0042]
FIG. 5 shows a third embodiment of the present invention. In this third embodiment, the independent superheater 21 of the first embodiment and the second embodiment is completely separated from the hot air generator 12. In addition, an independent superheater 38 of the same type as the hot air generating furnace 12 having the oil burner or gas burner 39 and the heat exchange pipe 38a is provided, and the combustion gas of the independent superheater 38 is joined to the combustion gas from the hot air generating furnace 12. , The heating gas K is supplied to the dry distillation pyrolysis reactor 2.
In FIG. 5, 40 is an air volume adjusting damper, 41 is a fuel adjusting valve, 42 and 43 are temperature detectors, and 44 and 45 are controllers.
[0043]
During the operation of the independent superheater 38, the fuel adjustment valve 41 is connected via the controller 45 by a signal from the temperature detector 43 so that the steam temperature at the outlet of the independent superheater 38 is about 500 ° to 550 ° C. Is adjusted, and combustion control of the burner 39 is performed.
Further, the opening degree of the air volume adjusting damper 40 is adjusted via the controller 44 by a signal from the temperature detector 42 so that the temperature of the combustion gas at the outlet of the independent superheater 38 becomes about 500 to 600 ° C. The intake air volume of the low temperature heating gas Ko is adjusted.
[0044]
【The invention's effect】
In the present invention, clean combustion from a hot air generating furnace using fossil fuel as a heat source necessary for dry distillation pyrolysis of a predetermined amount of waste having a standard calorific value (or water content) In addition to using a gas, an independent superheater is provided in the hot air generating furnace to superheat the steam from the waste heat boiler with the clean combustion gas, and the independent superheater is overheated to a temperature of about 500 to 550 ° C. or higher. The high temperature / high pressure steam is supplied to the steam turbine generator.
As a result, since clean combustion gas that does not contain HCl is used, the steam can be converted to high temperature and high pressure steam of about 500 to 550 ° C. without causing high temperature corrosion due to HCl in the independent superheater. It is possible to increase the average integrated power generation efficiency of about 23% in this type of dry distillation pyrolysis melting combustion apparatus to about 28%.
[0045]
When the independent superheater is integrated with the hot air generator, the capacity of the hot air generator is simply increased by about 30 to 40% and the superheater is provided. There is no increase in the temperature and the control of the temperature and air volume of the heated gas K supplied to the dry distillation pyrolysis reactor is not complicated, and stable waste dry pyrolysis melting and combustion can be performed.
As described above, the present invention has excellent practical utility.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of a dry distillation pyrolysis melting combustion apparatus for waste according to a first embodiment of the present invention.
FIG. 2 is an overall system diagram of a waste carbonization pyrolysis melting combustion apparatus according to a second embodiment of the present invention.
FIG. 3 is a heat balance diagram of the waste carbonization pyrolysis melting combustion apparatus of FIG.
4 is a heat balance diagram of the waste carbonization pyrolysis melting combustion apparatus of FIG.
FIG. 5 is a system diagram showing a main part of a waste carbonization pyrolysis melting combustion apparatus according to a third embodiment of the present invention.
FIG. 6 is an overall system diagram showing an example of a conventional waste carbonization pyrolysis melting combustion apparatus.
FIG. 7 is an overall system diagram showing another example of a conventional waste carbonization pyrolysis melting combustion apparatus.
8 is a heat balance diagram of the conventional waste carbonization pyrolysis melting combustion apparatus of FIG.
[Explanation of symbols]
1 is a supply device, 2 is a carbonization pyrolysis reactor, 3 is an unloading device, 4 is a melt combustion device, 5 is a separation device, 6 is a pulverizer, 7 is a waste heat boiler, 8 is a dust collector, and 9 is a gas purifier. Device, 10 chimney, 11 heating tube, 12 hot air generator, 13 steam turbine power generator, 14 blower, 15 induction fan, 16 combustible fine powder storage tank, 17 blower, 18 heat exchange (Steam heater), 19 is an oil burner, 20 is a waste supply crane, 21 is an independent superheater, 22 is an air preheater, 23 is a blower, 24 is a fuel supply valve, 25 is a temperature reducer, and 26 is Water amount adjusting valve, 27 is a condenser, 28 is a deaerator, 29 is a boiler feed pump, 30, 31 and 32 are temperature detectors, 33, 34 and 35 are temperature controllers, 36a, 36b, 36c and 36d are Steam piping, 37a and 37b are water supply piping, 38 is independent overheating , 39 is an oil burner or gas burner, 40 is an air volume adjustment damper, 41 is a fuel adjustment valve, 42 and 43 are temperature detectors, 44 and 45 are controllers, 46 is an air heater, A is combustion air, and C is waste , D is pyrolysis residue, E is dust, F is molten slag, G is dry distillation gas, Go is high temperature exhaust gas, I is flammable fine granules, K is heating gas, Ko is low temperature heating gas, L is fuel oil or Gas, S for steam, W for boiler feed water.

