JP3674801B2 - Crystal quality evaluation method and apparatus - Google Patents

Crystal quality evaluation method and apparatus Download PDF

Info

Publication number
JP3674801B2
JP3674801B2 JP27749996A JP27749996A JP3674801B2 JP 3674801 B2 JP3674801 B2 JP 3674801B2 JP 27749996 A JP27749996 A JP 27749996A JP 27749996 A JP27749996 A JP 27749996A JP 3674801 B2 JP3674801 B2 JP 3674801B2
Authority
JP
Japan
Prior art keywords
crystal
image
contour
camera
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27749996A
Other languages
Japanese (ja)
Other versions
JPH10104166A (en
Inventor
義浩 岡
茂 加藤
洋作 佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27749996A priority Critical patent/JP3674801B2/en
Publication of JPH10104166A publication Critical patent/JPH10104166A/en
Application granted granted Critical
Publication of JP3674801B2 publication Critical patent/JP3674801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結晶体の非接触による評価を行う方法と装置に関するものである。特に、ダイヤモンドの形状に関する評価に最適な方法と装置に関する。
【0002】
【従来の技術】
ダイヤモンドの品質評価に関する技術として、特開昭60-187744 号公報に開示されたものがある。これは、ダイヤモンドにおける赤外線の吸収係数から破壊強度を求めている。すなわち、検査対象のダイヤモンドに赤外光を照射し、ダイヤモンド表面における特定位置の温度を測定する。同様の温度測定を赤外線の吸収係数が既知のダイヤモンドにも行い、両測定結果を比較することで検査対象の吸収係数を求め、さらに破壊強度を計算するものである。
【0003】
【発明が解決しようとする課題】
しかし、この技術では結晶体の破壊強度が求められるだけで、結晶体の大きさや形状、対称性といった結晶体の外観上の品質を評価することができない。
従って、本発明の主目的は、結晶体の機械的特性の他、結晶体の大きさ、形状、結晶の欠陥種別を判断できる結晶体の評価方法と装置を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、結晶体の破壊強度が結晶モード(結晶形状)と相関関係があり、さらに、結晶モードが結晶の外観における所定の特徴量と相関関係があることに基づいてなされた。すなわち、結晶体の外観における所定の特徴量を画像処理によって求め、そこから結晶モードを求めることで結晶体の破壊強度を評価することを特徴とする。
【0005】
本発明方法は次の構成を具える。
基板上に載置された結晶体をカメラで撮像し、結晶体の輪郭像と、カメラの光軸と実質的に平行な垂線をもつ結晶面の像とを得て、これら輪郭像と結晶面像に基づき結晶モードを計測する。
【0006】
結晶体の輪郭像を得るには、結晶体をカメラに対して投影する透過照明を用いることが望ましい。すなわち、カメラと透過照明との中間に結晶体を配置する。
結晶モードは結晶体の載置方向と結晶体の所定の特徴量とを基に求める。この載置方向とは、結晶体がどの結晶面を上(または下)にして基板上に載置されているかということである。載置方向の検出には、まず結晶体の輪郭像の各辺のなす角度を求める。そして、この角度を結晶体の輪郭が構成する各辺のなす理論上の角度と照合することで結晶体の載置方向を特定する。
また、この角度から結晶体の欠陥を判断することもできる。求められた角度が理論上の角度と乖離する場合、結晶体を欠陥品と判断する。判断できる欠陥種別には双晶、連晶、骸晶が挙げられる。
【0007】
結晶体の所定の特徴量には、輪郭像の面積と前記結晶面像の面積との比率、および輪郭像の周囲長と結晶面像の周囲長との比率とが挙げられる。結晶体の載置方向がわかれば、これらの比率が結晶モードと相関関係にあることが分かっているため、画像処理により各比率を求めれば結晶モードを求めることができる。結晶モードを求めるには、上記2つの比率のいずれか一方を求めればよい。
【0008】
上記2つの比率を求めた場合、結晶体の欠陥を検知することもできる。すなわち、いずれの比率から結晶モードを求めても結晶体に欠陥がなければ得られる結晶モードは理論上一致するはずである。従って、双方の結晶モードに一定値以上の乖離がある場合には結晶体を欠陥品と判断することができる。ここで判断される欠陥の種別としては結晶の欠けが挙げられる。
【0009】
実質的にカメラの光軸を垂線とする結晶面の像を得る手段として、カメラと同軸の落射照明を用いることが挙げられる。特に、偏光フィルタも用いることが好適である。すなわち、カメラと同軸の落射照明を用いて結晶体の平面像を撮像する。このとき、フィルタの偏光特性を用いた平面像と用いない平面像の2種類を撮像し、得られた両画像よりカメラの光軸と実質的に平行な垂線をもつ結晶面の像を得る。
偏光特性を用いることなく撮像した場合に、実質的にカメラの光軸を垂線とする結晶面の像が得られなければ結晶体を欠陥品と判断することができる。ここでの欠陥種別としては、双晶や骸晶といった結晶学上の不良が挙げられる。
【0010】
また、結晶体の輪郭像から結晶体の大きさや対称性も計測することが好適である。特に、複数の結晶体を品質評価し、得られた評価結果(結晶モード、結晶欠陥の有無、欠陥種別、結晶体の大きさ・対称性)を統計処理することが望ましい。これにより、統計処理結果を結晶体の製造条件に反映することができる。
【0011】
さらに、上記方法を実施するのに最適な本発明装置は、結晶体を撮像するカメラと、結晶体をカメラに対して投影する透過照明と、撮像された結晶体の投影像をデジタル画像に変換出力するデジタル化手段と、デジタル画像データをもとに結晶体の輪郭を抽出する輪郭像抽出手段と、抽出された輪郭データを基に所定の特徴量を抽出する輪郭特徴量抽出手段と、輪郭特徴量より結晶体の載置方向を求める方向判定手段と、カメラと同軸の落射照明と、カメラと結晶体との間および落射照明と結晶体との間に設けられた偏光フィルタと、落射照明を用いて前記カメラで撮像した結晶体の平面像と、さらに偏光フィルタを用いて撮像された結晶体の平面像とからカメラの光軸と実質的に平行な垂線をもつ結晶面の像を得る画像間演算手段と、得られた結晶面の像をデジタル画像に変換出力する手段と、結晶面の輪郭データを抽出する結晶面抽出手段と、抽出された結晶面の輪郭データを基に所定の特徴量を抽出する結晶面特徴量抽出手段と、輪郭特徴量抽出手段で求められた結晶の輪郭特徴量と結晶面特徴量抽出手段で求めた結晶面特徴量との比率を求める比率演算手段と、この比率および方向判定手段で求められた結晶の載置方向とを予め登録された理論的相関関係と照合して結晶モードを求めるモード判定手段とを具える。
【0012】
【発明の実施の形態】
以下、本発明を具体的に説明する。図1は本発明装置の概略を示す構成図である。
本発明装置は、結晶体を撮像するカメラ1、透過照明2、落射照明3、画像処理装置4、およびモニタ5を主な構成とする。
【0013】
カメラ1(例えばCCDカメラ)は下方を撮像するように配置され、前方(下方)に鏡筒6が一体化されている。一方、透過照明はこのカメラ1に対向して上向きに配置され、カメラ1と透過照明2の中間に結晶体Cを載置する基板7が配置されている。透過照明2の光は基板7を透過し、カメラ1に対して結晶体Cを投影する。結晶体Cの像は鏡筒6で拡大されてカメラ1に取り込まれる。
【0014】
鏡筒6の下方部には鏡筒6から直角に枝分かれした光路8を具える。光路8は開口端に落射照明3を具え、鏡筒6と光路8の接続部には落射照明3の光を下方に反射するミラー(図示せず)が内蔵されている。
【0015】
また、鏡筒6とカメラ1の接続部および光路8の中間部にはそれぞれ偏光フィルタ9,10が設けられている。フィルタ9は結晶体Cからの反射光の特定成分を抽出するために用いられ、フィルタ10は落射照明3の特定成分の光のみを透過させることに用いられる。
【0016】
さらに、このカメラ1には画像処理装置4が接続されている。これは、カメラ1を介して得られた画像を処理し、結晶モード、結晶欠陥の有無、欠陥種別などの判定を行う。そして、取り込まれた画像や判定結果は画像処理装置4に接続されたモニタ5に表示される。
【0017】
画像処理装置5による結晶体Cの品質評価手順を説明する。ここでは結晶体Cをダイヤモンドとした場合を例とする。
最初にダイヤモンドの載置方向を求め、さらにダイヤモンド輪郭像の面積と周囲長を求める。
ダイヤモンドの外形の一例を図2(A)に示す。このダイヤモンドは立方体の各角部を切り欠いた形状で、ほぼ三角形の面と八角形の面とで構成されている。そのため、このダイヤモンドを平面上に載置した場合、三角面を上(下)にするか、八角面を上(下)にするかの2通りの載置方向がある。この載置方向を特定するには、まず基板上に載せたダイヤモンドを透過照明を用いて撮像する。このとき、フィルタの偏光特性を用いる必要はない。得られた投影像は画像処理装置に取り込まれる。
【0018】
画像処理装置は、デジタル化手段、メモリ、輪郭抽出手段、輪郭特徴量抽出手段、および方向判定手段とを含む。
デジタル化手段は取り込まれた画像を画素ごとのデジタルデータに変換出力する。ここで、二値化処理を行って画像を二値化画像とし、この二値化画像データをメモリに記憶する。次に、輪郭抽出手段により二値化画像データから投影像の輪郭点を抽出する。さらに、輪郭特徴量抽出手段により、輪郭像の各辺のなす角度と輪郭像の面積・周囲長を抽出する。例えば、抽出された輪郭点から直線成分を抽出するためにハフ変換を用い、投影像の輪郭を構成する直線群を抽出する。抽出した直線群からそれらの交点を求め、多角形の輪郭像に近似する。この近似処理により、各直線群のなす角度を求める。同時に、輪郭像の面積と周囲長も求めてメモリに記憶させる。そして、方向判定手段により前記角度を幾何学的理論値と照合して載置方向を特定する。すなわち、図2(A)の(100) 面15を上面とした載置方向の場合、図2(B)に示す輪郭像が得られ、(111) 面16を上面とした場合、図2(C)に示す輪郭像が得られる。前者の場合、輪郭を構成する直線がなす理論値は90°であり、後者の場合は120°となる。従って、予め理論値をメモリに登録しておき、輪郭像を基に演算された角度がメモリから出力された理論値のいずれかに適合すれば、載置方向を特定することができる。いずれの理論値とも適合しなければ、結晶に欠陥があるものと判断する。
