JP3675421B2 - マスクパターン補正方法、マスク製造方法、マスクおよび半導体装置の製造方法 - Google Patents

マスクパターン補正方法、マスク製造方法、マスクおよび半導体装置の製造方法 Download PDF

Info

Publication number
JP3675421B2
JP3675421B2 JP2002092612A JP2002092612A JP3675421B2 JP 3675421 B2 JP3675421 B2 JP 3675421B2 JP 2002092612 A JP2002092612 A JP 2002092612A JP 2002092612 A JP2002092612 A JP 2002092612A JP 3675421 B2 JP3675421 B2 JP 3675421B2
Authority
JP
Japan
Prior art keywords
mask
thin film
mark
mask pattern
position data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092612A
Other languages
English (en)
Other versions
JP2003297716A (ja
Inventor
真二 大森
薫 小池
茂 守屋
勲 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002092612A priority Critical patent/JP3675421B2/ja
Priority to TW092106185A priority patent/TWI252375B/zh
Priority to DE10392464T priority patent/DE10392464T5/de
Priority to KR10-2004-7015423A priority patent/KR20050004830A/ko
Priority to US10/509,230 priority patent/US7109500B2/en
Priority to PCT/JP2003/003455 priority patent/WO2003083913A1/ja
Publication of JP2003297716A publication Critical patent/JP2003297716A/ja
Application granted granted Critical
Publication of JP3675421B2 publication Critical patent/JP3675421B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31793Problems associated with lithography
    • H01J2237/31794Problems associated with lithography affecting masks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electron Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
本発明は、半導体装置の製造におけるリソグラフィー工程に用いられるマスクおよびその製造方法と、マスクパターン補正方法と、そのマスクを用いる半導体装置の製造方法に関し、特に、マスクの重力変形によるパターンの位置ずれを防止できるマスクパターン補正方法に関する。
【0002】
【従来の技術】
フォトリソグラフィーに代わる次世代の露光技術として、電子線やイオンビームという荷電粒子を用いた転写型の露光方法が開発されている。これらの新しい技術では共通に、薄膜領域(メンブレン)を有するマスクが用いられる。マスク表面側のメンブレンは厚さ100nmから10μm程度であり、メンブレンに転写パターンが配置される。メンブレンは、例えばシリコンウェハを含むマスク材料を、マスク裏面側から部分的にエッチングして形成され、エッチングされない部分のマスクブランクスがメンブレンの支持部となる。
【0003】
メンブレン自体に孔を設けることにより転写パターンが形成されるものはステンシルマスク(例えば:H. C. Pfeiffer, Jpn. J. Appl. Phys. 34, 6658 (1995)参照)と呼ばれる。また、メンブレンに積層された金属薄膜等の散乱体を加工して転写パターンが形成されるものはメンブレンマスク(例えば:L. R. Harriott. J. Vac. Sci. Technol. B 15, 2130 (1997)参照)と呼ばれる。
【0004】
転写型のリソグラフィーには、マスクを透過した荷電粒子線を電子/イオン光学系により縮小投影する方式のもの(Lucent Technologies のSCALPEL、IBMのPREVAIL、ニコンのEBステッパーおよびイオンビーム転写リソグラフィー等)と、マスク直下に近接させたウェハーに電子/イオン光学系を介さずに転写する方式のもの(リープル、東京精密によるLEEPL等)がある。いずれの方式においても、パターン位置精度の高いマスクを作製することがきわめて重要である。
【0005】
これらのマスクの製造方法には様々なバリエーションがあり得るが、ステンシルマスクとメンブレンマスクの典型的な製造フローを説明する。ステンシルマスクの場合、まず、図9(a)に示すように、SOIウェハー101の裏面にシリコン酸化膜102を形成する。SOI(silicon on insulatorまたはsemiconductor on insulator)ウェハー101はシリコンウェハー103上にシリコン酸化膜(埋め込み酸化膜)104を介してシリコン層105を有する。図示しないが、シリコン酸化膜102にエッチングを行う。
【0006】
次に、図9(b)に示すように、SOIウェハー101の裏面側からシリコンウェハー103にエッチングを行う。このエッチングは、シリコン酸化膜102をマスクとして、シリコン酸化膜104に達するまで行う。シリコンと酸化シリコンのエッチング速度は数桁以上異なるため、シリコン酸化膜104およびシリコン酸化膜102に対して選択的にシリコンウェハー103がエッチングされる。エッチングはシリコン酸化膜104で停止する。
【0007】
次に、図9(c)に示すように、シリコンウェハー103のエッチングにより露出した部分のシリコン酸化膜104を除去する。これにより、シリコンからなるメンブレン106が形成される。メンブレン106を区分する部分のシリコンウェハー103は梁107となり、メンブレン106を支持する。シリコン酸化膜104は、例えばフッ化水素酸を用いたウェットエッチングにより除去される。また、このエッチングによりシリコン酸化膜102も除去される。図示しないが、SOIウェハー101の縁近傍にはメンブレン106や梁103が形成されず、この部分に残るシリコンウェハーはマスクの支持枠として用いられる。
【0008】
次に、図10(d)に示すように、メンブレン106を含むシリコン層105上にレジスト108を塗布する。次に、図10(e)に示すように、レジスト108が塗布されたマスク原盤(マスクブランクス)を、電子線描画機に固定して、レジスト108にマスクパターンを描画する。マスクは電子線描画機で採用されているマスク保持方法、例えば機械式クランプ、真空チャックあるいは静電チャック等により電子線描画機に固定されるが、いずれの場合もマスク表面(レジスト108側)が上を向いた状態となる。
【0009】
次に、図10(f)に示すように、レジスト108をマスクとしてシリコン層105にエッチングを行い、転写パターンで孔109を形成する。その後、レジスト108を除去することにより、ステンシルマスク110が形成される。形成されたステンシルマスク110は、露光時に梁107や支持枠側が上となり、メンブレン106が下面側となるように露光装置に固定される。
【0010】
荷電粒子線はステンシルマスク110の裏面側(梁107側)から照射され、孔109を透過する荷電粒子線によりウェハーにパターンが転写される。特に、LEEPLのような等倍露光方式では、メンブレン106とウェハーを近接させる必要があり、メンブレン106は必然的に下面側となる。
【0011】
一方、メンブレンマスクを作製する場合、まず、図11(a)に示すように、シリコンウェハー111の両面にシリコン窒化膜112a、112bを例えば化学気相成長(CVD;chemical vapor deposition)で形成する。マスク表面側のシリコン窒化膜112aはメンブレン材料となり、マスク裏面側のシリコン窒化膜112bはシリコンウェハー111のエッチングマスクとなる。
【0012】
シリコン窒化膜112a上に例えばクロム層113を介してタングステン層114を形成する。クロム層113はタングステン層114にエッチングを行うときのエッチングストッパー層となり、タングステン層114は荷電粒子線の散乱体となる。
【0013】
次に、図11(b)に示すように、マスク裏面側のシリコン窒化膜112bにエッチングを行い、メンブレン形成領域のシリコン窒化膜112bを除去する。次に、図11(c)に示すように、タングステン層114上にレジスト115を塗布する。次に、図12(d)に示すように、シリコン窒化膜112bをマスクとしてシリコンウェハー111にエッチングを行い、梁116を形成する。