Claims (5)

乾留熱分解反応器と、化石燃料を燃料とする熱風発生炉と、前記乾留熱分解反応器で生成された熱分解残渣から分離した可燃性細粒及び乾留熱分解反応器で生成された乾留ガスが供給される溶融燃焼装置と、過熱器を備えた廃熱ボイラと蒸気タービン発電装置とを備え、熱風発生炉の燃焼ガスを乾留熱分解反応器の加熱用熱源とすると共に、廃熱ボイラからの蒸気により蒸気タービン発電装置を稼動する廃棄物の乾留熱分解溶融燃焼装置に於いて、前記熱風発生炉内に独立過熱器を設け、当該熱風発生炉の燃焼ガスにより廃熱ボイラからの過熱蒸気を約500〜550℃の温度に過熱すると共に、蒸気を過熱した後の燃焼ガスを乾留熱分解反応器へ加熱ガスとして供給することを特徴とする廃棄物の乾留熱分解溶融燃焼装置。Dry distillation pyrolysis reactor, hot air generator using fossil fuel as fuel, combustible fine particles separated from pyrolysis residue produced in the dry distillation pyrolysis reactor, and dry distillation gas produced in the dry distillation pyrolysis reactor And a waste heat boiler equipped with a superheater, and a steam turbine power generator, the combustion gas of the hot air generator is used as a heat source for heating the dry distillation pyrolysis reactor, and a waste heat boiler In a dry distillation pyrolysis melting and combustion apparatus for waste that operates a steam turbine power generation device with steam from the above, an independent superheater is provided in the hot air generating furnace, and the combustion gas of the hot air generating furnace is used to superheat the waste heat boiler. A waste pyrolysis pyrolysis melting and combustion apparatus for waste, wherein the steam is re- superheated to a temperature of about 500 to 550 ° C., and the combustion gas after superheating the steam is supplied to the dry distillation pyrolysis reactor as a heating gas. 乾留熱分解反応器と溶融燃焼装置と空気加熱器と廃熱ボイラと蒸気タービン発電装置とを備え、溶融燃焼装置からの高温排ガスにより加熱した加熱空気を乾留熱分解反応器の加熱用熱源とすると共に、廃熱ボイラからの蒸気により蒸気タービン発電装置を稼動する廃棄物の乾留熱分解溶融燃焼装置に於いて、独立過熱器を設け、廃熱ボイラからの蒸気を約500〜550℃の温度に過熱すると共に、蒸気を過熱した後の燃焼ガスを乾留熱分解反応器へ過熱ガスとして加熱空気と共に供給することを特徴とする廃棄物の乾留熱分解溶融燃焼装置。  It is equipped with a dry distillation pyrolysis reactor, a melting combustion device, an air heater, a waste heat boiler, and a steam turbine power generation device. Heated air heated by high-temperature exhaust gas from the melting combustion device is used as a heat source for heating the dry distillation pyrolysis reactor. At the same time, in the dry distillation pyrolysis melting and combustion apparatus for waste that operates the steam turbine power generator with the steam from the waste heat boiler, an independent superheater is provided to bring the steam from the waste heat boiler to a temperature of about 500 to 550 ° C. A waste pyrolysis pyrolysis melting and combustion apparatus for waste, characterized in that the combustion gas after superheating is supplied to the dry distillation pyrolysis reactor together with heated air as superheated gas. 熱風発生炉を、乾留熱分解反応器に於いて廃棄物の加熱に必要とする熱量の約1.3〜1.5倍の熱量を供給可能な熱風発生炉とした請求項1又は請求項2に記載の廃棄物の乾留熱分解溶融燃焼装置。  The hot air generator is a hot air generator capable of supplying about 1.3 to 1.5 times the amount of heat required for heating waste in the dry distillation pyrolysis reactor. The dry distillation pyrolysis melting combustion apparatus of the waste described in 1. 乾留熱分解反応器と熱風発生炉と溶融燃焼装置と廃熱ボイラと蒸気タービン発電装置とを備え、熱風発生炉の燃焼ガスを乾留熱分解反応器の加熱用熱源とすると共に廃熱ボイラからの蒸気により蒸気タービン発電装置を稼動する廃棄物の乾留熱分解溶融燃焼装置に於いて、前記熱風発生炉と並列にバーナ装置と蒸気過熱管とを備えた独立過熱器を設け、当該独立過熱器により廃熱ボイラからの蒸気を過熱すると共に独立過熱器からの燃焼ガスを熱風発生炉からの燃焼ガスに合流せしめ、前記乾留熱分解反応器へ加熱ガスとして供給することを特徴とする廃棄物の乾留熱分解溶融燃焼装置。  It is equipped with a dry distillation pyrolysis reactor, a hot air generator, a melting combustion device, a waste heat boiler, and a steam turbine power generator, and the combustion gas of the hot air generator is used as a heat source for heating the dry distillation pyrolysis reactor and from the waste heat boiler. In a dry distillation pyrolysis melting and combustion apparatus for waste that operates a steam turbine power generator by steam, an independent superheater having a burner device and a steam superheater pipe is provided in parallel with the hot air generator, and the independent superheater The waste carbonization is characterized in that the steam from the waste heat boiler is superheated and the combustion gas from the independent superheater is merged with the combustion gas from the hot air generator and supplied to the dry distillation pyrolysis reactor as a heating gas. Pyrolysis melting combustion equipment. 独立過熱器を、乾留熱分解反応器からの低温加熱ガスの流入量を調整することにより出口に於ける燃焼ガスの温度を熱風発生器の出口に於ける燃焼ガスの温度とほぼ等しい温度とすると共に、バーナ装置の燃焼量を調整することにより出口に於ける過熱蒸気の温度を約500〜550℃に保持する構成の独立過熱器とした請求項2又は請求項4に記載の廃棄物の乾留熱分解溶融燃焼装置。  The temperature of the combustion gas at the outlet is made approximately equal to the temperature of the combustion gas at the outlet of the hot air generator by adjusting the flow rate of the low temperature heating gas from the dry distillation pyrolysis reactor in the independent superheater. The waste carbonization according to claim 2 or 4, wherein an independent superheater configured to maintain the temperature of superheated steam at the outlet at about 500 to 550 ° C by adjusting a combustion amount of the burner device. Pyrolysis melting combustion equipment.
JP00497697A 1997-01-14 1997-01-14 Waste carbonization pyrolysis melting combustion equipment Expired - Fee Related JP3679534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00497697A JP3679534B2 (en) 1997-01-14 1997-01-14 Waste carbonization pyrolysis melting combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00497697A JP3679534B2 (en) 1997-01-14 1997-01-14 Waste carbonization pyrolysis melting combustion equipment