【0019】
次に、ダイヤモンドの上面の画像からその面積と周囲長を求める。
基板7はその垂線がカメラの光軸と平行になるよう配置されている。そのため、結晶欠陥のないダイヤモンドの上面はカメラ1の光軸と実質的に平行な垂線をもつ結晶面となる。すなわち、図2(B)では(100) 面15が、同(C)では(111) 面16が上面となる。
【0020】
まず、落射照明3を用いて結晶体の平面像を撮像する。このとき、フィルタ9,10 の偏光特性を用いて撮像した平面像と、そうでない平面像の双方を撮像する。例えば、結晶の載置方向が図2(A)の八角面を上面としている場合、偏光特性を用いることなく撮像して、同図(B)のような平面像を得る。このとき、上面像が得られなければ結晶欠陥と判断する。次に、偏光フィルタ9,10 を操作して、上面以外の面(図2Bの平面像における4隅の三角面)のみの平面像を得る。各平面像のデータをメモリに記憶しておき、画像間演算手段により前者の平面像から後者の平面像を差し引くことで上面のみの画像を抽出する。
【0021】
抽出された結晶面(上面)の画像をデジタル化手段を介して二値化処理する。得られた二値化画像から前記輪郭像の場合と同様に結晶面の面積と周囲長を求める。すなわち、画像処理装置を構成する結晶面輪郭抽出手段により結晶面の輪郭点を抽出する。そして、この輪郭点を基に結晶面特徴量抽出手段により結晶面を多角形に近似し、その面積と周囲長を演算する。
【0022】
以上の手順により得られた輪郭像の面積・周囲長と、結晶面像の面積・周囲長の各比率を演算する。すなわち、「結晶面像の面積/輪郭像の面積」と「結晶面像の周囲長/輪郭像の周囲長」を比率演算手段により求める。以下、前者の比率を面積比、後者の比率を周囲長比という。
【0023】
ところで、これらの比率と結晶モードの間には相関関係がある。図3に理論的相関関係を示す。同図において、「(100) 面積比」は結晶が(100) 面を上面とした載置方向における面積比と結晶モードの関係を示し、同様に、「(111) 周囲長比」は結晶が(111) 面を上面とした載置方向における周囲長比と結晶モードの関係を示す。従って、この理論的相関関係を基準値メモリに登録しておけばよい。そして、既に求めた結晶体の載置方向と面積比または周囲長比とを結晶モード判定手段により基準値メモリから出力した理論的相関関係と照合することで結晶モードを求めることができる。例えば、結晶体が(100) 面を上面とした載置方向で、面積比を基準に結晶モードを求めるには、演算により求められた面積比が、理論的相関関係の「(100) 面積比」の曲線上のどこに相当するかを演算して結晶モードを求める。
【0024】
ここで、面積比を基準に求めた結晶モードと、周囲長比を基準に求めた結晶モードとの間に一定値以上の乖離があった場合、結晶体を欠陥品と判断する。結晶モードが求められれば、既知の結晶モードと破壊強度との相関関係から検査対象のダイヤモンドの破壊強度を判断することができる。
【0025】
この評価手順を実行する際、結晶体の輪郭像およびその面積が求められているため、これをもとにダイヤモンドの大きさや対称性も判断することができる。対称性は、例えば輪郭像を楕円近似して主軸・副軸の比から求める。これにより、ダイヤモンドの選別を効果的に行うことができる。さらに、このような品質評価を多数のダイヤモンドについて行い、その破壊強度、大きさ、対称性、欠陥の有無、欠陥種別に関するヒストグラムを得て、ダイヤモンド製造条件との相関関係を調べることで製造条件の最適化を図ることができる。
【0026】
以上の説明はダイヤモンドを例として行ったが、これ以外にもCBNなど載置方向が限られた結晶体の品質評価に本発明を利用することが好適である。
【0027】
【発明の効果】
以上説明したように、本発明方法によれば、画像処理により結晶体の載置方向を特定し、結晶モードを求めることができるため、結晶体の破砕性を検出することができる。併せて、結晶体の大きさ・形状、結晶欠陥の有無、欠陥種別も検知することができる。特に、多数の結晶体について品質評価を行い、その評価結果を統計処理することで製造条件の最適化を図ることができる。
【図面の簡単な説明】
【図1】本発明装置の概略を示す構成図。
【図2】(A)は結晶体の斜視図、(B)は(100) 面を上面とした結晶の平面図、(C)は(111) 面を上面とした結晶の平面図。
【図3】面積比および周囲長比と結晶モードとの理論的相関関係を示すグラフ。
【符号の説明】
1 カメラ 2 透過照明 3 落射照明 4 画像処理装置 5 モニタ
6 鏡筒 7 基板 8 光路 9,10 偏光フィルタ 15 (100) 面
16 (111) 面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for performing non-contact evaluation of a crystal. In particular, the present invention relates to a method and apparatus optimal for evaluation relating to the shape of diamond.
[0002]
[Prior art]
A technique related to diamond quality evaluation is disclosed in Japanese Patent Laid-Open No. 60-187744. This determines the breaking strength from the infrared absorption coefficient of diamond. That is, the diamond to be inspected is irradiated with infrared light, and the temperature at a specific position on the diamond surface is measured. The same temperature measurement is performed on diamond whose absorption coefficient of infrared rays is known, and by comparing the two measurement results, the absorption coefficient of the object to be inspected is obtained, and the fracture strength is calculated.
[0003]
[Problems to be solved by the invention]
However, this technique only requires the fracture strength of the crystal, and cannot evaluate the quality of the crystal such as the size, shape, and symmetry of the crystal.
Accordingly, a main object of the present invention is to provide a crystal evaluation method and apparatus capable of determining the crystal size, shape, and crystal defect type in addition to the crystal mechanical properties.
[0004]
[Means for Solving the Problems]
The present invention has been made based on the fact that the fracture strength of the crystal body has a correlation with the crystal mode (crystal shape), and further, the crystal mode has a correlation with a predetermined feature amount in the appearance of the crystal. That is, it is characterized in that a predetermined feature amount in the appearance of the crystal body is obtained by image processing, and a crystal mode is obtained therefrom to evaluate the fracture strength of the crystal body.
[0005]
The method of the present invention comprises the following arrangement.
The crystal placed on the substrate is imaged with a camera, and a contour image of the crystal and an image of a crystal plane having a perpendicular line substantially parallel to the optical axis of the camera are obtained. The crystal mode is measured based on the image.
[0006]
In order to obtain an outline image of a crystal body, it is desirable to use transmitted illumination that projects the crystal body onto a camera. That is, a crystal body is disposed between the camera and the transmitted illumination.
The crystal mode is obtained based on the mounting direction of the crystal body and a predetermined feature amount of the crystal body. This mounting direction means which crystal plane the crystal is placed on (or down) on the substrate. To detect the mounting direction, first, the angle formed by each side of the contour image of the crystal is obtained. Then, the mounting direction of the crystal is specified by comparing this angle with a theoretical angle formed by each side formed by the contour of the crystal.
Moreover, the defect of a crystal can also be judged from this angle. When the obtained angle deviates from the theoretical angle, the crystal is determined to be defective. Defect types that can be judged include twins, intergrowth, and body crystals.
[0007]
The predetermined feature amount of the crystal includes a ratio between the area of the contour image and the area of the crystal plane image, and a ratio between the perimeter of the contour image and the perimeter of the crystal plane image. If the placement direction of the crystal is known, it is known that these ratios have a correlation with the crystal mode. Therefore, the crystal mode can be obtained by obtaining each ratio by image processing. In order to obtain the crystal mode, one of the above two ratios may be obtained.
[0008]
When the above two ratios are obtained, a crystal defect can also be detected. That is, no matter what ratio the crystal mode is obtained, the crystal modes obtained if the crystal body has no defect should theoretically match. Therefore, when there is a divergence of a certain value or more between both crystal modes, the crystal can be determined as a defective product. The type of defect determined here includes crystal chipping.
[0009]
As means for obtaining an image of a crystal plane substantially having the optical axis of the camera as a perpendicular line, it is possible to use epi-illumination coaxial with the camera. It is particularly preferable to use a polarizing filter. That is, a planar image of the crystal body is captured using epi-illumination coaxial with the camera. At this time, two types of images, a planar image using the polarization characteristics of the filter and a planar image not using it, are imaged, and an image of the crystal plane having a perpendicular line substantially parallel to the optical axis of the camera is obtained from both the obtained images.
When an image is taken without using polarization characteristics, a crystal can be determined as a defective product if an image of the crystal plane with the optical axis of the camera as a perpendicular is not obtained. Defect types here include crystallographic defects such as twins and body crystals.
[0010]
It is also preferable to measure the size and symmetry of the crystal from the contour image of the crystal. In particular, it is desirable to evaluate the quality of a plurality of crystal bodies and statistically process the obtained evaluation results (crystal mode, presence / absence of crystal defects, defect type, crystal size / symmetry). Thereby, a statistical processing result can be reflected on the manufacturing conditions of a crystal.
[0011]
Furthermore, the apparatus of the present invention that is most suitable for carrying out the above method is a camera for imaging a crystal body, transmitted illumination for projecting the crystal body to the camera, and converting the projected image of the crystal body to a digital image. Digitizing means for outputting; contour image extracting means for extracting the contour of the crystal based on the digital image data; contour feature quantity extracting means for extracting a predetermined feature quantity based on the extracted outline data; Direction determining means for determining the mounting direction of the crystal from the feature quantity, epi-illumination coaxial with the camera, a polarizing filter provided between the camera and the crystal, and between the epi-illumination and the crystal, and epi-illumination A crystal plane image having a perpendicular line substantially parallel to the optical axis of the camera is obtained from the plane image of the crystal body imaged by the camera using the above and the plane image of the crystal body imaged using the polarizing filter. Inter-image calculation means and obtained Means for converting the image of the crystal plane into a digital image, outputting the crystal plane contour data, and extracting the predetermined feature amount based on the extracted crystal plane contour data A quantity extracting means, a ratio calculating means for obtaining a ratio between the crystal contour feature quantity obtained by the contour feature quantity extracting means and the crystal face feature quantity obtained by the crystal face feature quantity extracting means, and the ratio and direction judging means Mode determining means for obtaining a crystal mode by comparing the obtained crystal mounting direction with a theoretical correlation registered in advance.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described. FIG. 1 is a block diagram showing an outline of the apparatus of the present invention.
The apparatus of the present invention mainly includes a camera 1 for imaging a crystal, a transmitted illumination 2, an epi-illumination 3, an image processing device 4, and a monitor 5.
[0013]
The camera 1 (for example, a CCD camera) is arranged so as to capture the lower part, and the lens barrel 6 is integrated in the front (lower part). On the other hand, the transmitted illumination is disposed upward facing the camera 1, and the substrate 7 on which the crystal body C is placed is disposed between the camera 1 and the transmitted illumination 2. The light of the transmitted illumination 2 is transmitted through the substrate 7 and projects the crystal C to the camera 1. An image of the crystal C is magnified by the lens barrel 6 and taken into the camera 1.
[0014]
A lower portion of the lens barrel 6 includes an optical path 8 branched from the lens barrel 6 at a right angle. The optical path 8 has an epi-illumination 3 at the opening end, and a mirror (not shown) for reflecting the light of the epi-illumination 3 downward is built in the connecting portion between the lens barrel 6 and the optical path 8.
[0015]
In addition, polarizing filters 9 and 10 are provided at a connecting portion of the lens barrel 6 and the camera 1 and an intermediate portion of the optical path 8, respectively. The filter 9 is used to extract a specific component of the reflected light from the crystal body C, and the filter 10 is used to transmit only the specific component light of the epi-illumination 3.
[0016]
Further, an image processing device 4 is connected to the camera 1. In this process, an image obtained through the camera 1 is processed, and the crystal mode, the presence / absence of a crystal defect, the type of defect, and the like are determined. The captured image and the determination result are displayed on a monitor 5 connected to the image processing device 4.
[0017]
The quality evaluation procedure of the crystal C by the image processing device 5 will be described. Here, a case where the crystal C is diamond is taken as an example.
First, the diamond placement direction is obtained, and then the area and perimeter of the diamond contour image are obtained.
An example of the outer shape of the diamond is shown in FIG. This diamond has a shape in which each corner of the cube is cut out, and is composed of a substantially triangular surface and an octagonal surface. For this reason, when this diamond is placed on a flat surface, there are two placement directions: the triangular surface is up (down) or the octagonal surface is up (down). In order to specify the mounting direction, first, the diamond placed on the substrate is imaged using transmitted illumination. At this time, it is not necessary to use the polarization characteristics of the filter. The obtained projection image is taken into the image processing apparatus.
[0018]
The image processing apparatus includes digitizing means, memory, contour extracting means, contour feature amount extracting means, and direction determining means.
The digitizing means converts the captured image into digital data for each pixel and outputs it. Here, binarization processing is performed to convert the image into a binarized image, and the binarized image data is stored in the memory. Next, contour points of the projected image are extracted from the binarized image data by the contour extracting means. Further, the contour feature quantity extraction means extracts the angle formed by each side of the contour image and the area and perimeter of the contour image. For example, the Hough transform is used to extract a straight line component from the extracted contour points, and a straight line group constituting the contour of the projected image is extracted. The intersections are obtained from the extracted straight line group and approximated to a polygonal contour image. By this approximation process, the angle formed by each straight line group is obtained. At the same time, the area and perimeter of the contour image are also obtained and stored in the memory. Then, the mounting direction is specified by comparing the angle with a geometrical theoretical value by the direction determining means. 2A, the contour image shown in FIG. 2B is obtained, and when the (111) surface 16 is the top surface, FIG. The contour image shown in C) is obtained. In the former case, the theoretical value formed by the straight lines constituting the contour is 90 °, and in the latter case, it is 120 °. Therefore, if the theoretical value is registered in the memory in advance and the angle calculated based on the contour image matches one of the theoretical values output from the memory, the mounting direction can be specified. If none of the theoretical values match, it is determined that the crystal is defective.
[0019]
Next, the area and perimeter are obtained from the image of the upper surface of the diamond.
The substrate 7 is arranged so that its perpendicular is parallel to the optical axis of the camera. Therefore, the upper surface of diamond without crystal defects is a crystal plane having a perpendicular line substantially parallel to the optical axis of the camera 1. That is, in FIG. 2B, the (100) surface 15 is the upper surface, and in FIG. 2C, the (111) surface 16 is the upper surface.
[0020]
First, a planar image of the crystal body is captured using the epi-illumination 3. At this time, both a planar image captured using the polarization characteristics of the filters 9 and 10 and a planar image other than that are captured. For example, when the crystal mounting direction has the octagonal plane in FIG. 2A as the upper surface, imaging is performed without using polarization characteristics, and a planar image as shown in FIG. 2B is obtained. At this time, if a top image is not obtained, it is determined as a crystal defect. Next, the polarizing filters 9 and 10 are operated to obtain a planar image of only the surface other than the upper surface (triangular surfaces at the four corners in the planar image of FIG. 2B). Data of each plane image is stored in a memory, and an image of only the upper surface is extracted by subtracting the latter plane image from the former plane image by the inter-image calculation means.
[0021]
The extracted image of the crystal plane (upper surface) is binarized through a digitizing means. From the obtained binarized image, the area of the crystal plane and the perimeter are obtained as in the case of the contour image. That is, the crystal surface contour point is extracted by the crystal surface contour extracting means constituting the image processing apparatus. Then, based on this contour point, the crystal plane is approximated to a polygon by the crystal plane feature quantity extraction means, and its area and perimeter are calculated.
[0022]
Each ratio of the area / perimeter of the contour image obtained by the above procedure and the area / perimeter of the crystal plane image is calculated. That is, “area of crystal plane image / area of contour image” and “perimeter of crystal plane image / perimeter of contour image” are obtained by the ratio calculation means. Hereinafter, the former ratio is referred to as an area ratio, and the latter ratio is referred to as a perimeter length ratio.
[0023]
By the way, there is a correlation between these ratios and crystal modes. FIG. 3 shows the theoretical correlation. In the figure, “(100) area ratio” shows the relationship between the area ratio in the mounting direction with the crystal as the top surface and the crystal mode, and similarly, “(111) perimeter length ratio” shows the relationship between the crystal The relationship between the perimeter length ratio and the crystal mode in the mounting direction with the (111) plane as the upper surface is shown. Therefore, this theoretical correlation may be registered in the reference value memory. Then, the crystal mode can be obtained by collating the placement direction and the area ratio or the perimeter length ratio of the already obtained crystal with the theoretical correlation output from the reference value memory by the crystal mode judging means. For example, in order to obtain the crystal mode based on the area ratio in the mounting direction with the (100) plane as the top surface, the area ratio obtained by the calculation is calculated from the theoretical correlation `` (100) area ratio ''. The crystal mode is obtained by calculating where on the curve.
[0024]
Here, if there is a deviation of a certain value or more between the crystal mode obtained on the basis of the area ratio and the crystal mode obtained on the basis of the perimeter ratio, the crystal is determined to be a defective product. If the crystal mode is obtained, the fracture strength of the diamond to be inspected can be determined from the correlation between the known crystal mode and the fracture strength.
[0025]
When this evaluation procedure is executed, the contour image of the crystal body and its area are obtained, so that the size and symmetry of the diamond can also be determined based on this. The symmetry is obtained from, for example, the ratio of the principal axis and the minor axis by approximating the contour image to an ellipse. Thereby, diamond can be effectively selected. Furthermore, such quality evaluation is performed on a large number of diamonds, and the histogram of the fracture strength, size, symmetry, presence / absence of defects, and defect type is obtained, and the correlation with the diamond production conditions is examined to determine the manufacturing conditions. Optimization can be achieved.
[0026]
Although the above description has been made taking diamond as an example, it is preferable to use the present invention for quality evaluation of a crystal body having a limited mounting direction such as CBN.
[0027]
【The invention's effect】
As described above, according to the method of the present invention, the crystal orientation can be determined by image processing and the crystal mode can be obtained, so that the friability of the crystal can be detected. In addition, the size / shape of the crystal, the presence / absence of crystal defects, and the defect type can also be detected. In particular, it is possible to optimize the manufacturing conditions by performing quality evaluation on a large number of crystals and statistically processing the evaluation results.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of a device of the present invention.
2A is a perspective view of a crystal body, FIG. 2B is a plan view of a crystal with a (100) plane as an upper surface, and FIG. 2C is a plan view of a crystal with a (111) plane as an upper surface.
FIG. 3 is a graph showing a theoretical correlation between an area ratio, a perimeter length ratio, and a crystal mode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Camera 2 Transmitted illumination 3 Epi-illumination 4 Image processing apparatus 5 Monitor 6 Lens tube 7 Substrate 8 Optical path 9,10 Polarizing filter 15 (100) surface
16 (111) faces

Claims (5)

基板上に載置された結晶体をカメラで撮像し、
結晶体の輪郭像と、カメラの光軸と実質的に平行な垂線をもつ結晶面の像とを得て、
前記の輪郭像または結晶面像の各辺のなす角度を求め、この角度から結晶体の載置方向を特定し、
輪郭像の面積と結晶面像の面積との比率を特徴量として抽出し、
さらに輪郭像の周囲長と結晶面像の周囲長との比率を特徴量として抽出して、
結晶体の載置方向と前記各特徴量とからそれぞれの結晶モードを求め、
双方の結晶モードに一定値以上の乖離がある場合に結晶体を欠陥品と判断することを特徴とする結晶体の品質評価方法。
The crystal body placed on the substrate is imaged with a camera,
Obtaining a contour image of the crystal and an image of the crystal plane having a perpendicular substantially parallel to the optical axis of the camera,
Obtain the angle formed by each side of the contour image or crystal surface image, specify the mounting direction of the crystal body from this angle,
The ratio between the area of the contour image and the area of the crystal plane image is extracted as a feature amount,
Furthermore, the ratio between the perimeter of the contour image and the perimeter of the crystal plane image is extracted as a feature amount,
Each crystal mode is determined from the mounting direction of the crystal body and each feature amount,
A method for evaluating the quality of a crystal, characterized in that the crystal is determined to be a defective product when there is a deviation of a certain value or more between both crystal modes .
基板上に載置された結晶体をカメラで撮像して結晶体の輪郭像を得て、Taking an image of the crystal placed on the substrate with a camera to obtain a contour image of the crystal,
カメラと同軸の落射照明を用いて前記結晶体の平面像を撮像し、さらに偏光フィルタを用いて同様の撮像を行って、得られた両平面像よりカメラの光軸と実質的に平行な垂線をもつ結晶面の像を得て、  A planar image of the crystal body is captured using epi-illumination coaxial with the camera, and a similar image is captured using a polarizing filter. A perpendicular line that is substantially parallel to the optical axis of the camera is obtained from the two planar images obtained. Obtain an image of the crystal plane with
これら輪郭像と結晶面像に基づき結晶モードを計測することを特徴とする結晶体の品質評価方法。  A method for evaluating the quality of a crystal, comprising measuring a crystal mode based on the contour image and the crystal plane image.
基板上に載置された結晶体をカメラで撮像し、The crystal body placed on the substrate is imaged with a camera,
結晶体の輪郭像と、カメラの光軸と実質的に平行な垂線をもつ結晶面の像とを得て、  Obtaining a contour image of the crystal and an image of the crystal plane having a perpendicular substantially parallel to the optical axis of the camera,
輪郭像から結晶体の対称性を計測し、  Measure the symmetry of the crystal from the contour image,
これら輪郭像と結晶面像に基づき結晶モードを計測することを特徴とする結晶体の品質評価方法。  A method for evaluating the quality of a crystal, comprising measuring a crystal mode based on the contour image and the crystal plane image.
結晶体を撮像するカメラと、
結晶体をカメラに対して投影する透過照明と、
撮像された結晶体の投影像をデジタル画像に変換出力するデジタル化手段と、
デジタル画像データをもとに結晶体の輪郭を抽出する輪郭像抽出手段と、
抽出された輪郭データを基に輪郭を構成する各辺のなす角度と所定の特徴量とを抽出する輪郭特徴量抽出手段と、
各辺のなす角度より結晶体の載置方向を求める方向判定手段と、
カメラと同軸の落射照明と、
カメラと結晶体との間および落射照明と結晶体との間に設けられた偏光フィルタと、
落射照明を用いて前記カメラで撮像した結晶体の平面像と、さらに偏光フィルタを用いて撮像された結晶体の平面像とからカメラの光軸と実質的に平行な垂線をもつ結晶面の像を得る画像間演算手段と、
得られた結晶面の像をデジタル画像に変換出力するデジタル化手段と、
結晶面の輪郭データを抽出する結晶面抽出手段と、
抽出された結晶面の輪郭データを基に所定の特徴量を抽出する結晶面特徴量抽出手段と、
輪郭特徴量抽出手段で求められた結晶体の輪郭特徴量と結晶面特徴量抽出手段で求めた結晶面特徴量との比率を求める比率演算手段と、
この比率および方向判定手段で求められた結晶体の載置方向とを予め登録された理論的相関関係と照合して結晶モードを求めるモード判定手段とを具えることを特徴とする結晶体の品質評価装置。
A camera for imaging a crystal;
Transmitted illumination for projecting the crystal to the camera,
Digitizing means for converting and outputting the projected image of the crystallized body into a digital image;
Contour image extracting means for extracting the contour of the crystal based on the digital image data;
Contour feature amount extraction means for extracting an angle formed by each side constituting the contour and a predetermined feature amount based on the extracted contour data;
Direction determining means for determining the mounting direction of the crystal body from the angle formed by each side;
Epi-illumination coaxial with the camera,
A polarizing filter provided between the camera and the crystal body and between the epi-illumination and the crystal body;
An image of the crystal plane having a perpendicular line substantially parallel to the optical axis of the camera from the plane image of the crystal body imaged by the camera using epi-illumination and the plane image of the crystal body imaged using the polarizing filter. An inter-image calculation means for obtaining
Digitizing means for converting and outputting the obtained crystal plane image into a digital image;
A crystal plane extracting means for extracting crystal plane contour data;
A crystal plane feature quantity extraction means for extracting a predetermined feature quantity based on the extracted crystal plane contour data;
A ratio calculating means for obtaining a ratio between the contour feature quantity of the crystal body obtained by the contour feature quantity extracting means and the crystal face feature quantity obtained by the crystal face feature extracting means;
Crystal quality characterized by comprising mode judgment means for obtaining a crystal mode by collating the ratio and the mounting direction of the crystal obtained by the direction judgment means with a pre-registered theoretical correlation Evaluation device.
輪郭特徴量を、輪郭像の面積、輪郭の周囲長の少なくとも一方とし、
結晶面特徴量を、結晶面の面積、結晶面の周囲長の少なくとも一方としたことを特徴とする請求項4記載の結晶体の品質評価装置。
The contour feature amount is at least one of the area of the contour image and the perimeter of the contour,
5. The crystal quality evaluation apparatus according to claim 4 , wherein the crystal face characteristic amount is at least one of an area of the crystal face and a peripheral length of the crystal face.
JP27749996A 1996-09-27 1996-09-27 Crystal quality evaluation method and apparatus Expired - Lifetime JP3674801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27749996A JP3674801B2 (en) 1996-09-27 1996-09-27 Crystal quality evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27749996A JP3674801B2 (en) 1996-09-27 1996-09-27 Crystal quality evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JPH10104166A JPH10104166A (en) 1998-04-24
JP3674801B2 true JP3674801B2 (en) 2005-07-27

Family

ID=17584457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27749996A Expired - Lifetime JP3674801B2 (en) 1996-09-27 1996-09-27 Crystal quality evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP3674801B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551399B (en) * 2014-01-20 2016-10-01 中國砂輪企業股份有限公司 Chemical mechanical polishing conditioner with high quality abrasive particles
JP2016004483A (en) * 2014-06-18 2016-01-12 株式会社リコー Image processor, inspection system, image processing method and image processing program
CN111602047B (en) * 2018-01-15 2023-08-18 株式会社斯库林集团 Tablet inspection method and tablet inspection device
JP7075218B2 (en) * 2018-01-15 2022-05-25 株式会社Screenホールディングス Tablet inspection method and tablet inspection equipment

Also Published As

Publication number Publication date
JPH10104166A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP2847458B2 (en) Defect evaluation device
US4876457A (en) Method and apparatus for differentiating a planar textured surface from a surrounding background
EP1777489B1 (en) Method and apparatus for inspecting an object
JP3709426B2 (en) Surface defect detection method and surface defect detection apparatus
JP2001110863A (en) Method for inspecting micro-scratch and device therefor using the same
JPH09229819A (en) Method and instrument for measuring lens parameter using optical section
US7283224B1 (en) Face lighting for edge location in catalytic converter inspection
JPH04107946A (en) Automatic visual inspector
JP3674801B2 (en) Crystal quality evaluation method and apparatus
US20220101516A1 (en) Non-lambertian surface inspection system for line scan cross reference to related application
JP2002257736A (en) Method and device for inspecting end face of honeycomb structure
TWI700758B (en) Inspection method, inspection device and manufacturing method for silicon wafer
CN110044932B (en) Method for detecting surface and internal defects of curved glass
JP2000065755A (en) Surface inspection apparatus
JP2715897B2 (en) IC foreign matter inspection apparatus and method
JP3229901B2 (en) Surface inspection equipment
JPH04236343A (en) Detecting method of defect of glass edge
JP3682249B2 (en) Glass bottle thread inspection device
JPH05203584A (en) Device for detecting characteristic amount on work surface
JPH10141925A (en) Appearance inspection device
JPH10160676A (en) Rice grain inspection device
US5781655A (en) Strand dimension sensing
JPH0962839A (en) Inspection device for appearance of farm and merine products
JP2005189167A (en) Bridge inspection device of cap
JPH05172549A (en) Irregularity evaluator for surface of melon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term