【0014】
次に、図12(e)に示すように、マスクブランクスを電子線描画機に固定し、レジスト115にマスクパターンを描画する。ステンシルマスクを作製する場合と同様に、マスクは電子線描画機に応じたマスク保持方法で固定されるが、いずれの保持方式でもマスク表面(レジスト115側)が上向きの状態となる。
【0015】
次に、図12(f)に示すように、レジスト115をマスクとしてタングステン層114にエッチングを行い、レジスト115を除去する。さらに、タングステン層114をマスクとしてクロム層113にエッチングを行うことにより、シリコン窒化膜112aからなるメンブレン117上に転写パターンが形成され、メンブレンマスク118が形成される。
【0016】
形成されたメンブレンマスク118はステンシルマスクと同様に、梁116側が上となり、メンブレン117が下面側となるように露光装置に固定される。荷電粒子線はメンブレンマスク117の裏面側(梁116側)から照射され、散乱体(タングステン層114)以外の部分のメンブレン117を透過する荷電粒子線によりウェハーにパターンが転写される。
【0017】
図13はステンシルマスクの一例を示す平面図である。図13に示すように、梁107によって区分されたメンブレン106が、シリコンウェハー103(支持枠)の中央部に配置されている。なお、太い梁107aは梁107と幅のみ異なり、断面構造は梁107と共通する。
【0018】
図14は図13の一部(A)を拡大した斜視図である。図15は図14のメンブレン106の拡大図であり、図15に示すように、メンブレン106には所定のパターンで孔109が形成されている。荷電粒子線は孔109を透過する。なお、図15に示す点線と梁107との間の部分Sはスカートとも呼ばれ、通常はパターンが形成されない。
【0019】
【発明が解決しようとする課題】
上記のようにステンシルマスクとメンブレンマスクのいずれも、マスクパターン描画時と使用時(露光時)でマスクの上下が反転する。レジストにマスクパターンで電子線描画を行うときは、図16(a)に示すように、マスク121の表面(メンブレン122側)が上となるように、保持手段123に保持される。露光装置で露光を行うときは、図16(b)に示すようにマスク表面が下となる。
【0020】
図17に示すように、メンブレン122は重力によって撓むため、上面側は収縮し、下面側は伸張する。図17のz軸は鉛直方向を示す。このような重力変形があるため、マスク表面を上としてマスクパターンを正確な位置に描画したとしても、マスクの上下を逆にして露光を行うと、パターンの位置はずれる。
【0021】
重力による撓みの反転がマスクパターンの位置精度に与える影響は、フォトマスクについては例えば特開平6−18220号公報等で取り上げられている。また、ステンシルマスクやメンブレンマスクについても同様の問題が指摘されている(例えば:C. -f. Chen et al., J. Vac. Sci. Technol. B 19, 2646 (2001)参照)。
【0022】
後者の文献では有限要素シミュレーションによりマスクの変形を計算している。その結果から、(1)露光中も図16(a)に示すようにマスク表面を上にする、(2)露光は図16(b)に示すようにマスク表面を下にして行うが、図13に示す太い梁107a部分も静電チャックで支持する、という2つの方法が提案されている。
【0023】
しかしながら、いずれの方法も複雑かつ精巧なマスク保持機構が必要となり、結果として装置コストの増大を招く。また、前述したように、等倍近接露光の場合は、メンブレンとウェハーを近接させるため、(1)の方法を適用できない。他の露光方式の場合も、実際に(1)や(2)のマスク保持方法が可能か実証されていない。
【0024】
一方、X線リソグラフィー(PXL;proximity X-ray lithography)においては、マスクの変形を予め電子線描画の時点で補正する方法が提案されている(特開平8−203817号公報参照)。但し、この公報では、マスク内での位置に応じた緩やかな重力変形でなく、メンブレンとX線吸収体との応力差に起因する微細領域での位置ずれに着目している。ここで、メンブレンは例えばシリコン窒化膜やシリコンカーバイド膜であり、X線吸収体はタンタル、タングステンまたは金等からなる金属層である。
【0025】
この方法によれば、マスクパターンの設計データ通りに電子線描画を行い、マスクを1枚作製する。そのマスクでウェハーを露光し、パターンの位置ずれを測定する。このマスクで、描画したパターン位置(xn ,yn )と完成したマスク上のパターン位置(Xn ,Yn )との関係を表す伝達関数Sを求める。すなわち、(Xn ,Yn )=S(xn,yn)となる関数Sを求める。
【0026】
マスク上のパターン位置を設計データ通りにするには、設計データを伝達関数Sの逆関数で変換したデータで電子線描画を行い、再度マスクを作製する。この方法では必然的に同一の設計データに対しマスクを2枚作製しなければならず、製造時間、手間およびコストの観点から望ましくない。PXLマスクの歩留りを考慮すると、1枚のマスクを完成させるために数枚以上の試作を繰り返す必要もあり、この方法によるPXLマスクの製造は実際には広く普及するに至っていない。
【0027】
本発明は上記の問題点に鑑みてなされたものであり、したがって本発明は、重力によるマスクの変形によりパターンの位置がずれるのを防止できるマスクパターン補正方法、マスク製造方法マスクおよび半導体装置の製造方法を提供することを目的とする。
【0028】
【課題を解決するための手段】
上記の目的を達成するため、本発明のマスクパターン補正方法は、複数のマークを有する第1の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第1の位置データを作成する工程と、前記第1の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第2の位置データを作成する工程と、前記第1の位置データを前記第2の位置データに変換する伝達関数を求める工程と、第2の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記伝達関数の逆関数を用いて補正する工程とを有することを特徴とする。
【0029】
好適には、前記第1の位置データを作成する工程は、前記第1の薄膜上に形成されたマークの位置を実測する工程を有する。あるいは、前記第1の薄膜上のレジストに前記マークを描画し、前記レジストをエッチングマスクとして前記第1の薄膜に孔を形成する工程を有する。あるいは、前記レジストに描画されたマークの位置を実測する工程を有する。あるいは、前記第1の位置データをシミュレーションにより作成する。
【0030】
好適には、前記第1の薄膜上に形成されたマークの位置を実測する工程を有する。あるいは、前記第1の薄膜の第2面側に第2面側マークを形成し、前記第2面側マークの位置を実測する工程を有する。あるいは、前記第1面と露光面を対向させ、前記第2面側から荷電粒子線により前記露光面に前記マークを転写する工程と、前記露光面に転写されたマークの位置を実測する工程とを有する。
【0031】
あるいは、ウェハー上にレジストを塗布する工程と、前記第2面側から前記第1の薄膜に荷電粒子線を照射し、前記レジストの露光および現像を行う工程と、前記レジストをエッチングマスクとして前記ウェハーにエッチングを行い、前記ウェハーにマークを形成する工程と、前記ウェハーに形成されたマークの位置を実測する工程とを有する。
あるいは、前記第2の位置データをシミュレーションにより作成する。
【0032】
上記の目的を達成するため、本発明のマスク製造方法は、複数のマークを有する第1の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第1の位置データを作成する工程と、前記第1の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第2の位置データを作成する工程と、前記第1の位置データを前記第2の位置データに変換する伝達関数を求める工程と、第2の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記伝達関数の逆関数を用いて補正する工程と、補正されたマスクパターンで荷電粒子線透過部を有する第2の薄膜を含むマスクを作製する工程とを有することを特徴とする。
【0033】
好適には、前記第2の薄膜は荷電粒子線透過部として孔を有する。あるいは、前記第2の薄膜は荷電粒子線透過膜と、前記荷電粒子線透過膜上の一部に形成された荷電粒子線散乱体とを有する。
また、前記伝達関数の逆関数を用いて補正されたマスクパターンで荷電粒子線透過部を有する第3の薄膜を含む、さらに別のマスクを作製してもよい。
【0034】
上記の目的を達成するため、本発明のマスク製造方法は、複数のマークと所定のパターンの荷電粒子線透過部とを有する第1の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第1の位置データを作成する工程と、前記第1の薄膜と、前記第1の薄膜の第2面側に形成された薄膜支持部とを有する第1のマスクを作製する工程と、前記第1の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第2の位置データを作成する工程と、前記第1の位置データを前記第2の位置データに変換する第1の伝達関数を求める工程と、前記第1の薄膜を、第2面を上面として支持し、第2面側から第1のマスクに荷電粒子線を照射して、デバイス製造用の露光を行う工程と、第2の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記第1の伝達関数の逆関数を用いて補正する工程と、複数のマークと、補正されたマスクパターンの荷電粒子線透過部とを有する第2の薄膜を含む第2のマスクを作製する工程とを有することを特徴とする。
【0035】
好適には、第2の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第3の位置データを作成する工程と、前記第2の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第4の位置データを作成する工程と、前記第3の位置データを前記第4の位置データに変換する第2の伝達関数を求める工程と、前記第2の薄膜を、第2面を上面として支持し、第2面側から第2のマスクに荷電粒子線を照射して、デバイス製造用の露光を行う工程と、第3の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記第2の伝達関数の逆関数を用いて補正する工程と、複数のマークと、補正されたマスクパターンの荷電粒子線透過部とを有する第3の薄膜を含む第3のマスクを作製する工程とをさらに有する。
【0036】
上記の目的を達成するため、本発明のマスクは、所定のパターンで荷電粒子線透過部が形成された薄膜を有し、前記薄膜の第1面と対向するように配置されるウェハーに、第2面側から荷電粒子線を露光するためのマスクであって、前記パターンは所定の伝達関数の逆関数を用いて補正されたパターンであり、前記伝達関数は第1の位置データを第2の位置データに変換する関数であり、前記第1の位置データは、複数のマークを有する伝達関数決定用薄膜を、第1面を上面として支持したときの前記マークの位置を示し、前記第2の位置データは前記伝達関数決定用薄膜を、第2面を上面として支持したときの前記マークの位置を示すことを特徴とする。また、本発明の半導体装置の製造方法は、上記の本発明のマスクを用いた露光工程を含むことを特徴とする。
【0037】
これにより、重力に起因するマスクの変形により、パターンの位置がずれるのを防止することが可能となる。本発明のマスクパターン補正方法によれば、マスクパターン描画時と露光時でマスクの撓みが反転しても、露光時にマスクパターンが設計データ通りの位置となる。
【0038】
また、本発明のマスクパターン補正方法あるいはマスク製造方法によれば、マスクパターンが異なるマスクであっても、伝達関数を用いてパターン描画時に補正できるため、マスク製造工程の増加を防止できる。また、マスク製造において、重力によるマスク変形の影響を除去できるため、マスク製造プロセスの裕度が増し、マスクの歩留りが向上する。
【0039】
【発明の実施の形態】
以下に、本発明のマスクパターン補正方法マスク製造方法および半導体装置の製造方法の実施の形態について、図面を参照して説明する。本発明のマスクは、本発明のマスクパターン補正方法およびマスク製造方法を用いて製造されるマスクとする。本発明の実施形態のマスクパターン製造方法によれば、重力によるマスクの変形を補正するようにマスクパターンを描画する。
【0040】
マスクパターン補正方法として、マスクパターン描画時の姿勢(パターン面が上向きの状態)と露光時の姿勢(パターン面が下向きの状態)での重力変形によるパターン位置の変化を、位置伝達関数(以下、伝達関数とする。)Fとして求める。露光時の姿勢で設計データ通りの位置にマスクパターンが配置されるように、伝達関数Fの逆関数F-1によりマスクの設計データを変換する。マスクパターンの描画位置(電子線描画データ)は次式(1)のように決定する。
【0041】
電子線描画データ=F-1(設計データ) ・・・(1)
【0042】
伝達関数Fは一般的には解析的な関数ではなく、多数のサンプリング点によって定義される一般化された関数である。マスクパターン描画時の姿勢でのサンプリング点を{rj }(j=1,2,・・・,n)、露光時の姿勢で各サンプリング点{rj }に対応する点を{Rj }(j=1,2,・・・,n)とすると、伝達関数Fは次式(2)で定義される。ここで、{rj }はベクトルrj とし、{Rj }はベクトルRj とする。また、nはサンプリング点数である。
【0043】
【数1】
Figure 0003675421
【0044】
各サンプリング点{rj }の座標を、次式(3)のように定義する。
{rj }=(xj ,yj ) (j=1,2,・・・n) ・・・(3)
また、各サンプリング点{rj }に対応する点{Rj }の座標を、次式(4)のように定義する。
{Rj }=(Xj ,Yj ) (j=1,2,・・・n) ・・・(4)
【0045】
また、{Rj }は露光時の姿勢でのマスク上の点の位置でなく、マスクを用いてウェハー上のレジストに露光を行ったとき、各サンプリング点{rj }がレジストに実際に転写される位置であってもよい。この場合、伝達関数Fは露光位置精度の影響を含んだものとなる。
【0046】
あるいは、ウェハー上のレジストを用いてウェハーにエッチングを行い、ウェハー上のエッチング箇所の位置を{Rj }とすることもできる。この場合、伝達関数Fは露光位置精度の影響と、エッチングの位置精度の影響を含んだものとなる。
【0047】
以下に、設計データ上のパターン位置から適切な描画位置を求めるためのアルゴリズムを述べる。あるパターンの設計位置を{R}=(X,Y)とする。このパターンがウェハー上で実際に{R}の位置に転写されるためのマスク上での位置{r}を、以下の処理で求める。
【0048】
{r}近傍のある領域において、{r}の座標は{R}の座標のある解析的な関数として表現できると近似する。特に、{R}の座標の多項式として表現できると近似すると、数値演算が容易になる。すなわち、次式(5)で表される。
【0049】
【数2】
Figure 0003675421
【0050】
ここで、Mは近似する多項式の最大次数であり、必要な精度に応じて任意に設定できる。{r}近傍の点{rl },{rm },・・・を取り出し、対応する{Rl },{Rm },・・・の座標により最小二乗法を用いてフィッティングする。これにより、係数aijおよびbijが決定される。ここでは多項式による近似で説明したが、必ずしも多項式ではなくスプライン近似等、他の関数による近似も可能である。
【0051】
あるいは、マスクは一般に図13に示すように、梁によって小領域のメンブレンに分割されているため、SCALPELに関する文献(L. E. Ocola et al.,J. Vac. Sci. Technol. B 19, 2659 (2001));特に式(1)〜(4))に示されているように、伝達関数測定の結果を個々のメンブレン変形に対する補正のデータとしてまとめる方法もある。
【0052】
この場合、あるメンブレン内の重力変形による座標変化を、並進操作Tと回転、直交性および拡大を含む変換行列Mとによって、次式(6)のように表す。
R=T+M×r ・・・(6)
この変換は、注目するメンブレン内の座標測定用マークの位置変化を測定することにより決定できる。式(6)の変換が決定されれば、その逆変換によって適切な描画位置が決定される。
【0053】
理想的なアルゴリズムとしては、以上の方法がある。しかしながら、この通りに各座標値を補正すると、X軸、Y軸に対して平行に近い斜めの線が多数発生する。パターンに斜め線が多いと、マスクデータ処理および描画において処理時間や精度等の点で不利になる。位置伝達関数は一般に緩やかな関数であるため、一定の条件によりX軸またはY軸に平行な直線に近似することで、補正の精度を損なわずに、このような問題を回避できる。
【0054】
以下、伝達関数Fを求める方法について詳細に説明する。
(実施形態1)
本実施形態によれば、伝達関数決定用マスクを作製し、伝達関数決定用マスクでマーク位置の測定を行って伝達関数Fを求める。伝達関数決定用マスクは、実際のデバイス製造用マスクと同様のマスク構造を有し、かつマスクパターンのかわりに座標測定器用マークが形成されたマスクとする。伝達関数決定用マスクで求められた伝達関数Fを用いて、実際のデバイス製造用マスクのマスクパターンを補正する。このように補正されたマスクパターンで、デバイス製造用マスクを作製する。
【0055】
図1(a)に伝達関数決定用マスク上の典型的なマーク配置例を示す。図1(a)に示すように、複数の座標測定器用マーク1はマスクに格子状に配置される。これらの座標測定器用マーク1は、レーザー光を用いた座標測定器によって検出される。図1(b)は図1(a)のマーク1の一つを拡大した平面図である。
【0056】
本実施形態では、ステンシルマスクの例を説明する。ステンシルマスクは前述した方法(図9、10参照)やそれ以外の方法で作製できる。前述した方法でマスクを作製する場合、座標測定器用マークは梁の形成後、メンブレンに孔を形成する工程(図10(e)および(f)参照)で形成できる。
【0057】
図9(c)に示す工程までは難易度が低く、安定したプロセスである。また、座標測定器用マークはデバイスパターンと比較してサイズが大きく、典型的には10μm程度の十字形や方形等で形成される。したがって、座標測定器用マークの加工は容易であり、位置精度を高くできる。図2は伝達関数決定用マスクのメンブレンの一部を示す断面図である。図2に示すように、座標測定器用マーク1は梁2で区分されたメンブレン3に形成される。
【0058】
前述した特開平8−203817号公報記載のX線マスクの作製方法では、メンブレンとX線吸収体との応力差に起因する微細領域での位置ずれを補正する。このような位置ずれはマスクパターンに依存するため、正確な補正を行うには、各マスクパターンで位置ずれ測定用とデバイス製造用(露光用)の2枚のマスクを作製する必要がある。
【0059】
一方、重力によるマスクの変形は、連続的で緩やかな関数で表されることが知られている(例えば:S. P. Timoshenko and S.Woi1wsky-Krieger, 'Theory of Plates and Shells' 参照)。その変形量は、図15に示すようなマスクの細部構造(マスクパターン)に強く依存せず、かつ再現性が高い。
【0060】
したがって、一度正確な測定を行い、式(2)に相当するデータベースを作成しておけば、マスクパターンが異なるマスクの製造にも継続的にデータベースを使用して、位置補正を行うことができる。
本実施形態によれば、各マスクパターンで座標測定用と露光用の2枚のマスクを作製する必要がなく、マスク作製の所要時間やコストを削減できる。但し、メンブレン厚や梁の配置等、マスクパターン以外のマスク構造は共通とする。また、これらのマスクの保持方法も共通とする。
【0061】
以上のように、伝達関数決定用マスクを作製してから、マスクパターン描画時の姿勢(パターン面が上向きの状態)で座標測定器用マークの位置を測定する。この測定には、例えばIPRO(LEICA製)や光波6I(ニコン製)等の座標測定器を用いることができる。
【0062】
このとき、電子線描画機と極力同じ方法でマスクを保持することが望ましい。例えば、電子線描画機のマスク保持手段が静電チャックである場合には、同様の静電チャックでマスクを座標測定器に保持することが望ましい。それが不可能な場合、通常、電子線描画機は走査型電子顕微鏡(SEM)によるマーク検出機能を有するため、これを用いてマーク検出を行ってもよい。電子線描画機のマーク検出機能を用いれば、マーク位置の測定とマスクパターンの描画を、重力の影響が全く同じ状態で行うことができる。電子線描画機のマーク検出機能を用いる場合については、実施形態2で後述する。
【0063】
座標測定器で座標測定器用マークの位置を検出した後、マスクをパターン面が下向きとなるように露光装置に取り付ける。予めウェハー上にレジストを塗布しておき、露光・現像を行って座標測定器用マークをウェハー上のレジストに転写する。その後、ウェハー上のレジストに転写されたマーク位置を測定する。座標測定器により測定されたマーク位置と、ウェハー上のマーク位置のデータから伝達関数Fを求めることができる。
【0064】
本実施形態のフローを図3にまとめた。ステップ1(ST1)では、図3(a)に示すように、マスク11上のレジスト12に電子線描画を行う。
ステップ2(ST2)では、図3(b)に示すように、メンブレン13にエッチングを行い、座標測定器用マーク14を形成する。
ステップ3(ST3)では、座標測定器を用いてマーク位置の測定を行う。図3(b)と同様に、マスクのパターン面を上向きとする。
【0065】
ステップ4(ST4)では、図3(c)に示すように、マスク11のパターン面を下向きとして、ウェハー上のレジストに露光・現像を行う。
ステップ5(ST5)では、図3(d)に示すように、ウェハー15上のレジスト16に転写されたマーク17の位置を測定する。
ステップ6(ST6)では、マスクのマーク位置とウェハー上のマーク位置から伝達関数を求める。
【0066】
なお、伝達関数によるマスクパターンの補正は、設計データを電子線描画機に入力する前に行っても、電子線描画機に入力した後で行ってもいずれでもよい。一般に、設計データは補正され、電子線描画機のフォーマットに変換されて電子線描画機に入力される。そこで、設計データを伝達関数の逆関数で補正し、この補正データを電子線描画機のフォーマットに変換して、電子線描画機に入力する。あるいは、設計データを電子線描画機のフォーマットに変換する段階で、伝達関数による補正を行ってもよい。この場合、位置補正された設計データが、電子線描画データとして電子線描画機に入力される。
【0067】
設計データを電子線描画機に入力した後に位置補正を行う場合は、電子線描画機のメモリを利用する。電子線描画機のメモリは比較的簡単な図形演算機能を有し、伝達関数の逆関数を用いたデータ変換の出力を、そのまま描画することができる。
【0068】
(実施形態2)
本実施形態は、マスクのパターン面を上向きとした状態でのマーク位置測定方法が実施形態1と異なる。本実施形態によれば、電子線描画機のマーク検出機能を用いて、マスク上のマーク位置を測定する。
【0069】
電子線描画機のSEMでマーク位置を測定する場合は、電子線描画機でマスク表面のレジストにマークの電子線描画と現像を行った後、マーク位置を測定する。その後、レジストをマスクとしてメンブレンにエッチングを行い、マークを形成する。
【0070】
メンブレンの重力撓みによるx−y平面内の変形は1〜100nmのオーダーであり、それを正確に測定するには、測定精度が例えば2nm程度の非常に高価な座標測定器(LEICA LMS IPRO等)を用いる必要がある。電子線描画機のSEMによるマーク検出機能の測定精度は10〜100nmのオーダーであり、座標測定器に比較すると低いが、以下の操作により実質的に十分な測定精度が得られる。
【0071】
電子線描画機のマーク検出機能を用いる場合、パターン面を上向きとした状態と下向きとした状態でのマスク変形を、マークのx−y座標でなく、高さ位置(z座標)から求める。例えば、レーザー・オートフォーカス機能を用いた非接触形状測定器(例えばソニー・プレシジション・テクノロジー製のYP20/21等)により、ステンシルマスクの反りを測定できる。このデータから、マスクの反り曲線w(x,y)が得られる。マスクの反りがわかれば、次式(7)によりx−y平面内の変位を求めることができる。ここで、u、vはそれぞれx、y方向の変位とし、hはメンブレン厚とする。
【0072】
【数3】
Figure 0003675421
【0073】
また、上記のように非接触形状測定器で座標測定器用マークのz座標を求めるかわりに、レーザー光または静電容量式センサを利用した高さ測長器でマスクの撓みの曲率を求めてもよい。曲率のデータとメンブレン厚から、マスク上の各点での変位を求めることができる。
【0074】
実施形態1ではメンブレンのエッチング後のマーク位置が測定されるのに対し、本実施形態ではメンブレンのエッチング前のマーク位置(マスク上のレジストでのマーク位置)が測定される。したがって、最終的に得られる伝達関数は、メンブレンのエッチング加工によるマーク位置変化の影響を含んだものとなる。
【0075】
マスクのメンブレンにエッチングを行い、マークを形成した後、マスクをパターン面が下向きとなるように露光装置に取り付ける。一方、予めウェハー上にはレジストを塗布しておき、露光・現像を行う。その後、ウェハー上のレジストに転写されたマークの位置を測定する。これにより、電子線描画機のマーク検出機能により測定されたマーク位置と、ウェハー上のマーク位置のデータから伝達関数Fを求める。
【0076】
本実施形態のフローを図4にまとめた。ステップ1(ST1)では、図4(a)に示すように、マスク11上のレジスト12に電子線描画を行う。
ステップ2(ST2)では、電子線描画機を用いて、マスク上のレジストにおけるマーク位置を測定する。マスク位置は、図4(a)で電子線描画を行うときと同じである。
【0077】
ステップ3(ST3)では、図4(b)に示すように、メンブレン13にエッチングを行い、マーク18を形成する。
ステップ4(ST4)では、図4(c)に示すように、マスク11のパターン面を下向きとして、ウェハー上のレジストに露光・現像を行う。
ステップ5(ST5)では、図4(d)に示すように、ウェハー15上のレジスト16に転写されたマーク17の位置を測定する。
ステップ6(ST6)では、マスクのマーク位置とウェハー上のマーク位置から伝達関数を求める。
【0078】
(実施形態3)
本実施形態は、マスクのパターン面を下向きとした状態でのマーク位置測定方法が実施形態1と異なる。本実施形態によれば、露光装置でウェハー上のレジストにマークを転写した後、レジストをマスクとしてウェハーにエッチングを行い、ウェハー表面にマークを形成してから、レジストを除去する。
【0079】
実施形態1ではウェハー表面のエッチング前のマーク位置(レジストでのマーク位置)が測定されるのに対し、本実施形態ではウェハー表面のエッチング後のマーク位置が測定される。したがって、最終的に得られる伝達関数Fは、ウェハーのエッチング加工によるマーク位置変化の影響を含んだものとなる。
【0080】
本実施形態のフローを図5にまとめた。ステップ1(ST1)では、図5(a)に示すように、マスク11上のレジスト12に電子線描画を行う。
ステップ2(ST2)では、図5(b)に示すように、メンブレン13にエッチングを行い、座標測定器用マーク19を形成する。
ステップ3(ST3)では、座標測定器を用いてマーク位置の測定を行う。図5(b)と同様に、マスク11のパターン面を上向きとする。
【0081】
ステップ4(ST4)では、図5(c)に示すように、マスク11のパターン面を下向きとして、ウェハー15上のレジスト16に露光を行い、その後、レジスト16を現像する。
ステップ5(ST5)では、図5(d)に示すように、レジスト16(図5(c)参照)をマスクとしてウェハー15にエッチングを行い、マーク20を形成する。
【0082】
ステップ6(ST6)では、ウェハー上のマーク20の位置を測定する。図5(d)と同様に、マスクのパターン面を上向きとする。
ステップ7(ST7)では、マスクのマーク位置とウェハー上のマーク位置から伝達関数を求める。
【0083】
上記のフローでは、マスクのパターン面を上向きとした状態でのマーク位置の測定については、座標測定器を用いる場合(実施形態1と同様)を説明したが、実施形態2と同様に、電子線描画機のマーク検出機能を用いて、マスク上のレジストのマーク位置を検出してもよい。
【0084】
(実施形態4)
本実施形態によれば、マスクのメンブレン上に、マスクの上下どちらからも検出可能なマークを加工し、マスクの上下を反転させたそれぞれの状態でマーク位置を測定する。これらの2つのデータから伝達関数Fを求める。
【0085】
マスクのパターン面を上向きにしてマーク位置を測定するときのマスク保持方法は、マスクパターン描画時と同じか、可能な限り類似した保持方法が望ましい。また、パターン面を下向きにしてマーク位置を測定するときのマスク保持方法は、露光時と同じか、可能な限り類似した保持方法が望ましい。必要に応じて、電子線描画機や露光装置のマスクホルダーを用いてもよい。
【0086】
(実施形態5)
本実施形態によれば、メンブレン以外の箇所に位置検出用マークを形成する。実施形態4と異なり、マークはマスクの片面側から検出できればよい。例えば、図6の断面図に示すように、梁部分の両面側にマーク21、22を配置する。梁やメンブレンが形成されない部分にマークを配置することもできる。例えばマーク23は支持枠部分に形成されたマークの例である。
【0087】
パターン面を上向きとした状態では、実施形態1と同様に、座標測定器を用いて表面側マーク21の位置を測定する。実施形態2と同様に、メンブレン上に塗布されたレジストにマークの電子線描画を行い、これを電子線描画機のSEMで検出してもよい。このとき、梁2が形成されている部分のマスク表面側にマーク21を配置する。
【0088】
パターン面を下向きとした状態では、図6に示す裏面側マーク22の位置を測定する。裏面側マーク22の変位から、重力によるマスク裏面の変形を求める。これらの2つのデータから伝達関数Fを求める。パターンの変形に直接影響するマスク表面の変形と裏面の変形は、絶対値が同じで符号が異なるだけである(例えば:S. P. Timoshenko and S. Woinowsky-Krieger, 'Theory of Plates and Shells'参照)。すなわち、撓みのない状態で同じx−y位置にあったマスク表面と裏面の点は、撓みにより逆方向に同じ量だけ変位する。変位はメンブレンの厚さに比例する(式(7)参照)。
【0089】
(実施形態6)
実際の位置測定ではなく、有限要素法(FEM;finite element method)、境界要素法(BEM;boundary element method)、差分法(FDM;finite difference method)等の数値的シミュレーションを用いて、あるいは近似的に材料力学で用いられる解析的な公式を用いて、パターン面上向きおよびパターン面下向きでのマスクの変形をシミュレーションし、伝達関数を求めることもできる。
【0090】
このとき、マスクのモデル化を可能な限り正確に行い、上向きと下向きでのマスク保持方法も忠実にモデル化する。さらに、可能であれば、パターン加工によるメンブレンの実効的な剛性マトリックスの変化も考慮する。これにより、伝達関数をより正確に求めることができる。
【0091】
図7(a)および(b)はLEEPL用マスクにFEMシミュレーションを行った結果の一例を示す。このマスクは、8インチのSOIウェハーにエッチングを行って形成されるものとする。SOIウェハー(図9参照)のシリコンウェハーは厚さ725μm、埋め込み酸化膜は厚さ500nm、シリコン層は厚さ500nmとする。マスク裏面側からシリコンウェハーと埋め込み酸化膜を部分的に除去し、シリコン層からなるメンブレンが形成される。また、除去されない部分のシリコンウェハーが梁として用いられる(図9参照)。
【0092】
図7(a)および(b)は、マスクをメンブレン上向きで置いた状態(図16(a)参照)と、メンブレン下向きで「吊るした」状態での変形の差をシミュレーションしたものである。メンブレン下向きの状態では、マスクの裏面側(梁側)を上方から3点で接着すると仮定した。メンブレンをx−y平面とし、メンブレンに垂直な方向をz軸方向とすると、図7(a)はz軸方向の撓みの分布を示し、図7(b)はx−y平面内での変位を示す。
【0093】
図7(a)に示すように、z軸方向の撓みが同程度の部分は輪状、さらに正確にはマスク支持箇所を頂点とする略三角形状に分布する。中央部Iで撓みは最大であり、中央部Iから離れるにしたがって撓みは少なくなる。図7(b)に示すように、x−y平面内の変位にも、マスク中央部からの距離だけでなく、マスク支持箇所が影響する。
【0094】
図7(a)および(b)からわかるように、z軸方向の撓みとx−y平面内の変位には急激に変化する箇所がなく、重力によるマスクの変形は、緩やかな関数で表される。
x−y平面内の変位のシミュレーション結果から伝達関数が得られ、マスクの変形によるパターン位置のずれを補正できる。
【0095】
図8は、マスクの支持位置を変化させたときのマスクの最大傾き角を示すグラフである。縦軸の傾き角は、マスク上のある点での接平面と水平面(撓みがないときのマスク面)とのなす角とする。横軸は、ウェハー端(マスク最外周)からの距離とする。図8に示す角度にウェハーの厚みの半分をかけると最大変位が得られる。
【0096】
これによると、マスク固定の誤差により固定位置が数μmずれても、マスクの変形にはほとんど影響しないことがわかる。すなわち、マスクの重力変形は再現性が高く、一度正確な測定を行って伝達関数を求めれば、支持方法を大幅に変更しない限り、その伝達関数を以降のマスク作製時にも継続的に使用できるといえる。
【0097】
マスクのパターン面を上向きとした状態でのマーク位置は、既存の座標測定器を用いて容易に測定でき、測定の位置精度も高い。したがって、パターン面を上向きにしてマーク位置の実測を行い、パターン面を下向きとした状態についてはシミュレーションによって変形を求めることもできる。この場合、パターン面を上向きとしたときの測定結果を、シミュレーションの最適化、例えばパラメータ調整やスケーリング等に利用することもできる。
【0098】
(実施形態7)
本実施形態によれば、第1のマスクのメンブレンに座標測定器用マークだけでなく、実際のマスクパターンを加工する。パターン面を上向きにした状態と下向きにした状態でそれぞれマーク位置を測定し、伝達関数を求める。伝達関数によりマスクパターンを補正したマスクの再作製は行わず、第1のマスクを実際のデバイス製造のための露光に用いる。
【0099】
第1のマスクで伝達関数を求めた後、第1のマスクとマスクパターンのみ異なり、メンブレンや梁の構造等は共通する第2のマスクを作製する。このとき、第2のマスクのマスクパターンの補正に、第1のマスクで求められた伝達関数を用いる。第2のマスクも実際のデバイス製造のための露光に用いる。
【0100】
第2のマスクにも第1のマスクと同様に、座標測定器用マークを形成しておき、マーク位置の測定を行う。第2のマスクで求められた伝達関数は、第2のマスクでなく第3のマスクのマスクパターンの補正に用いる。このように、同一のマスクパターンでのマスクの再作製は行わず、各マスクを実際のデバイス製造に用い、各マスクで求められた位置伝達関数で順次、他のマスクのマスクパターンを補正すれば、漸近的に重力変形の影響を抑制できる。
【0101】
但し、マーク位置の測定や露光でのマスク保持方法は、各マスクで共通とする。また、マークはチップ周辺のスクライブライン等、デバイスの動作と無関係な箇所に配置する。本実施例によれば、露光用のマスクで伝達関数を求めるため、マスク作製枚数やマスク製造工程が増加しない。
【0102】
上記の本発明の実施形態のマスクパターン補正方法およびマスク製造方法によれば、縮小転写方式および近接等倍転写方式のいずれの荷電粒子線露光方法においても、転写されるパターン位置精度の高いマスクを作製できる。これにより、リソグラフィー工程の歩留りが向上し、結果的にデバイスの歩留りが向上する。
【0103】
本発明の実施形態のマスクパターン補正方法マスク製造方法および半導体装置の製造方法によれば、マスクパターン描画時と露光時のパターン面の反転によるパターン変位を正確に補正可能となるため、電子線描画機や露光装置において、マスク保持手段の設計自由度を大きくできる。
【0104】
また、本発明の実施形態のマスク製造方法によれば、重力によるマスク変形の影響を排除できるため、マスク製造プロセスの裕度が増し、マスク製造の歩留りが向上する。
本発明のマスクパターン補正方法、マスク製造方法およびマスクの実施形態は、上記の説明に限定されない。例えば、本発明のマスクはメンブレンマスクでもよい。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
【0105】
【発明の効果】
本発明のマスクパターン補正方法および半導体装置の製造方法によれば、マスクの重力変形によるパターンの位置ずれを防止できる。本発明のマスク製造方法によれば、パターン位置精度の高いマスクを製造できる。本発明のマスクによれば、マスクパターン描画時と露光時でメンブレンの撓みが反転しても、転写されるパターンと設計データとの位置ずれを小さくできる。
【図面の簡単な説明】
【図1】図1(a)は本発明の実施形態1に係るマスクの製造方法において、マスク上にマークを配置した例を示し、図1(b)はマークの拡大図である。
【図2】図2は本発明の実施形態1に係るマスクの製造方法における伝達関数決定用マスクの断面図である。
【図3】図3は本発明の実施形態1に係るマスクの製造方法のフローと、各工程のマスク断面図を示す。
【図4】図4は本発明の実施形態2に係るマスクの製造方法のフローと、各工程のマスク断面図を示す。
【図5】図5は本発明の実施形態3に係るマスクの製造方法のフローと、各工程のマスク断面図を示す。
【図6】図6は本発明の実施形態5に係るマスクの製造方法における伝達関数決定用マスクの断面図である。
【図7】図7は本発明の実施形態6に係るマスクの製造方法におけるマスク変形のシミュレーション結果を示す図であり、(a)はz軸方向の撓み、(b)はz−y平面内の変位をそれぞれ示す。
【図8】図8は本発明の実施形態6に係り、マスクの支持位置を変化させたときのマスクの最大傾き角を示すグラフである。
【図9】図9(a)〜(c)はステンシルマスクの製造工程の一例を示す図である。
【図10】図10(d)〜(f)はステンシルマスクの製造工程の一例を示す図であり、図9(c)に続く工程を示す。
【図11】図11(a)〜(c)はメンブレンマスクの製造工程の一例を示す図である。
【図12】図12(d)〜(f)はメンブレンマスクの製造工程の一例を示す図であり、図11(c)に続く工程を示す。
【図13】図13はステンシルマスクの一例を示す平面図である。
【図14】図14は図13の一部の斜視図である。
【図15】図15は図13および図14のメンブレンの一つを拡大した斜視図である。
【図16】図16(a)はマスクパターン描画時のマスクを示す図であり、図16(b)は露光時のマスクを示す図である。
【図17】図17はメンブレンの重力変形を示す図である。
【符号の説明】
1…座標測定器用マーク、2…梁、3…メンブレン、11…マスク、12…レジスト、13…メンブレン、14…座標測定器用マーク、15…ウェハー、16…レジスト、17、18…マーク、19…座標測定器用マーク、20…マーク、21…表面側マーク、22…裏面側マーク、23…マーク、101…SOIウェハー、102…シリコン酸化膜、103…シリコンウェハー、104…シリコン酸化膜、105…シリコン層、106…メンブレン、107、107a…梁、108…レジスト、109…孔、110…ステンシルマスク、111…シリコンウェハー、112a、112b…シリコン窒化膜、113…クロム層、114…タングステン層、115…レジスト、116…梁、117…メンブレン、118…メンブレンマスク、121…マスク、122…メンブレン、123…保持手段。

Claims (24)

  1. 複数のマークを有する第1の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第1の位置データを作成する工程と、
    前記第1の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第2の位置データを作成する工程と、
    前記第1の位置データを前記第2の位置データに変換する伝達関数を求める工程と、
    第2の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記伝達関数の逆関数を用いて補正する工程とを有する
    マスクパターン補正方法。
  2. 前記第1の位置データを作成する工程は、前記第1の薄膜上にマークを形成する工程と、
    前記第1の薄膜上に形成されたマークの位置を実測する工程とを有する
    請求項1記載のマスクパターン補正方法。
  3. 前記第1の薄膜上にマークを形成する工程は、前記第1の薄膜上にレジストを塗布する工程と、
    前記レジストに荷電粒子線を用いて前記マークを描画する工程と、
    前記レジストをエッチングマスクとして前記第1の薄膜にエッチングを行い、マークとして孔を形成する工程とを有する
    請求項2記載のマスクパターン補正方法。
  4. 前記第1の薄膜上にマークを形成する工程は、前記第1の薄膜上にレジストを塗布する工程と、
    前記レジストに荷電粒子線を用いて前記マークを描画する工程とを有し、
    前記レジストに描画されたマークの位置を実測する
    請求項2記載のマスクパターン補正方法。
  5. 前記第1の薄膜上に形成されたマークの位置を実測する工程は、前記第1の薄膜上のマークを、前記第1の薄膜と略平行な平面に投影したときの座標を測定する工程を有する
    請求項2記載のマスクパターン補正方法。
  6. 前記第1の薄膜上に形成されたマークの位置を実測する工程は、前記第1の薄膜上のマークを、前記第1の薄膜と略平行な平面に投影したときの座標を相対的に低い位置精度で測定する工程と、
    前記第1の薄膜の厚さ方向における前記マークの位置であるマーク高さを測定する工程と、
    前記座標、前記マーク高さ、および前記第1の薄膜の厚さから、前記第1の薄膜上のマークを、前記第1の薄膜と略平行な平面に投影したときの座標を相対的に高精度で算出する工程とを有する
    請求項2記載のマスクパターン補正方法。
  7. 前記第1の薄膜上に形成されたマークの位置を実測する工程は、前記第1の薄膜上のマークを、前記第1の薄膜と略平行な平面に投影したときの座標を相対的に低い位置精度で測定する工程と、
    各マークにおける前記第1の薄膜の曲率を測定する工程と、
    前記座標、前記曲率、および前記第1の薄膜の厚さから、前記第1の薄膜上のマークを、前記第1の薄膜と略平行な平面に投影したときの座標を相対的に高精度で算出する工程とを有する
    請求項2記載のマスクパターン補正方法。
  8. 前記第1の位置データをシミュレーションにより作成する
    請求項1記載のマスクパターン補正方法。
  9. 前記シミュレーションに有限要素法、境界要素法または差分法を用いる
    請求項8記載のマスクパターン補正方法。
  10. 前記第2の位置データを作成する工程は、前記第1の薄膜を第2面を上面として支持する工程と、
    前記第1の薄膜上に形成されたマークの位置を実測する工程とを有する
    請求項2記載のマスクパターン補正方法。
  11. 前記第1の薄膜の第2面側に第2面側マークを形成する工程をさらに有し、
    前記第2の位置データを作成する工程は、前記第1の薄膜を第2面を上面として支持する工程と、
    前記第2面側マークの位置を実測する工程とを有する
    請求項2記載のマスクパターン補正方法。
  12. 前記第2の位置データを作成する工程は、前記第1の薄膜を第2面を上面として支持し、前記第1面と露光面を対向させる工程と、
    前記第2面側から前記第1の薄膜に荷電粒子線を照射し、前記マークを透過する荷電粒子線により、前記露光面に前記マークを転写する工程と、
    前記露光面に転写されたマークの位置を実測する工程とを有する
    請求項2記載のマスクパターン補正方法。
  13. 前記第2の位置データを作成する工程は、ウェハー上にレジストを塗布する工程と、
    前記第1の薄膜を第2面を上面として支持し、前記第1面と前記レジストを対向させる工程と、
    前記第2面側から前記第1の薄膜に荷電粒子線を照射し、前記レジストの露光および現像を行う工程と、
    前記レジストをエッチングマスクとして前記ウェハーにエッチングを行い、前記ウェハーにマークを形成する工程と、
    前記ウェハーに形成されたマークの位置を実測する工程とを有する
    請求項2記載のマスクパターン補正方法。
  14. 前記第2の位置データをシミュレーションにより作成する
    請求項1記載のマスクパターン補正方法。
  15. 前記シミュレーションに有限要素法、境界要素法または差分法を用いる
    請求項14記載のマスクパターン補正方法。
  16. 複数のマークを有する第1の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第1の位置データを作成する工程と、
    前記第1の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第2の位置データを作成する工程と、
    前記第1の位置データを前記第2の位置データに変換する伝達関数を求める工程と、
    第2の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記伝達関数の逆関数を用いて補正する工程と、
    補正されたマスクパターンで荷電粒子線透過部を有する第2の薄膜を含むマスクを作製する工程とを有する
    マスク製造方法。
  17. 前記第2の薄膜は荷電粒子線透過部として孔を有し、
    補正されたマスクパターンで前記孔を形成する
    請求項16記載のマスク製造方法。
  18. 前記第2の薄膜は荷電粒子線透過膜と、前記荷電粒子線透過膜上の一部に形成された荷電粒子線散乱体とを有し、
    補正されたマスクパターン以外の部分に前記荷電粒子線散乱体を形成する
    請求項16記載のマスク製造方法。
  19. 前記第3の薄膜に形成されるマスクパターンであって、前記第2の薄膜に形成されるマスクパターンと異なるマスクパターンを、前記伝達関数の逆関数を用いて補正する工程と、
    補正されたマスクパターンで荷電粒子線透過部を有する第3の薄膜を含む、さらに別のマスクを作製する工程とを有する
    請求項16記載のマスク製造方法。
  20. 複数のマークと所定のパターンの荷電粒子線透過部とを有する第1の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第1の位置データを作成する工程と、
    前記第1の薄膜と、前記第1の薄膜の第2面側に形成された薄膜支持部とを有する第1のマスクを作製する工程と、
    前記第1の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第2の位置データを作成する工程と、
    前記第1の位置データを前記第2の位置データに変換する第1の伝達関数を求める工程と、
    前記第1の薄膜を、第2面を上面として支持し、第2面側から第1のマスクに荷電粒子線を照射して、デバイス製造用の露光を行う工程と、
    第2の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記第1の伝達関数の逆関数を用いて補正する工程と、
    複数のマークと、補正されたマスクパターンの荷電粒子線透過部とを有する第2の薄膜を含む第2のマスクを作製する工程とを有する
    マスク製造方法。
  21. 第2の薄膜を、第1面を上面として支持したときの前記マークの位置を示す第3の位置データを作成する工程と、
    前記第2の薄膜を、第2面を上面として支持したときの前記マークの位置を示す第4の位置データを作成する工程と、
    前記第3の位置データを前記第4の位置データに変換する第2の伝達関数を求める工程と、
    前記第2の薄膜を、第2面を上面として支持し、第2面側から第2のマスクに荷電粒子線を照射して、デバイス製造用の露光を行う工程と、
    第3の薄膜に形成される荷電粒子線透過部の形状であるマスクパターンを、前記第2の伝達関数の逆関数を用いて補正する工程と、
    複数のマークと、補正されたマスクパターンの荷電粒子線透過部とを有する第3の薄膜を含む第3のマスクを作製する工程とをさらに有する
    請求項20記載のマスク製造方法。
  22. 所定のパターンで荷電粒子線透過部が形成された薄膜を有し、
    前記薄膜の第1面と対向するように配置されるウェハーに、第2面側から荷電粒子線を露光するためのマスクであって、
    前記パターンは所定の伝達関数の逆関数を用いて補正されたパターンであり、前記伝達関数は第1の位置データを第2の位置データに変換する関数であり、前記第1の位置データは、複数のマークを有する伝達関数決定用薄膜を、第1面を上面として支持したときの前記マークの位置を示し、
    前記第2の位置データは前記伝達関数決定用薄膜を、第2面を上面として支持したときの前記マークの位置を示す
    マスク。
  23. マスクの第1面と対向するように配置されるウェハーに、前記マスクの第2面側から荷電粒子線を照射して、前記マスクに形成されたマスクパターンを前記ウェハーに露光する工程を含む半導体装置の製造方法であって、
    前記マスクパターンは所定の伝達関数の逆関数を用いて補正されたパターンであり、
    前記伝達関数は第1のデータを第2の位置データに変換する関数であり、
    前記第1の位置データは、複数のマークを有する伝達関数決定用薄膜を、第1面を上面として支持したときの前記マークの位置を示し、
    前記第2の位置データは前記伝達関数決定用薄膜を、第2面を上面として支持したときの前記マークの位置を示す
    半導体装置の製造方法。
  24. 前記伝達関数決定用薄膜は、前記マスクと異なるマスクパターンで形成された荷電粒子線透過部をさらに有し、
    前記伝達関数決定用薄膜に形成されたマスクパターンを前記ウェハーに露光する工程をさらに有する
    請求項23記載の半導体装置の製造方法。
JP2002092612A 2002-03-28 2002-03-28 マスクパターン補正方法、マスク製造方法、マスクおよび半導体装置の製造方法 Expired - Fee Related JP3675421B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002092612A JP3675421B2 (ja) 2002-03-28 2002-03-28 マスクパターン補正方法、マスク製造方法、マスクおよび半導体装置の製造方法
TW092106185A TWI252375B (en) 2002-03-28 2003-03-20 Mask pattern correction method, semiconductor device manufacturing method, mask manufacturing method, and mask
DE10392464T DE10392464T5 (de) 2002-03-28 2003-03-20 Maskenmuster-Korrekturverfahren, Herstellungsverfahren einer Halbleitervorrichtung, Maskenherstellungsverfahren und Maske
KR10-2004-7015423A KR20050004830A (ko) 2002-03-28 2003-03-20 마스크패턴 보정방법, 반도체장치의 제조방법,마스크제조방법 및 마스크
US10/509,230 US7109500B2 (en) 2002-03-28 2003-03-20 Mask pattern correction method, semiconductor device manufacturing method, mask manufacturing method and mask
PCT/JP2003/003455 WO2003083913A1 (fr) 2002-03-28 2003-03-20 Procede de correction d'un dessin de masque, procede de fabrication d'un dispositif semi-conducteur, procede de fabrication d'un masque et masque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092612A JP3675421B2 (ja) 2002-03-28 2002-03-28 マスクパターン補正方法、マスク製造方法、マスクおよび半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2003297716A JP2003297716A (ja) 2003-10-17
JP3675421B2 true JP3675421B2 (ja) 2005-07-27

Family

ID=28671715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092612A Expired - Fee Related JP3675421B2 (ja) 2002-03-28 2002-03-28 マスクパターン補正方法、マスク製造方法、マスクおよび半導体装置の製造方法

Country Status (6)

Country Link
US (1) US7109500B2 (ja)
JP (1) JP3675421B2 (ja)
KR (1) KR20050004830A (ja)
DE (1) DE10392464T5 (ja)
TW (1) TWI252375B (ja)
WO (1) WO2003083913A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791484B2 (ja) 2002-11-14 2006-06-28 ソニー株式会社 露光方法および半導体装置の製造方法
JP2005183577A (ja) * 2003-12-18 2005-07-07 Sony Corp 露光装置、露光方法、および半導体装置の製造方法
JP4531385B2 (ja) * 2003-12-22 2010-08-25 大日本印刷株式会社 マスク保持機構
JP4157486B2 (ja) 2004-03-24 2008-10-01 株式会社東芝 描画パターンデータの生成方法及びマスクの描画方法
JP4891804B2 (ja) * 2007-02-21 2012-03-07 日本電子株式会社 パターン描画方法
US7960708B2 (en) * 2007-03-13 2011-06-14 University Of Houston Device and method for manufacturing a particulate filter with regularly spaced micropores
DE102007033814B4 (de) * 2007-04-04 2014-08-28 Carl Zeiss Sms Gmbh Vorrichtung und Verfahren zum Messen der Position von Marken auf einer Maske
TWI397722B (zh) * 2008-12-31 2013-06-01 Yeukuang Hwu 光學元件的製造方法
JP5516482B2 (ja) * 2011-04-11 2014-06-11 東京エレクトロン株式会社 基板搬送方法、基板搬送装置、及び塗布現像装置
CN104025255B (zh) * 2011-12-30 2016-09-07 英特尔公司 用于工艺优化的相位调谐的技术
JP6559433B2 (ja) * 2015-02-17 2019-08-14 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
JP6553887B2 (ja) * 2015-02-19 2019-07-31 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、及び表示装置の製造方法
CN114563930B (zh) * 2022-03-14 2024-05-14 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种基片曝光方法、装置、电子设备及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203817A (ja) * 1995-01-31 1996-08-09 Nippon Telegr & Teleph Corp <Ntt> X線マスクの作製方法
JP3292909B2 (ja) * 1996-02-14 2002-06-17 日本電信電話株式会社 パタン位置歪の算出方法
US5831272A (en) * 1997-10-21 1998-11-03 Utsumi; Takao Low energy electron beam lithography
JPH11305416A (ja) * 1998-04-20 1999-11-05 Hitachi Ltd 半導体装置の製造方法及びフォトマスクの製造方法
JP2000150347A (ja) * 1998-11-11 2000-05-30 Hitachi Ltd 半導体集積回路装置の製造方法
JP2003500847A (ja) * 1999-05-20 2003-01-07 マイクロニック レーザー システムズ アクチボラゲット リソグラフィに於ける誤差低減方法
JP2001023880A (ja) 1999-07-07 2001-01-26 Sony Corp パターン形成方法、この方法を用いる電子ビーム描画装置およびその方法を用いて作製される光学部品
JP2001085317A (ja) * 1999-09-17 2001-03-30 Hitachi Ltd 半導体集積回路装置の製造方法
JP2001351854A (ja) 1999-10-19 2001-12-21 Nikon Corp パターン転写型荷電粒子線露光装置、パターン転写型荷電粒子線露光方法及び半導体素子の製造方法
US6768124B2 (en) * 1999-10-19 2004-07-27 Nikon Corporation Reticle-focus detector, and charged-particle-beam microlithography apparatus and methods comprising same
JP2001265012A (ja) * 2000-03-17 2001-09-28 Nippon Telegr & Teleph Corp <Ntt> 微細パタン形成方法
JP2001350250A (ja) * 2000-06-05 2001-12-21 Mitsubishi Electric Corp パターン歪み補正装置、パターン歪み補正方法、およびパターン歪み補正プログラムを記録した記録媒体
JP3674573B2 (ja) * 2001-06-08 2005-07-20 ソニー株式会社 マスクおよびその製造方法と半導体装置の製造方法
JP2003188079A (ja) * 2001-12-19 2003-07-04 Sony Corp マスクおよびその製造方法と半導体装置の製造方法
JP4046012B2 (ja) * 2003-05-29 2008-02-13 ソニー株式会社 マスク歪データの生成方法、露光方法および半導体装置の製造方法

Also Published As

Publication number Publication date
US7109500B2 (en) 2006-09-19
US20050124078A1 (en) 2005-06-09
JP2003297716A (ja) 2003-10-17
WO2003083913A1 (fr) 2003-10-09
TWI252375B (en) 2006-04-01
TW200403539A (en) 2004-03-01
DE10392464T5 (de) 2005-02-17
KR20050004830A (ko) 2005-01-12

Similar Documents

Publication Publication Date Title
JP5059909B2 (ja) マイクロリソグラフィにおけるアラインメントとオーバーレイを改善するシステムおよび方法
JP4046012B2 (ja) マスク歪データの生成方法、露光方法および半導体装置の製造方法
US7704645B2 (en) Method of generating writing pattern data of mask and method of writing mask
JP5634864B2 (ja) リソグラフィック・プロセスに於ける、プロセス制御方法およびプロセス制御装置
CN1751378B (zh) 最佳位置检测式的检测方法、对位方法、曝光方法、元器件制造方法及元器件
JP3675421B2 (ja) マスクパターン補正方法、マスク製造方法、マスクおよび半導体装置の製造方法
JP2002252157A (ja) マスク作製用部材およびその製造方法ならびにマスクおよびその製造方法ならびに露光方法ならびに半導体装置の製造方法
JP3791484B2 (ja) 露光方法および半導体装置の製造方法
JP2002319533A (ja) 転写露光方法、転写露光装置及びデバイス製造方法
JP3251362B2 (ja) 露光装置及び露光方法
JP2002250677A (ja) 波面収差測定方法、波面収差測定装置、露光装置、デバイス製造方法、及びデバイス
JP2001127144A (ja) 基板吸着保持方法、基板吸着保持装置および該基板吸着保持装置を用いた露光装置ならびにデバイス製造方法
JP3445102B2 (ja) 露光装置およびデバイス製造方法
JPH09218032A (ja) パタン位置歪の算出方法
JP2004235221A (ja) マスクの製造方法、パターンの形成方法、歪計測用フォトマスクおよび半導体装置の製造方法
JP2004165250A (ja) マスク検査方法、マスク検査装置、露光方法、及び露光装置
JP2005175167A (ja) 露光装置および露光方法、並びにプログラムおよびマスク精度保証方法
JP3278312B2 (ja) マスク、マスク支持方法、マスク支持機構、並びにこれを用いた露光装置やデバイス製造方法
JP2005181044A (ja) 座標測定精度較正方法、座標測定精度評価方法、プログラムおよびマスク
Omori et al. Feedforward correction of mask image placement for proximity electron lithography
Reu Comparative analysis of next generation lithography masks: PREVAIL and SCALPEL technologies
JPH11219897A (ja) 検出方法、走査露光方法、走査型露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

LAPS Cancellation because of no payment of annual fees