Publications (2)

Publication Number Publication Date
JPH10205736A JPH10205736A (en) 1998-08-04
JP3679534B2 true JP3679534B2 (en) 2005-08-03

Family

ID=11598638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00497697A Expired - Fee Related JP3679534B2 (en) 1997-01-14 1997-01-14 Waste carbonization pyrolysis melting combustion equipment

Country Status (1)

Country Link
JP (1) JP3679534B2 (en)

Also Published As

Publication number Publication date
JPH10205736A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP3781339B2 (en) Waste carbonization pyrolysis reactor and carbonization pyrolysis method
JP3639404B2 (en) Waste carbonization pyrolysis melting combustion equipment
JP2003279013A (en) Waste gasifying and fusing system
US5094177A (en) Concurrent-flow multiple hearth furnace for the incineration of sewage sludge filter-cake
WO2017014299A1 (en) Biomass power generation system using bamboo as main fuel, and method for combusting bamboo in said biomass power generation system
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP3679534B2 (en) Waste carbonization pyrolysis melting combustion equipment
JP3681228B2 (en) Combined facilities of gas turbine power generation equipment and waste carbonization pyrolysis melting combustion equipment
JP3764578B2 (en) Waste carbonization pyrolysis melting combustion equipment
JPH0849822A (en) Device and method for treating waste
JP2001317715A (en) Method and device for incineration disposal of solid waste
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JP3932278B2 (en) Waste treatment facilities and treatment methods
JP6345139B2 (en) Gas engine system
JP3317843B2 (en) Dry distillation pyrolysis melting combustion equipment for waste
JP2004347274A (en) Waste treatment device
JP3276271B2 (en) Superheated steam production equipment using waste incineration heat
JPH11118124A (en) Fluidized gassifying/melting apparatus, and method thereof
RU2716656C1 (en) Boiler unit
JPS5896913A (en) Solid fuel feeding method for fluidized bed combustion device
JP3507807B2 (en) Pyrolysis equipment
JP2001280615A (en) Melting furnace
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JP2007284478A (en) Method for converting bio-mass into resource and apparatus for conversion into resource
JPH0849821A (en) Device and method for treating waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees