JP3674547B2 - 電流制御型素子用駆動装置 - Google Patents

電流制御型素子用駆動装置 Download PDF

Info

Publication number
JP3674547B2
JP3674547B2 JP2001198690A JP2001198690A JP3674547B2 JP 3674547 B2 JP3674547 B2 JP 3674547B2 JP 2001198690 A JP2001198690 A JP 2001198690A JP 2001198690 A JP2001198690 A JP 2001198690A JP 3674547 B2 JP3674547 B2 JP 3674547B2
Authority
JP
Japan
Prior art keywords
current
current control
positive
transistor
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001198690A
Other languages
English (en)
Other versions
JP2002209387A (ja
Inventor
良雄 下井田
トロンナムチャイ クライソン
洋之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001198690A priority Critical patent/JP3674547B2/ja
Publication of JP2002209387A publication Critical patent/JP2002209387A/ja
Application granted granted Critical
Publication of JP3674547B2 publication Critical patent/JP3674547B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電流制御型素子の駆動装置に関する。
【0002】
【従来の技術】
正電圧と負電圧の2つの出力を主トランスに設けられる1つの二次巻き線から取り出すようにしたスイッチング電源回路が知られている。たとえば、特開平7−337012号公報には、トランスに巻かれた一次巻き線に印加する直流電圧を変えてトランスの二次巻き線に正の電圧と負の電圧とを誘起し、誘起された正電圧および負電圧に対してそれぞれ整流・平滑を行う2つの従出力回路を並列に接続した電源回路が記載されている。このような電源回路では、一方の従出力回路から正の電圧が出力され、他方の従出力回路から負の電圧が出力される。
【0003】
【発明が解決しようとする課題】
正電圧と負電圧とをそれぞれ出力させるために2つの従出力回路を設けていると、電源回路の小型化に改良の余地がある。
【0004】
本発明の目的は、従出力回路を少なくするようにした駆動回路を用いて電流制御型素子の駆動装置を提供することにある。
【0005】
【課題を解決するための手段】
一実施の形態を示す図2、図5、図7、図9、図11に対応づけて本発明を説明する。
(1)請求項1に記載の発明による電流制御型素子用駆動装置は、駆動用端子に接続された誘導性負荷に駆動電流を供給する電流制御型トランジスタを備え、電流制御型トランジスタが誘導性負荷を駆動する向きと逆方向にオンするように誘導性負荷から生じる逆起電力による電流を電流制御型トランジスタの制御端子に供給する保護手段23,23A(270,26,72,270A,26A,72A)を備えた電流制御型素子用駆動装置に適用される。そして、電流制御型トランジスタの制御端子に正のパルス状電流および負のパルス状電流のいずれか一方を供給するパルス電流発生手段10,10Aと、電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間に正のパルス状電流を制御端子へ連続的に2パルス以上供給し、電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点に負のパルス状電流を制御端子へ少なくとも1パルス供給するようにパルス電流発生手段10、10Aを制御する制御手段22,22A(28,28A)とを備えることにより、上述した目的を達成する。
(2)請求項2に記載の発明は、請求項1に記載の電流制御型素子用駆動装置において、パルス電流発生手段は、直流電圧源12,12Aの出力両端をトランス17,17Aの一次巻線71,71Aの両端から正負両方向に交互に印加する交流発生手段11,13〜16,11A,13A〜16Aと、トランス17,17Aの二次巻線72,72Aに誘起する正負の電圧を時分割でそれぞれ整流する整流手段18〜21,18A〜21Aとを備えることを特徴とする。
(3)請求項3に記載の発明は、請求項2に記載の電流制御型素子用駆動装置において、交流発生手段は、直流電圧源12,12Aの出力両端をトランス17,17Aの一次巻線71,71Aの両端から正方向に印加するように接続する第1のスイッチ13,13Aおよび第2のスイッチ16,16Aと、直流電圧源12,12Aの出力両端をトランス17,17Aの一次巻線71,71Aの両端から負方向に印加するように接続する第3のスイッチ14,14Aおよび第4のスイッチ15,15Aと、正方向に印加するように接続する時間および負方向に印加するように接続する時間の長い方は、他方の時間と正方向および負方向のいずれにも接続しない時間との和より短くするように第1〜第4のスイッチ13〜16,13A〜16Aを開閉制御するスイッチ制御手段11,11Aとを備えることを特徴とする。
(4)請求項4に記載の発明は、請求項2または3に記載の電流制御型素子用駆動装置において、整流手段は、互いに極性が逆向きになるように直列に接続される第1の整流素子18,18A(260,260A)および第2の整流素子19,19A(270,270A)と、第1の整流素子18,18A(260,260A)および第2の整流素子19,19A(270,270A)にそれぞれ並列に接続される第5のスイッチ20,20(26,26A)および第6のスイッチ21,21(27,27A)と、電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間と、電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点とで第1の整流素子18,18A(260,260A)および第2の整流素子19,19A(270,270A)による整流方向を切換えるように第5のスイッチ20,20(26,26A)および第6のスイッチ21,21(27,27A)を開閉制御する第2のスイッチ制御手段22,22A(28,28A)とを備えることを特徴とする。
(5)請求項5に記載の発明は、請求項2または3に記載の電流制御型素子用駆動装置において、整流手段は、直列に接続される第1の整流素子および第5のスイッチと、直列に接続される第2の整流素子および第6のスイッチとを第1の整流素子および第2の整流素子の極性が逆向きになるように並列に接続し、電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間と、電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点とで第1の整流素子および第2の整流素子による整流方向を切換えるように第5のスイッチおよび第6のスイッチを開閉制御する第2のスイッチ制御手段を備えることを特徴とする。
(6)請求項6に記載の発明による電流制御型素子用駆動装置は、誘導性負荷に対して上アーム側に位置して第1の方向に駆動電流を供給するとともに、誘導性負荷から生じる逆起電力による電流を逆方向に流す第1の電流制御型トランジスタと、第1の電流制御型トランジスタと直列に接続され、誘導性負荷に対して下アーム側に位置して第1の方向と異なる第2の方向に駆動電流を供給するとともに、誘導性負荷から生じる逆起電力による電流を逆方向に流す第2の電流制御型トランジスタと、第1の電流制御型トランジスタの制御端子に正のパルス状電流および負のパルス状電流のいずれか一方を供給する第1のパルス電流発生手段10と、第1の電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間に正のパルス状電流を第1の電流制御型トランジスタの制御端子へ連続的に2パルス以上供給し、第1の電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点に負のパルス状電流を第1の電流制御型トランジスタの制御端子へ少なくとも1パルス供給するように第1のパルス電流発生手段10を制御する第1の制御手段22(28)と、第2の電流制御型トランジスタの制御端子に正のパルス状電流および負のパルス状電流のいずれか一方を供給する第2のパルス電流発生手段10Aと、第2の電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間に正のパルス状電流を第2の電流制御型トランジスタの制御端子へ連続的に2パルス以上供給し、第2の電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点に負のパルス状電流を第2の電流制御型トランジスタの制御端子へ少なくとも1パルス供給するように第2のパルス電流発生手段10Aを制御する第2の制御手段22A(28A)とを備えることにより、上述した目的を達成する。
(7)請求項7に記載の発明は、請求項6に記載の電流制御型素子用駆動装置において、第1のパルス電流発生手段10および第2のパルス電流発生手段10Aは、直流電圧源12,12Aの出力両端をトランス17,17Aの一次巻線71,71Aの両端から正負両方向に交互に印加する交流発生手段11,13〜16,11A,13A〜16Aと、トランス17,17Aの二次巻線72,72Aに誘起する正負の電圧を時分割で整流する整流手段18〜21,18〜21Aとをそれぞれ備えることを特徴とする。
(8)請求項8に記載の発明は、請求項7に記載の電流制御型素子用駆動装置において、第1の制御手段22(28)および第2の制御手段22A(28A)は、一方の電流制御型トランジスタのオン/オフ状態により他方の電流制御型トランジスタの制御端子に供給するパルス状電流の正負を切換えるようにそれぞれの整流手段18〜21,18〜21Aを制御することを特徴とする。
(9)請求項9に記載の発明による電流制御型素子用駆動装置は、誘導性負荷に対して上アーム側に位置して第1の方向に駆動電流を供給するとともに、誘導性負荷から生じる逆起電力による電流を逆方向に流す第1の電流制御型トランジスタと、第1の電流制御型トランジスタと直列に接続され、誘導性負荷に対して下アーム側に位置して第1の方向と異なる第2の方向に駆動電流を供給するとともに、誘導性負荷から生じる逆起電力による電流を逆方向に流す第2の電流制御型トランジスタと、第1の電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間に第1の電流制御型トランジスタの制御端子に正のパルス状電流を供給する第1のパルス電流発生手段10Bと、第2の電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間に第2の電流制御型トランジスタの制御端子に正のパルス状電流を供給する第2のパルス電流発生手段10Aとを備え、第1のパルス電流発生手段10Bおよび第2のパルス電流発生手段10Aは、互いの位相が反転するパルス状電流を第1の電流制御型トランジスタおよび第2の電流制御型トランジスタにそれぞれ供給するように同期されることにより、上述した目的を達成する。
(10)請求項10に記載の発明は、請求項9に記載の電流制御型素子用駆動装置において、第1のパルス電流発生手段10Bは、第1の電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点に負のパルス状電流を第1の電流制御型トランジスタの制御端子にさらに供給し、第2のパルス電流発生手段10Aは、第2の電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点に負のパルス状電流を第2の電流制御型トランジスタの制御端子にさらに供給し、第1のパルス電流発生手段10Bおよび第2のパルス電流発生手段10Aは、第1のパルス電流発生手段10Bによる正のパルス状電流および第2のパルス電流発生手段10Aによる負のパルス状電流の位相が一致し、第1のパルス電流発生手段10Bによる負のパルス状電流および第2のパルス電流発生手段10Aによる正のパルス状電流の位相が一致するパルス状電流を、第1の電流制御型トランジスタおよび第2の電流制御型トランジスタにそれぞれ供給することを特徴とする。
(11)請求項11に記載の発明は、請求項10に記載の電流制御型素子用駆動装置において、第1のパルス電流発生手段10Bは、第1のトランス17Bと、直流電圧源12の出力両端を第1のトランス17Bの一次巻線71の両端から正負両方向に交互に印加する第1の交流発生手段11,13〜16と、第1のトランス17Bの二次巻線72Bに誘起する正負の電圧を時分割で整流する第1の整流手段18〜21とを備え、第2のパルス電流発生手段10Aは、第2のトランス17Aと、直流電圧源12Aの出力両端を第2のトランス17Aの一次巻線71Aの両端から正負両方向に交互に印加する第2の交流発生手段11A,13A〜16Aと、第2のトランス17Aの二次巻線72Aに誘起する正負の電圧を時分割で整流する第2の整流手段18A〜21Aとを備え、第1のトランス17Bの二次巻線72Bに誘起される電圧の位相および第2のトランス17Aの二次巻線72Aに誘起される電圧の位相は、反転していることを特徴とする。
(12)請求項12に記載の発明は、請求項11に記載の電流制御型素子用駆動装置において、第1のトランス17Bおよび第2のトランス17Aは1つのトランス17Cで構成され、このトランス17Cは、共用される一次巻線71と、正負の電圧を誘起する第1の二次巻線72Bと、第1の二次巻線72Bによって誘起される正負の電圧と位相が反転する正負の電圧を誘起する第2の二次巻線72Aとを備えることを特徴とする。
(13)請求項13に記載の発明は、請求項9に記載の電流制御型素子用駆動装置において、誘導性負荷40に対して上アーム側に位置して第2の方向に駆動電流を供給するとともに、誘導性負荷40から生じる逆起電力による電流を逆方向に流す第3の電流制御型トランジスタ43と、第3の電流制御型トランジスタ43と直列に接続され、誘導性負荷40に対して下アーム側に位置して第1の方向駆動電流を供給するとともに、誘導性負荷40から生じる逆起電力による電流を逆方向に流す第4の電流制御型トランジスタ44と、第3の電流制御型トランジスタ43が誘導性負荷40を駆動する向きにオンする期間に第3の電流制御型トランジスタ43の制御端子に正のパルス状電流を供給する第3のパルス電流発生手段58,54,47と、第4の電流制御型トランジスタ44が誘導性負荷40を駆動する向きにオンする期間に第4の電流制御型トランジスタ44の制御端子に正のパルス状電流を供給する第4のパルス電流発生手段58,54,48とをさらに備え、第1のパルス電流発生手段〜第4のパルス電流発生手段57,53,45,46,58,54,47,48は、(1)第1のパルス電流発生手段57,53,45による正のパルス状電流および第2のパルス電流発生手段57,53,46による正のパルス状電流の位相が反転し、(2)第1のパルス電流発生手段57,53,45による正のパルス状電流および第4のパルス電流発生手段58,54,48による正のパルス状電流の位相が一致し、(3)第3のパルス電流発生手段58,54,47による正のパルス状電流および第4のパルス電流発生手段58,54,48による正のパルス状電流の位相が反転し、(4)第3のパルス電流発生手段58,54,47による正のパルス状電流および第2のパルス電流発生手段57,53,46による正のパルス状電流の位相が一致するパルス状電流を、第1の電流制御型トランジスタ〜第4の電流制御型トランジスタにそれぞれ供給することを特徴とする。
【0006】
なお、上記課題を解決するための手段の項では、本発明をわかりやすく説明するために実施の形態の図と対応づけたが、これにより本発明が実施の形態に限定されるものではない。
【0007】
【発明の効果】
本発明によれば、次のような効果を奏する。
(1)請求項1〜5に記載の発明による電流制御型素子用駆動装置では、正負のパルス状電流を電流制御型トランジスタの制御端子に供給するパルス電流発生手段を設け、電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間に正のパルス状電流を制御端子へ連続的に2パルス以上供給し、電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点で負のパルス状電流を制御端子へ少なくとも1パルス供給するようにした。この結果、パルス電流発生手段は発生する正負のパルス状電流のうち正のパルス状電流および負のパルス状電流のいずれかを時分割で制御端子に供給すればよく、正負のパルス電流を出力する回路を別々に備える場合に比べて回路を少なくできるから、小型で低コストの駆動装置が得られる。
(2)請求項2、7に記載の発明では、トランスの一次巻線に印加される交流電圧に応じてトランスの二次巻線に誘起される正負の電圧を時分割で整流するようにしたので、トランスの二次巻線側の回路を少なくできる。この結果、小型で低コストの駆動装置が得られる。
(3)請求項3に記載の発明では、交流発生手段がトランスの一次巻線に印加する正負の電圧のうち長い方の印加時間は、短い方の印加時間と正負いずれの電圧も印加しない時間との和より短くするようにした。この結果、一次巻線に流れる交流電流が1周期ごとに0になるのでトランスのコアが飽和することがなく、安定して動作する駆動装置を得ることができる。
(4)請求項4、5に記載の発明では、極性が逆向きに接続された第1の整流素子および第2の整流素子のそれぞれが時分割でトランスの二次巻線に誘起する電圧を整流するように第5のスイッチおよび第6のスイッチを開閉制御した。この結果、少ない部品でトランスの二次巻線側の回路を構成でき、小型で低コストの駆動装置が得られる。
(5)請求項6〜8に記載の発明による電流制御型素子用駆動装置では、上下に接続された第1および第2の電流制御型トランジスタの制御端子に正負のパルス状電流をそれぞれ供給する第1および第2のパルス電流発生手段を設け、第1および第2の電流制御型トランジスタが誘導性負荷を駆動する向きにオンする期間に連続的に2パルス以上の正のパルス状電流を第1および第2の電流制御型トランジスタの制御端子にそれぞれ供給し、第1および第2の電流制御型トランジスタが逆方向にオンしている状態から逆回復する時点で少なくとも1パルスの負のパルス状電流を第1および第2の電流制御型トランジスタの制御端子にそれぞれ供給するようにした。この結果、第1および第2のパルス電流発生手段は、発生する正負のパルス状電流のうち正のパルス状電流および負のパルス状電流のいずれかを時分割でそれぞれの制御端子に供給すればよく、正負のパルス電流を出力する回路を別々に備える場合に比べて回路を少なくできるから、小型で低コストの駆動装置が得られる。
(6)請求項8に記載の発明では、上下に接続された第1および第2の電流制御型トランジスタの一方のオン/オフ状態により他方の電流制御型トランジスタの制御端子に供給するパルス状電流の正負を切換えるようにした。したがって、たとえば、一方の電流制御型トランジスタがターンオンされるときに他方の電流制御型トランジスタ内に電荷が蓄積されている場合、他方の電流制御型トランジスタの制御端子に負のパルス状電流を供給すると、蓄積電荷が素早く引き抜かれる。この結果、他方の電流制御型トランジスタ内に滞留する電荷が減少して電流制御型トランジスタがオフされるから、第1および第2の電流制御型トランジスタを貫通するような大きな電流が流れることが防止される。
(7)請求項9〜13に記載の発明による電流制御型素子用駆動装置では、上下に接続された第1および第2の電流制御型トランジスタの制御端子に正のパルス状電流をそれぞれ供給する第1および第2のパルス電流発生手段を設け、第1および第2の電流制御型トランジスタがそれぞれ誘導性負荷を駆動する向きにオンする期間に、互いの位相が反転するように同期されたパルス状電流を第1および第2の電流制御型トランジスタの制御端子にそれぞれ供給するようにした。この結果、同位相のパルス電流を出力する場合に比べて損失を低減し、小型で低コストの駆動装置が得られる。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
−第一の実施の形態−
図1は、本発明の第一の実施の形態による電流制御型素子用駆動装置を説明する図である。図1において、T1およびT2は、モータなどからなる誘導性負荷L1に駆動電流を供給する電流制御形スイッチングトランジスタ(以下、単に駆動用トランジスタと略する)であり、それぞれのベース端子に接続されている駆動回路10および10Aにより駆動される。駆動用トランジスタT1のコレクタ端子に電源電圧V1が接続され、駆動用トランジスタT2のエミッタ端子は接地されている。駆動用トランジスタT1のエミッタ端子と駆動用トランジスタT2のコレクタ端子との間に誘導性負荷L1が接続されている。
【0009】
このような誘導性負荷L1を駆動する電流制御型素子用の駆動装置は、たとえば、誘導モータを制御するチョッパ回路およびHブリッジ回路などに用いられる。これらの回路では、誘導性負荷L1で発生される逆起電力から駆動用トランジスタT1,T2を保護することが必要である。
【0010】
たとえば、下側アームの駆動用トランジスタT2が駆動回路10Aによりオンされると、電流が図中Aで示す方向に流れる。その後、駆動用トランジスタT2が駆動回路10Aによりターンオフされると、誘導性負荷L1から逆起電力が発生され、この逆起電力により図中P点の電位が上昇する。P点の電位が上側アームの駆動用トランジスタT1のベース端子の電位より高くなると、駆動用トランジスタT1のコレクタ−エミッタ間が逆バイアスされて駆動用トランジスタT1が逆方向にオンし、上記逆起電力による環流電流が図中Bで示す方向に流れる。
【0011】
駆動用トランジスタT1が逆方向にオンしている間に、再び駆動用トランジスタT2が駆動回路10Aによりターンオンされると、P点には再びA方向に電流が流れる。駆動用トランジスタT1が逆回復動作に入り、駆動用トランジスタT1内に蓄積されている電荷がそのまま滞留してしまう。この結果、駆動用トランジスタT1はオフ状態でありながらコレクタ→エミッタ方向、すなわち順方向に電流が流れる状態にされ、駆動用トランジスタT1および駆動用トランジスタT2を貫通する大きな貫通電流Zが流れるおそれがある。本発明による駆動回路10および10Aは、それぞれ駆動用トランジスタT1および2を駆動するとともに、貫通電流が駆動用トランジスタT1,T2を流れるのを抑える。
【0012】
図2は、図1の駆動回路10,10Aを示す図である。図2において、駆動回路10は、発振回路11と、直流電圧源12と、N型MOSスイッチ13〜16と、トランス17と、ダイオード18および19と、スイッチ20、21、23と、制御回路22と、出力端子24および25とを有する。トランス17には一次巻き線71と二次巻き線72とが巻かれている。なお、下側アームの駆動回路10Aを構成するトランスおよびスイッチなどの符号は、上側アームの駆動回路10で用いられる符号と同一の番号にAをつけて表す。
【0013】
トランス17の一次巻き線71側の回路には、直流電圧源12の電圧を正の向きに一次巻き線71に印加するため、N型MOSスイッチ13および16が直列に接続されている。また、直流電圧源12の電圧を負の向きに一次巻き線71に印加するため、N型MOSスイッチ14および15が直列に接続されている。発振回路11は、N型MOSスイッチ13および16の組、N型MOSスイッチ14および15の組のいずれかの組をオンし、他方の組をオフするように制御信号を出力する。
【0014】
トランス17の二次巻き線72側には、その極性が互いに逆となるように、ダイオード18および19が直列に接続されている。ダイオード18および19には、それぞれN型MOSスイッチ20および21が並列に接続されている。制御回路22は、N型MOSスイッチ20および21のいずれかをオンし、他方をオフするように制御信号を出力する。図2において、二次巻き線72の正の向き(図中ドットに向かう上向き)に電圧が誘起されるとき、N型MOSスイッチ21がオンされるとともにN型MOSスイッチ20がオフされる。また、二次巻き線72の負の向きに電圧が誘起されるとき、N型MOSスイッチ20がオンされるとともにN型MOSスイッチ21がオフされる。
【0015】
上述した駆動回路10の動作タイミングを説明する。図3は、図2の駆動回路10の動作タイミングを示すタイミングチャートである。図3において、一次巻き線71を流れる電流波形をIp、N型MOSスイッチ13および16のゲート端子に印加される制御信号波形をSig13、N型MOSスイッチ14および15のゲート端子に印加される制御信号波形をSig14とする。制御信号Sig13およびSig14は、たとえば、周波数300kHzで連続して各スイッチのゲート端子に印加される。この場合、1周期は約3.33μ秒であり、1周期を100%とすると、制御信号SiG13がHレベルにされるタイミングt1〜t2の期間が30%、制御信号SiG13がLレベルになってから制御信号Sig14がHレベルになるタイミングt2〜t3の期間が5%、制御信号SiG14がHレベルであるタイミングt3〜t4の期間が30%、制御信号Sig13およびSig14がともにLレベルであるタイミングt4〜t6の期間が35%である。このうち、タイミングt2〜t3の期間をきわめて0に近い値にし、その分t4〜t6の期間を長くする。
【0016】
タイミングt1の時点において、一次巻き線71側の発信回路11は、制御信号Sig13をHレベルにする。このとき、制御信号Sig14はLレベルのままである。これにより、N型MOSスイッチ13および16がオン、N型MOSスイッチ14および15がオフされて、一次巻き線71に図2のドット側から下向きに励磁電流が流れ始める。タイミングt2の時点において、発信回路11は、制御信号Sig13をLレベルにする。このとき制御信号Sig14はLレベルのままであり、これにより、N型MOSスイッチ13〜16がオフされる。このとき、一次巻き線71を流れる励磁電流は、N型MOSスイッチ14および15に内蔵される不図示のボディダイオードを介して環流される。
【0017】
タイミングt3の時点において、発信回路11は、制御信号Sig14をHレベルにする。このとき制御信号Sig13はLレベルのままであり、これにより、N型MOSスイッチ13および16がオフ、N型MOSスイッチ14および15がオンされて、一次巻き線71に図2のドット側から下向きに流れる励磁電流が減少を始める。タイミングt4の時点において、発信回路11は、制御信号Sig14をLレベルにする。このとき制御信号Sig13はLレベルのままであり、これにより、N型MOSスイッチ13〜16がオフされる。ここで、N型MOSスイッチ13および16がオンされている時間が、N型MOSスイッチ14および15がオンされている時間とN型MOSスイッチ13〜16の全てがオフされている時間との和より短くなるように、発信回路11はN型MOSスイッチ13〜16を開閉制御する。この結果、一次巻き線71を流れる励磁電流は、N型MOSスイッチ14および15に内蔵される不図示のボディダイオードを介して環流され、タイミングt5の時点で0になる。
【0018】
タイミングt6の時点において、発信回路11は、再び制御信号Sig13をHレベルにする。このとき制御信号Sig14はLレベルのままであり、これにより、N型MOSスイッチ13および16がオン、N型MOSスイッチ14および15がオフされて、一次巻き線71に図2のドット側から下向きに励磁電流が流れ始める。以降同様に、上述したタイミングt1〜タイミングt6の動作が繰り返し行われる。タイミングt5の時点で励磁電流を一旦0にするので、トランス17のコアが飽和することがない。
【0019】
二次巻き線72側の制御回路22は、出力端子24から出力端子25の電位に対して正の電圧を出力させるとき、N型MOSスイッチ20のゲート端子にLレベル、N型MOSスイッチ21のゲート端子にHレベルの制御信号を出力するとともに、スイッチ23をオンさせる制御信号を出力する。これにより、N型MOSスイッチ20がオフ、N型MOSスイッチ21がオンされてダイオード18による整流動作が行われ、正の電圧がスイッチ23を介して出力端子24に出力される。出力端子24に駆動用トランジスタT1のベース端子が、出力端子25に駆動用トランジスタT1のエミッタ端子がそれぞれ接続されていると、駆動用トランジスタT1のベース端子からエミッタ端子に駆動電流が流れ、駆動用トランジスタT1が駆動される。
【0020】
上述した一次巻き線71を流れる図3の電流波形Ipは、駆動用トランジスタT1が駆動されるタイミングで大きくなって、図3の電流波形IpL+で示されるようになる。すなわち、出力端子24および25間に負荷電流を流すときだけ、トランス17の一次巻き線71側から二次巻き線72側にエネルギーが伝達される。
【0021】
一次巻き線71の電流が増加する期間は、トランス17の作用により二次巻き線72のドット側の出力端子24から流れ出る向きの負荷電流が流れる。一次巻き線71の電流が減少する期間は、出力端子25の電位に対して二次巻き線72のドット側の電位が下がるが、ダイオード18の整流作用により負荷電流が出力端子24から流れ込むことがない。
【0022】
一方、制御回路22は、出力端子24から出力端子25の電位に対して負の電圧を出力させるとき、N型MOSスイッチ20のゲート端子にHレベル、N型MOSスイッチ21のゲート端子にLレベルの制御信号を出力するとともに、スイッチ23をオンさせる制御信号を出力する。これにより、N型MOSスイッチ20がオン、N型MOSスイッチ21がオフされて、ダイオード19による整流動作が行われ、負の電圧がスイッチ23を介して出力端子24に出力される。出力端子24に駆動用トランジスタT1のベース端子が、出力端子25に駆動用トランジスタT1のエミッタ端子がそれぞれ接続されていると、一次巻き線71の電流が減少する期間に、トランス17の作用により二次巻き線72のドット側の出力端子24に流れ込む向きの電流が流れる。一次巻き線71の電流が増加する期間は、ダイオード19の整流作用により負荷電流が出力端子24から流れ出ることはない。
【0023】
本実施の形態では、二次巻き線72のドット側の出力端子24に流れ込む向きの電流を用いて、上述した駆動用トランジスタT1内に蓄積されている電荷を引き抜く。すなわち、駆動用トランジスタT1内に滞留している逆回復時の逆回復電荷があるとき、ベース端子から電荷を引く抜くことにより、駆動用トランジスタT1がオフ状態でありながらコレクタ→エミッタ方向、すなわち順方向に電流が流れる状態にされる時間を短縮する。
【0024】
以上の説明では、図1の上側アームの駆動用トランジスタT1を駆動する駆動回路10について説明したが、下側アームの駆動用トランジスタT2を駆動する駆動回路10Aも同様の動作を行う。なお、駆動回路10の制御回路22と、駆動回路10Aの制御回路22Aとは、不図示のタイミング信号により同期制御されている。
【0025】
図4は、図1の電流制御型素子用駆動装置の動作タイミングを表すタイミングチャートである。図4において、電流波形Ipは、駆動回路10および10Aの各一次巻き線71および71Aを流れる電流の波形である。一次巻線71,71Aには、駆動用トランジスタT1,T2の駆動タイミングに関係なく、周波数約300kHzのパルス状の電流が流されている。
【0026】
下側アームの制御回路22Aは、駆動用トランジスタT2をオンさせるタイミングt21の時点において、N型MOSスイッチ21Aをオン、N型MOSスイッチ20Aをオフ、スイッチ23Aをオンにする。これにより、駆動用トランジスタT2のベース端子からエミッタ端子にパルス状の電流が連続的に流される。駆動用トランジスタT2は容量性負荷であり、駆動用トランジスタT2内の電荷のライフタイムがパルス状電流の周期に比べて十分長いことにより、連続的に印加されるパルス状電流によって駆動用トランジスタT2がオンされる。この場合には、トランス17Aの二次巻き線72側に平滑用コンデンサを設けなくてもよい。
【0027】
下側アームの駆動用トランジスタT2がオンされることにより、電流が図1のA方向に流れる。駆動用トランジスタT2をオフさせるタイミングt22の時点において、制御回路22Aは、N型MOSスイッチ21A、N型MOSスイッチ20Aおよびスイッチ23Aを全てオフにする。これにより、駆動用トランジスタT2のベース端子にパルス状の電流が供給されなくなるので、駆動用トランジスタT2はオフする。駆動用トランジスタT2がターンオフされると、誘導性負荷L1から逆起電力が発生され、この逆起電力により図1のP点の電位が上昇し、P点の電位が上側アームの駆動用トランジスタT1のベース端子の電位より高くなる。このとき、上側アームのスイッチ23は、二次巻線72側と駆動用トランジスタT1のベース端子(出力端子24)とを非接続にしているが、スイッチ23を介して駆動用トランジスタT1のエミッタ端子(出力端子25)からベース端子(出力端子24)に電流を流す。この結果、駆動用トランジスタT1が逆方向にオンし、環流電流が図1のB方向に流れる。
【0028】
上側アームの制御回路22は、下側アームの駆動用トランジスタT2が再びオンされるタイミングt23の時点において、N型MOSスイッチ21をオフ、N型MOSスイッチ20をオン、スイッチ23をオンにする。スイッチ23は、二次巻線72側と駆動用トランジスタT1のベース端子(出力端子24)とを接続し、スイッチ23を介して駆動用トランジスタT1のエミッタ端子(出力端子25)からベース端子(出力端子24)へ向かう電流は流さない。これにより、駆動用トランジスタT1のベース端子からパルス状の電流が流れ出て、駆動用トランジスタT1内に蓄積されている電荷が引き抜かれる。電荷引き抜きのためのパルス電流は、少なくとも1パルスとする。制御回路22は、タイミングt23から3.3μ秒(1パルス相当)経過後のタイミングt24の時点において、N型MOSスイッチ21、N型MOSスイッチ20、およびスイッチ23を全てオフにする。これにより、駆動用トランジスタT1のベース端子に負の電流が印加されなくなる。
【0029】
一方、下側アームの制御回路22Aは、タイミングt23の時点において、N型MOSスイッチ21Aをオン、N型MOSスイッチ20Aをオフ、スイッチ23Aをオンにする。駆動用トランジスタT2のベース端子からエミッタ端子にパルス状の電流が流されることにより、駆動用トランジスタT2が再びオンされる。P点には再びA方向に電流が流れ、上側アームの駆動用トランジスタT1が逆回復動作に入る。このとき、上述したように上側アームの駆動用トランジスタT1内の電荷が少なくされるので、貫通電流Zが流れることがない。
【0030】
以上の説明では、下側アームの駆動用トランジスタT2を駆動回路10Aでオン、オフさせる場合に、上側アームの駆動用トランジスタT1に滞留する電荷を駆動回路10で引き抜く場合を例にあげて説明したが、上側アームの駆動用トランジスタT1を駆動回路10でオン、オフさせる場合に、下側アームの駆動用トランジスタT2に滞留する電荷を駆動回路10Aで引き抜く場合についても同様である。
【0031】
駆動回路10(10A)のダイオード18および19(18Aおよび19A)は、損失が小さいショットキーダイオードを用いる。電圧ドロップが小さいダイオードを用いることにより、トランス17(17A)の二次巻線72(72A)側の出力電圧を低くすることができる。この結果、トランス17(17A)の設計時にトランスの消費電力を小さくすることができるので、トランスに用いるコアサイズを小さくしてより小型の駆動回路10(10A)を得ることが可能になる。
【0032】
以上説明した第一の実施の形態によれば、次の作用効果が得られる。
(1)駆動回路10(10A)にパルス型トランス17(17A)を用い、タイミングt1〜タイミングt6の動作を周波数300KHzで繰り返し行い、タイミングt5の時点で一次巻き線71(71A)の励磁電流を一旦0にするようにした。したがって、トランス17(17A)のコアが飽和することがなく、パルス型の電源回路を安定に動作させることができる。
(2)タイミングt1〜t6の1周期は、駆動用トランジスタT1,T2中の電荷のライフタイムより十分小さくしたので、駆動用トランジスタT1,T2をパルス状の駆動電流によってターンオンさせることができる。この結果、トランス17(17A)の二次側に平滑コンデンサを設けなくてよくなり、回路の小型化およびコスト削減の効果がある。
(3)二次巻き線72(72A)側に負荷電流を流すときだけトランス17(17A)の二次側にエネルギーが伝達されるので、トランスの二次側に電流を流し続ける必要がなく、二次側の回路部品を少なくして回路を簡略化できる。
(4)トランス17(17A)の二次側にダイオード18および19(18Aおよび19A)を互いに極性が逆向きとなるように直列に接続し、それぞれのダイオードに並列にN型MOSスイッチ20および21(20Aおよび21A)を接続する。駆動回路10(10A)から正のパルス電流を出力するときはN型MOSスイッチ21(21A)をオンして他方をオフ、負のパルス電流を出力するときはN型MOSスイッチ20(20A)をオンして他方をオフするようにした。したがって、正のパルス電流を出力するときはダイオード18(18A)により整流され、負のパルス電流を出力するときはダイオード19(19A)により整流される。この結果、1つの従出力回路から時分割で正負両方向の電流を出力させることができるので、回路の小型化およびコスト削減の効果がある。
(5)上型アームの駆動用トランジスタT1が逆回復動作に移行するときに駆動回路10から負のパルス電流を出力し、下側アームの駆動用トランジスタT2が逆回復動作に移行するときに駆動回路10Aから負のパルス電流を出力するようにした。したがって、駆動用トランジスタT1およびT2のコレクタ領域に蓄積されている電荷が、負の電流により素早くそれぞれのベース端子から引き抜かれるので、コレクタ領域に滞留する電荷がなくなり、駆動用トランジスタT1およびT2がオフ状態にされる。この結果、駆動用トランジスタT1およびT2のコレクタ端子からエミッタ端子に向けて大きな貫通電流が流れることが防止されて無駄な損失がなくなる上に、逆回復動作をしていない方の駆動用トランジスタまで貫通電流で破壊してしまうことが防止される。
【0033】
上述した図4のN型MOSスイッチ21Aの開閉タイミングについて、スイッチ23Aの開閉タイミングと同じにしたが、N型MOSスイッチ21Aをオンしたままでスイッチ23Aのみを図4のように開閉制御するようにしてもよい。
【0034】
また、図4のN型MOSスイッチ20の開閉タイミングについて、スイッチ23の開閉タイミングと同じにしたが、N型MOSスイッチ20をオンしたままでスイッチ23のみを図4のように開閉制御するようにしてもよい。
【0035】
以上の説明では、ダイオード18および19(18Aおよび19A)を互いに逆向きとなるように直列に接続し、それぞれのダイオードに並列にN型MOSスイッチ20および21(20Aおよび21A)を接続した。この代わりに、ダイオード18および19(18Aおよび19A)を互いに逆向きとなるように並列に接続し、それぞれのダイオードに直列にN型MOSスイッチ20および21(20Aおよび21A)を接続するようにしてもよい。
【0036】
また、上述した説明では、図4のタイミングt22の時点で下側アームの駆動用トランジスタT2がターンオフされ、図1のP点の電位が上側アームの駆動用トランジスタT1のベース端子の電位より高くなると、上側アームのスイッチ23を介して駆動用トランジスタT1のエミッタ端子(出力端子25)からベース端子(出力端子24)に電流を流し、駆動用トランジスタT1を逆方向にオンするようにした。この結果、環流電流が図1のB方向に流れる。この代わりに、タイミングt22〜t23の期間にN型MOSスイッチ21をオンさせて、駆動用トランジスタT1のエミッタ端子(出力端子25)→二次巻線72→ダイオード18→N型MOSスイッチ21→ベース端子(出力端子24)に電流を流し、駆動用トランジスタT1を逆方向にオンするようにしてもよい。
【0037】
−第二の実施の形態−
図5を参照して第二の実施の形態を説明する。図5は、本発明による第二の実施の形態による駆動回路を説明する図である。図5において、トランス17の一次側の回路は、第一の実施の形態と共通なので説明を省略する。
【0038】
トランス17の二次巻き線72のドットと反対側には、そのドレイン端子、ソース端子の接続が互いに逆となるように、N型MOSスイッチ26および27が直列に接続されている。N型MOSスイッチ26および27のゲート端子には、制御回路28からの制御信号がそれぞれ入力される。制御回路28には、二次巻き線72のドット側が接続されている。
【0039】
図5において、二次巻き線72から正の向き(図5のドット側に向かう上向き)の電流を出力させるとき、制御回路28によりN型MOSスイッチ26がオンされる。制御回路28はさらに、二次巻き線72のドット側に正の電位が誘起されるときにN型MOSスイッチ27をオンし、二次巻き線72のドット側に負の電位が誘起されるときにN型MOSスイッチ27をオフする。この結果、出力端子24から正のパルス電流が出力される。
【0040】
一方、二次巻き線72から負の向き(図5のドット側から下向き)の電流を出力させるとき、制御回路28によりN型MOSスイッチ27がオンされる。制御回路28はさらに、二次巻き線72のドット側に負の電位が誘起されるときにN型MOSスイッチ26をオンし、二次巻き線72のドット側に正の電位が誘起されるときにN型MOSスイッチ26をオフする。この結果、出力端子24から負のパルス電流が出力される。
【0041】
図6は、第二の実施の形態による電流制御型素子用駆動装置の動作タイミングを表すタイミングチャートである。なお、下側アームの駆動回路を構成するトランスおよびスイッチなどの符号は、上側アームの駆動回路で用いられる符号と同一の番号にAをつけて表す。図6において、電流波形Ipは、駆動回路の各一次巻き線71、71Aを流れる電流の波形である。第一の実施の形態と同様に、一次巻線71,71Aには駆動用トランジスタT1,T2の駆動タイミングに関係なく、周波数約300kHzのパルス状の電流が流されている。
【0042】
下側アームの制御回路28Aは、駆動用トランジスタT2をオンさせるタイミングt21の時点において、N型MOSスイッチ26Aをオンにする。制御回路28Aはさらに、二次巻き線72のドット側に正の電位が誘起されるとN型MOSスイッチ27Aをオンし、正の電位が誘起されないとN型MOSスイッチ27Aをオフする。これにより、駆動用トランジスタT2のベース端子からエミッタ端子にパルス状の電流が流され、連続的に印加されるパルス状電流によって駆動用トランジスタT2がオンされる。正の向きにパルス状の電流を出力するタイミングでN型MOSスイッチ27Aがオンされるので、内蔵ダイオード270Aによる順方向ドロップ損失が起こらない。二次巻き線72Aのドット側に負の電位が誘起されるときはN型MOSスイッチ27Aがオフされるので、内蔵ダイオード270Aの整流作用によりパルス状の電流は流れない。
【0043】
駆動用トランジスタT2をオフさせるタイミングt22の時点において、制御回路28Aは、N型MOSスイッチ26Aをオフにする。駆動用トランジスタT2のベース端子にパルス状の電流が供給されなくなるので、駆動用トランジスタT2はオフする。駆動用トランジスタT2がターンオフされ、図1のP点の電位が上側アームの駆動用トランジスタT1のベース端子の電位より高くなると、上側アームのN型MOSスイッチ26が周期的にオンしているので、上側アームの駆動用トランジスタT1のエミッタ端子(出力端子25)→内蔵ダイオード270→N型MOSスイッチ26→二次巻線72→ベース端子(出力端子24)に電流が流れ、駆動用トランジスタT1が逆方向にオンする。
【0044】
上側アームの制御回路28は、下側アームの駆動用トランジスタT2が再びオンされるタイミングt23の時点において、N型MOSスイッチ27をオンにする。制御回路28はさらに、二次巻き線72のドット側に負の電位が誘起されるとN型MOSスイッチ26Aをオンし、誘起されないとN型MOSスイッチ26Aをオフする。これにより、駆動用トランジスタT1のベース端子からパルス状の電流が流れ出て、駆動用トランジスタT1内に蓄積されている電荷が引き抜かれる。負の向きにパルス状の電流を出力するタイミングでN型MOSスイッチ26がオンされるので、内蔵ダイオード260による順方向ドロップ損失が起こらない。二次巻線72のドット側に正の電位が誘起されるときはN型MOSスイッチ26がオフされるので、内蔵ダイオード260の整流作用によりパルス状の電流は流れない。
【0045】
電荷引き抜きのためのパルス電流は、少なくとも1パルスとする。制御回路28は、タイミングt23から3.3μ秒(1パルス相当)経過後のタイミングt24の時点において、N型MOSスイッチ27をオフにする。これにより、駆動用トランジスタT1のベース端子に負の電流が印加されなくなる。
【0046】
一方、下側アームの制御回路28Aは、タイミングt23の時点において、N型MOSスイッチ26Aをオンにする。駆動用トランジスタT2のベース端子からエミッタ端子にパルス状の電流が流されることにより、駆動用トランジスタT2が再びオンされる。P点には再びA方向に電流が流れ、駆動用トランジスタT1が逆回復動作に入る。このとき、上述したように上側アームの駆動用トランジスタT1内の電荷は少なくされるので、貫通電流Zが流れることがない。
【0047】
以上の説明では、下側アームの駆動用トランジスタT2をオン、オフさせる場合に、上側アームの駆動用トランジスタT1に滞留する電荷を引き抜く場合を例にあげて説明したが、上側アームの駆動用トランジスタT1をオン、オフさせる場合に、下側アームの駆動用トランジスタT2に滞留する電荷を引き抜く場合についても同様である。
【0048】
以上説明した第二の実施の形態によれば、次の作用効果が得られる。
(1)駆動回路のトランス17Aの二次巻き線72Aのドットと反対側に、そのドレイン端子、ソース端子の接続が互いに逆となるように、N型MOSスイッチ26Aおよび27Aを直列に接続する。トランス17Aの二次巻き線72Aから正の向きの電流を出力させるとき、制御回路28AがN型MOSスイッチ26Aをオンするとともに、二次巻き線72Aのドット側に正の電位が誘起されるとN型MOSスイッチ27Aをオンし、二次巻き線72Aのドット側に負の電位が誘起されるとN型MOSスイッチ27Aをオフするようにした。この結果、正の向きにパルス状の電流を出力するタイミングでN型MOSスイッチ27Aがオンされるので、内蔵ダイオード270による順方向ドロップ損失が起こらない。また、トランス17の二次巻き線72から負の向きの電流を出力させるとき、制御回路28がN型MOSスイッチ27をオンするとともに、二次巻き線72のドット側に負の電位が誘起されるとN型MOSスイッチ26をオンし、二次巻き線72のドット側に正の電位が誘起されるとN型MOSスイッチ26をオフするようにした。この結果、負の向きにパルス状の電流を出力するタイミングでN型MOSスイッチ26がオンされるので、内蔵ダイオード260による順方向ドロップ損失が起こらない。
(2)第一の実施の形態と同様にトランス17Aの二次側の従出力回路を1つにした上で、二次巻き線72Aに接続される素子数を2個(N型MOSスイッチ26A,27A)に抑えるようにしたので、小型で低コストの電流制御型素子の駆動装置を得ることができる。
【0049】
上述した図6のN型MOSスイッチ27Aの開閉タイミングについて、二次巻き線72Aのドット側に正の電位が誘起されるとオンするようにしたが、スイッチ26Aがオンされているタイミングt21〜t22、t23〜t25の期間のみ、二次巻き線72Aのドット側に誘起される正の電位に応じてオンするようにしてもよい。
【0050】
また、図6のN型MOSスイッチ26の開閉タイミングについて、二次巻き線72のドット側に負の電位が誘起されるとオンするようにしたが、スイッチ27がオンされているタイミングt23〜タイミングt24の期間のみ、二次巻き線72のドット側に誘起される負の電位に応じてオンするようにしてもよい。
【0051】
以上の説明では、トランス17,17Aの一次巻線71,71Aに対して駆動用トランジスタT1,T2の駆動タイミングに関係なく、周波数約300kHzのパルス状の電流を流すようにしたが、周波数は200KHzでも500KHzでもよい。この周波数は、駆動するトランジスタT1およびT2内のキャリアのライフタイムに応じて設定される。
【0052】
−第三の実施の形態−
図7は、本発明の第三の実施の形態による駆動回路を説明する図である。図7において、第一の実施の形態による図2と同一の構成には、図2と同一の符号を記して説明を省略する。第三の実施の形態による駆動回路は、第一の実施の形態による駆動回路に比べて、上側アームの駆動回路10Bを構成するトランス17Bの二次巻線72Bの極性が逆にされている点が異なる。
【0053】
トランス17Bの二次巻き線72B側には、その極性が互いに逆となるように、ダイオード18および19が直列に接続されている。ダイオード18および19には、それぞれN型MOSスイッチ20および21が並列に接続されている。制御回路22は、N型MOSスイッチ20および21のいずれかをオンし、他方をオフするように制御信号を出力する。図7において、二次巻き線72Bの正の向き(図中ドットに逆らう上向き)に電圧が誘起されるとき、N型MOSスイッチ21がオンされるとともにN型MOSスイッチ20がオフされる。また、二次巻き線72Bの負の向きに電圧が誘起されるとき、N型MOSスイッチ20がオンされるとともにN型MOSスイッチ21がオフされる。
【0054】
上側アームの駆動回路10Bの動作タイミングを説明する。一次巻線71側の回路の動作タイミングは、上述した第一の実施の形態による駆動回路10の動作タイミング(図3)と同じである。ただし、二次巻き線72Bの極性が逆にされているので、駆動回路10Bのトランス17Bの一次巻き線71を流れる励磁電流波形が大きくなるタイミングで、駆動用トランジスタT1に負のパルス状電流が印加される。また、駆動回路10Bのトランス17Bの一次巻き線71を流れる励磁電流波形が小さくなるタイミングで、駆動用トランジスタT1に正のパルス状電流が印加される。
【0055】
逆極性で配置された二次巻き線72B側の制御回路22は、出力端子24から出力端子25の電位に対して正の電圧を出力させるとき、N型MOSスイッチ20のゲート端子にLレベル、N型MOSスイッチ21のゲート端子にHレベルの制御信号を出力するとともに、スイッチ23をオンさせる制御信号を出力する。これにより、N型MOSスイッチ20がオフ、N型MOSスイッチ21がオンされてダイオード18による整流動作が行われ、正の電圧がスイッチ23を介して出力端子24に出力される。出力端子24に駆動用トランジスタT1のベース端子が、出力端子25に駆動用トランジスタT1のエミッタ端子がそれぞれ接続されていると、一次巻き線71の電流が減少する期間に、駆動用トランジスタT1のベース端子からエミッタ端子に駆動電流が流れ、駆動用トランジスタT1が駆動される。一次巻き線71の電流が増大する期間は、ダイオード19の整流作用により正の電流が出力端子24に印加されることはない。
【0056】
一方、制御回路22は、出力端子24から出力端子25の電位に対して負の電圧を出力させるとき、N型MOSスイッチ20のゲート端子にHレベル、N型MOSスイッチ21のゲート端子にLレベルの制御信号を出力するとともに、スイッチ23をオンさせる制御信号を出力する。これにより、N型MOSスイッチ20がオン、N型MOSスイッチ21がオフされて、ダイオード19による整流動作が行われ、負の電圧がスイッチ23を介して出力端子24に出力される。出力端子24に駆動用トランジスタT1のベース端子が、出力端子25に駆動用トランジスタT1のエミッタ端子がそれぞれ接続されていると、一次巻き線71の電流が増大する期間に、トランス17Bの作用により二次巻き線72Bのドットと逆側の出力端子24に流れ込む向きの電流が流れる。一次巻き線71の電流が減少する期間は、ダイオード19の整流作用により正の電流が出力端子24に印加されることはない。
【0057】
下側アームの駆動用トランジスタT2を駆動する駆動回路10Aについては、第一の実施の形態と同様の動作を行うので説明を省略する。上側アームのトランス17Bの二次巻き線72Bが、下側アームのトランス17Aの二次巻線72Aと逆極性にされたことにより、駆動用トランジスタT1が駆動されるときに出力端子24から出力される正のパルス電流の位相と、駆動用トランジスタT2が駆動されるときに出力端子24Aから出力される正のパルス電流の位相とが反転したものとなる。一方、駆動用トランジスタT1が駆動されるときに出力端子24から出力される正のパルス電流の位相と、駆動用トランジスタT2のベースから電荷を引き抜くときに駆動用トランジスタT2のベースから出力端子24Aに流れ込む負のパルス電流の位相とは一致したものとなる。同様に、駆動用トランジスタT2が駆動されるときに出力端子24Aから出力される正のパルス電流の位相と、駆動用トランジスタT1のベースから電荷を引き抜くときに駆動用トランジスタT2のベースから出力端子24に流れ込む負のパルス電流の位相とは一致したものとなる。なお、駆動回路10Bの制御回路22と、駆動回路10Aの制御回路22Aとは、不図示のタイミング信号により同期制御されている。
【0058】
第三の実施の形態は、駆動用トランジスタT1内に残留している逆回復時の逆回復電荷があるとき、駆動用トランジスタT2が駆動されるタイミングと一致するタイミングで駆動用トランジスタT1のベース端子から電荷を引き抜くことにより、駆動用トランジスタT1がオフ状態でありながらコレクタ→エミッタ方向、すなわち、順方向に電流が流れる状態にされる時間を短縮することに特徴がある。
【0059】
図8は、図7による駆動回路を用いて図1の電流制御型素子用駆動装置を駆動制御する場合の動作タイミングを表すタイミングチャートである。図8において、電流波形IpBは、駆動回路10Bの一次巻き線71を流れる電流の波形である。電流波形IpAは、駆動回路10Aの一次巻き線71Aを流れる電流の波形である。一次巻線71,71Aには、駆動用トランジスタT1,T2の駆動タイミングに関係なく、周波数約300kHzのパルス状の電流が流されている。
【0060】
下側アームの制御回路22Aは、駆動用トランジスタT2をオンさせるタイミングt21の時点において、N型MOSスイッチ21Aをオン、N型MOSスイッチ20Aをオフ、スイッチ23Aをオンにする。これにより、駆動用トランジスタT2のベース端子からエミッタ端子にパルス状の電流が連続的に流される。駆動用トランジスタT2は容量性負荷であり、駆動用トランジスタT2内の電荷のライフタイムがパルス状電流の周期に比べて十分長いことにより、連続的に印加されるパルス状電流によって駆動用トランジスタT2がオンされる。この場合には、トランス17Aの二次巻き線72A側に平滑用コンデンサを設けなくてもよい。
【0061】
下側アームの駆動用トランジスタT2がオンされることにより、電流が図1のA方向に流れる。駆動用トランジスタT2をオフさせるタイミングt22の時点において、制御回路22Aは、N型MOSスイッチ21A、N型MOSスイッチ20Aおよびスイッチ23Aを全てオフにする。これにより、駆動用トランジスタT2のベース端子に正のパルス状の電流が供給されなくなり、ターンオフのための負のパルス状電流が印加されるので、駆動用トランジスタT2はオフする。駆動用トランジスタT2がターンオフされると、誘導性負荷L1から逆起電力が発生され、この逆起電力により図1のP点の電位が上昇し、P点の電位が上側アームの駆動用トランジスタT1のベース端子の電位より高くなる。このとき、上側アームのスイッチ23は、二次巻線72B側と駆動用トランジスタT1のベース端子(出力端子24)とを非接続にしているが、スイッチ23を介して駆動用トランジスタT1のエミッタ端子(出力端子25)からベース端子(出力端子24)に電流を流す。この結果、駆動用トランジスタT1が逆方向にオンし、環流電流が図1のB方向に流れる。
【0062】
上側アームの制御回路22Bは、下側アームの駆動用トランジスタT2が再びオンされるタイミングt23の時点において、N型MOSスイッチ21をオフ、N型MOSスイッチ20をオン、スイッチ23をオンにする。スイッチ23は、二次巻線72B側と駆動用トランジスタT1のベース端子(出力端子24)とを接続し、スイッチ23を介して駆動用トランジスタT1のエミッタ端子(出力端子25)からベース端子(出力端子24)へ向かう電流は流さない。これにより、タイミングt25の時点で駆動用トランジスタT1のベース端子からパルス状の電流が流れ出て、駆動用トランジスタT1内に蓄積されている電荷が引き抜かれる。電荷引き抜きのためのパルス電流は、少なくとも1パルスとする。制御回路22は、タイミングt23から3.3μ秒(1パルス相当)経過後のタイミングt24の時点において、N型MOSスイッチ21、N型MOSスイッチ20、およびスイッチ23を全てオフにする。これにより、駆動用トランジスタT1のベース端子に負の電流が印加されなくなる。
【0063】
一方、下側アームの制御回路22Aは、タイミングt23の時点において、N型MOSスイッチ21Aをオン、N型MOSスイッチ20Aをオフ、スイッチ23Aをオンにする。駆動用トランジスタT2のベース端子からエミッタ端子にタイミングt25の時点で1発目のパルス状の電流が流されることにより、駆動用トランジスタT2が再びオンされる。P点には再びA方向に電流が流れ、上側アームの駆動用トランジスタT1が逆回復動作に入る。このとき、駆動用トランジスタT1のベース端子に負のパルス状電流が印加されるタイミングt25と同じタイミングで駆動用トランジスタT2のターンオンが始まるため、上述したように駆動用トランジスタT1内の電荷が少なくされており、貫通電流Zが流れることがない。
【0064】
以上の説明では、下側アームの駆動用トランジスタT2を駆動回路10Aでオン、オフさせる場合に、上側アームの駆動用トランジスタT1に滞留する電荷を駆動回路10Bで引き抜く場合を例にあげて説明したが、上側アームの駆動用トランジスタT1を駆動回路10Bでオン、オフさせる場合に、下側アームの駆動用トランジスタT2に滞留する電荷を駆動回路10Aで引き抜く場合についても同様である。
【0065】
以上説明した第三の実施の形態によれば、第一および第二の実施の形態による作用効果に加えて次の作用効果が得られる。すなわち、同期制御される駆動回路10Bの制御回路22と駆動回路10Aの制御回路22Aとにおいて、上側アームの駆動回路10Bを構成するトランス17Bの二次巻線72Bの極性と、下側アームの駆動回路10Aを構成するトランス17Aの二次巻線72Aの極性とを逆にしたので、駆動用トランジスタT1のベース端子に印加される負のパルス電流波形の発生タイミングと、駆動用トランジスタT2のベース端子に印加される正のパルス電流波形の発生タイミングとを一致させることができる。この結果、駆動用トランジスタT2をターンオンさせる1発目の正パルスのタイミングt25で駆動用トランジスタT1のベース端子に負パルスを印加できるから、十分に駆動用トランジスタT1内から蓄積電荷を引き抜いた状態で駆動用トランジスタT2がターンオンされ、貫通電流が流れないようにすることができる。貫通電流が効果的に抑制されることでスイッチング損失が低減される結果、装置を小型化することができる。
【0066】
以上説明した図2および図7の駆動回路において、トランス17(17A)(17B)の二次巻線72(72A)(72B)側のダイオード18(18A)および19(19A)は、それぞれN型MOSスイッチ20(20A)および21(21A)に内蔵されるボディダイオードでもよい。
【0067】
上述した説明では、第一の実施の形態による図2の駆動回路に対して上側アームの駆動回路10のトランス17の二次巻線72の極性を変えることによって、上側アームの駆動回路10Bのトランス17Bの二次巻線72Bと、下側アームの駆動回路10Aのトランス17Aの二次巻線72Aとの極性を逆にした。片側アームの駆動回路のトランスの二次巻線の極性を変える代わりに、両駆動回路のトランスの一次巻線にそれぞれ印加する周波数約300kHzのパルス状の電流の位相を逆にしてもよい。たとえば、N型MOSスイッチ13〜16の駆動タイミングを変える他、直流電圧源12の極性を変えたり、一次巻線71の極性を変えるなど、いずれの方法を用いてもよい。
【0068】
また、片側アームの駆動回路のトランスの二次巻線の極性を変えるために、第一の実施の形態による図2の駆動回路に対して下側アームの駆動回路10Aのトランスの二次巻線72Aの極性を変えてもよい。
【0069】
さらにまた、図9に示すように、上側アーム駆動用の二次巻線72Bと、下側アーム駆動用の二次巻線72Aとの極性を逆にした状態で、一次巻線71を共通にするトランス17Cを用いる構成にしてもよい。この場合には、上側アーム駆動回路と下側アーム駆動回路との間で常に同期がとれるので、正負逆極性のパルスを正確に同タイミングで得ることができる。さらに、トランスを2つ用いる場合に比べて回路を小型化することができる。
【0070】
−第四の実施の形態−
図10は、図1の電流制御型素子用駆動装置を3組用いて3相モータを駆動する例を示す図である。図10において、モータ30は、U相、V相、およびW相の3相電流によって駆動される。電源端子Pおよび電源端子N間に、電流制御型トランジスタ33、34が直列に接続され、U相に電流を供給する。また、電源端子Pおよび電源端子N間に、電流制御型トランジスタ35、36が直列に接続され、V相に電流を供給する。さらに、電源端子Pおよび電源端子N間に、電流制御型トランジスタ37、38が直列に接続され、W相に電流を供給する。
【0071】
U相に電流を供給する上側アームを構成する電流制御型トランジスタ33の制御端子(ベース)に、駆動回路31が接続されている。駆動回路31は、たとえば、上述した駆動回路10Bが用いられる。U相に電流を供給する下側アームを構成する電流制御型トランジスタ34の制御端子(ベース)に、駆動回路32が接続されている。駆動回路32は、たとえば、上述した駆動回路10Aが用いられる。
【0072】
V相およびW相についても同様に、電流制御型トランジスタ35および37の制御端子に、駆動回路10Bと同様の不図示の駆動回路がそれぞれ接続されている。また、電流制御型トランジスタ36および38の制御端子に、駆動回路10Aと同様の不図示の駆動回路がそれぞれ接続されている。
【0073】
以上説明したように第四の実施の形態によれば、上述した第一の実施の形態〜第三の実施の形態による駆動回路を3組用いて、3相モータに対する駆動制御を行うことができる。
【0074】
−第五の実施の形態−
図11は、図7の駆動回路を2組用いてHブリッジによるモータ駆動装置を構成する例を示す図である。図11において、電源端子Pおよび電源端子N間に、電流制御型トランジスタ41、42が直列に接続され、モータ40の端子Lに電流を供給する。また、電源端子Pおよび電源端子N間に、電流制御型トランジスタ43、44が直列に接続され、モータ40の端子Rに電流を供給する。ここで端子Lに電流を供給する回路を左側レグ、端子Rに電流を供給する回路を右側レグと呼ぶことにする。
【0075】
左側レグの上側アームを構成する電流制御型トランジスタ41の制御端子(ベース)に、スイッチ回路45が接続されている。スイッチ回路45は、上述した駆動回路10Bの制御回路22、N型MOSスイッチ20および21、ダイオード18および19を含む回路である。スイッチ回路45は、トランス53の二次巻線49と接続されている。
【0076】
左側レグの下側アームを構成する電流制御型トランジスタ42の制御端子(ベース)に、スイッチ回路46が接続されている。スイッチ回路46は、上述した駆動回路10Aの制御回路22A、N型MOSスイッチ20Aおよび21A、ダイオード18Aおよび19Aを含む回路である。スイッチ回路46は、トランス53の二次巻線50と接続されている。
【0077】
トランス53は、上側アーム駆動用の二次巻線49と、下側アーム駆動用の二次巻線50との極性を逆にした状態で、一次巻線55を共通にするトランスである。トランス53の一次巻線55には、一次側回路57が接続される。一次側回路57は、上述した駆動回路10Bの発振回路11、直流電圧源12、N型MOSスイッチ13〜16を含む回路である。
【0078】
右側レグの上側アームを構成する電流制御型トランジスタ43の制御端子(ベース)に、スイッチ回路47が接続されている。スイッチ回路47は、上述した駆動回路10Bの制御回路22、N型MOSスイッチ20および21、ダイオード18および19を含む回路である。スイッチ回路47は、トランス54の二次巻線59と接続されている。
【0079】
右側レグの下側アームを構成する電流制御型トランジスタ44の制御端子(ベース)に、スイッチ回路48が接続されている。スイッチ回路48は、上述した駆動回路10Aの制御回路22A、N型MOSスイッチ20Aおよび21A、ダイオード18Aおよび19Aを含む回路である。スイッチ回路48は、トランス54の二次巻線60と接続されている。
【0080】
トランス54は、上側アーム駆動用の二次巻線59と、下側アーム駆動用の二次巻線60との極性を逆にした状態で、一次巻線56を共通にするトランスである。ただし、トランス54の二次巻線59の極性は、上述したトランス53の二次巻線49の極性と逆に構成される。また、トランス54の二次巻線60の極性は、上述したトランス53の二次巻線50の極性と逆に構成される。トランス54の一次巻線56の極性は、上述したトランス53の一次巻線55の極性と同じに構成される。トランス54の一次巻線56には、一次側回路58が接続される。一次側回路58は、上述した駆動回路10Bの発振回路11、直流電圧源12、N型MOSスイッチ13〜16を含む回路である。
【0081】
図11のHブリッジによるモータ駆動装置の動作を説明する。電流制御型トランジスタ41および44が順方向にオンし、電流制御型トランジスタ42および43がオフしているとき、負荷であるモータ40に図中Aで示す向きの駆動電流が流れる。次に、電流制御型トランジスタ41および44がオフし、電流制御型トランジスタ41〜44の全てがオフすると、モータ40に流れる駆動電流は急に止まることができず、電流制御型トランジスタ42および43が逆方向にオンして図中Bで示す向きの環流電流が流れる。
【0082】
このような状態で電流制御型トランジスタ41および44をオンさせるとき、左側レグの二次巻線49と右側レグの二次巻線60との極性が同じに構成されていることから、電流制御型トランジスタ41および44に印加される正パルスのタイミングが同位相で正確に一致する。これにより、電流制御型トランジスタ41および44は同じタイミングでオンされる。
【0083】
もし、電流制御型トランジスタ41および44がオンされるタイミングがずれていると、過渡的に、左右両レグの上側アームの電流制御型トランジスタ41および43がオン、左右両レグの下側アームの電流制御型トランジスタ42および44がオフする状態が生じるおそれがある。このような場合には、モータ40の端子Lと端子Rとが短絡された状態となって両端子間の電圧が0になり、駆動電流に歪みが生じてモータ40を正確に駆動制御できなくなる。
【0084】
また、左側レグを構成する上側アームの二次巻線49と下側アームの二次巻線50、および右側レグを構成する上側アームの二次巻線59と下側アームの二次巻線60が、それぞれ逆の極性に構成されているので、電流制御型トランジスタ41および44がオンされるとき、電流制御型トランジスタ41を駆動する正パルスの印加タイミングと同じタイミングで、電流制御型トランジスタ42に電荷を引き抜くための負パルスが印加される。同様に、電流制御型トランジスタ44を駆動する正パルスの印加タイミングと同じタイミングで、電流制御型トランジスタ43に電荷を引き抜くための負パルスが印加される。
【0085】
なお、上側アームの二次巻き線49(59)と下側アームの二次巻線50(60)とが逆極性にされたことにより、上側アームの電流制御型トランジスタ41(43)が駆動されるときにスイッチ回路45(47)から出力される正のパルス電流の位相と、下側アームの電流制御型トランジスタ42(44)が駆動されるときにスイッチ回路46(48)から出力される正のパルス電流の位相とは反転したものとなる。
【0086】
以上説明したように第五の実施の形態によれば、次の作用効果が得られる。
(1)Hブリッジによるモータ駆動装置において、左側レグの上側アームを構成する電流制御型トランジスタ41と、右側レグの下側アームを構成する電流制御型トランジスタ44とを正確に同じ駆動タイミングで駆動する。また、右側レグの上側アームを構成する電流制御型トランジスタ43と、左側レグの下側アームを構成する電流制御型トランジスタ42とを正確に同じ駆動タイミングで駆動する。これにより、左右両レグの電流制御型トランジスタが過渡的に同時にオンされることが防止される結果、歪みのない駆動電流で正確にモータ40を駆動制御できる。
(2)左右両レグにおいて、上側アームの二次巻線と下側アームの二次巻線とを、それぞれ逆の極性に構成するようにしたので、上下アームのうち一方の電流制御型トランジスタを駆動する正パルス電流の印加タイミングと同じタイミングで、上下アームのうち他方の電流制御型トランジスタに電荷を引き抜くための負パルス電流が印加される。この結果、第三の実施の形態と同様に、上下アーム間の貫通電流を防止することができる。
【0087】
特許請求の範囲における各構成要素と、発明の実施の形態における各構成要素との対応について説明すると、エミッタ端子が駆動用端子に、駆動用トランジスタT1,T2が電流制御型トランジスタに、ベース端子が制御端子に、スイッチ23(内蔵ダイオード270,N型MOSスイッチ26および二次巻き線72)が保護手段に、駆動回路10がパルス電流発生手段に、制御回路22(28)が制御手段に、発振回路11およびN型MOSスイッチ13〜16が交流発生手段に、ダイオード18,19およびN型MOSスイッチ20,21が整流手段に、N型MOSスイッチ13が第1のスイッチに、N型MOSスイッチ16が第2のスイッチに、N型MOSスイッチ14が第3のスイッチに、N型MOSスイッチ15が第4のスイッチに、発振回路11がスイッチ制御手段に、ダイオード18(内蔵ダイオード260)が第1の整流素子に、ダイオード19(内蔵ダイオード270)が第2の整流素子に、N型MOSスイッチ20(N型MOSスイッチ26)が第5のスイッチに、N型MOSスイッチ21(N型MOSスイッチ27)が第6のスイッチに、制御回路22(制御回路28)が第2のスイッチ制御手段に、駆動用トランジスタT1が第1の電流制御型トランジスタに、駆動用トランジスタT2が第2の電流制御型トランジスタに、駆動回路10および10Bが第1のパルス電流発生手段に、駆動回路10Aが第2のパルス電流発生手段に、制御回路22(28)が第1の制御手段に、制御回路22A(28A)が第2の制御手段に、トランス17Bが第1のトランスに、トランス17Aが第2のトランスに、発振回路11およびN型MOSスイッチ13〜16が第1の交流発生手段に、発振回路11AおよびN型MOSスイッチ13A〜16Aが第2の交流発生手段に、ダイオード18,19およびN型MOSスイッチ20,21が第1の整流手段に、ダイオード18A,19AおよびN型MOSスイッチ20A,21Aが整流手段に、二次巻線72Bが第1の二次巻線に、二次巻線72Aが第2の二次巻線に、モータ40が誘導性負荷に、一次側回路57,トランス53,およびスイッチ回路45が、第1のパルス電流発生手段に、一次側回路57,トランス53,およびスイッチ回路46が、第2のパルス電流発生手段に、一次側回路58,トランス54,およびスイッチ回路47が、第3のパルス電流発生手段に、一次側回路58,トランス54,およびスイッチ回路47が、第4のパルス電流発生手段に、それぞれ対応する。
【図面の簡単な説明】
【図1】第一の実施の形態による電流制御型素子用駆動装置を説明する図である。
【図2】図1の駆動回路を示す図である。
【図3】図2の駆動回路の動作タイミングを示すタイミングチャートである。
【図4】電流制御型素子用駆動装置の動作タイミングを表すタイミングチャートである。
【図5】第二の実施の形態による駆動回路を説明する図である。
【図6】第二の実施の形態による電流制御型素子用駆動装置の動作タイミングを表すタイミングチャートである。
【図7】第三の実施の形態による駆動回路を説明する図である。
【図8】図7による駆動回路を用いて電流制御型素子用駆動装置を駆動制御する場合の動作タイミングを表すタイミングチャートである。
【図9】上側アーム駆動用の二次巻線と下側アーム駆動用の二次巻線との極性を逆にした状態で一次巻線を共通にするトランスを示す図である。
【図10】電流制御型素子用駆動装置を3組用いて3相モータを駆動する例を示す図である。
【図11】駆動回路を2組用いてHブリッジによるモータ駆動装置を構成する例を示す図である。
【符号の説明】
10,10A,10B…駆動回路、 11,11A…発振回路、
12,12A…直流電圧源、
13〜16,13A〜16A,20,20A,21,21A,26,26A,27,27A…N型MOSスイッチ、
17,17A,17B,17C,53,54…パルストランス、
18,18A,19,19A…ダイオード、
22,22A,28,28A…制御回路、 23,23A…スイッチ、
24,24A,25,25A…出力端子、 30,40…モータ、
45〜48…スイッチ回路、
55,56,71,71A…一次巻線、 57,58…一次側回路、
49,50,59,60,72,72A,72B…二次巻線、
260,260A,270,270A…ボディダイオード、
T1,T2,33〜38,41〜44…駆動用トランジスタ、
L1…誘導性負荷、

Claims (13)

  1. 駆動用端子に接続された誘導性負荷に駆動電流を供給する電流制御型トランジスタを備え、前記電流制御型トランジスタが前記誘導性負荷を駆動する向きと逆方向にオンするように前記誘導性負荷から生じる逆起電力による電流を前記電流制御型トランジスタの制御端子に供給する保護手段を備えた電流制御型素子用駆動装置において、
    前記電流制御型トランジスタの制御端子に正のパルス状電流および負のパルス状電流のいずれか一方を供給するパルス電流発生手段と、
    前記電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間に前記正のパルス状電流を前記制御端子へ連続的に2パルス以上供給し、前記電流制御型トランジスタが前記逆方向にオンしている状態から逆回復する時点に前記負のパルス状電流を前記制御端子へ少なくとも1パルス供給するように前記パルス電流発生手段を制御する制御手段とを備えることを特徴とする電流制御型素子用駆動装置。
  2. 請求項1に記載の電流制御型素子用駆動装置において、
    前記パルス電流発生手段は、直流電圧源の出力両端をトランスの一次巻線の両端から正負両方向に交互に印加する交流発生手段と、
    前記トランスの二次巻線に誘起する正負の電圧を時分割でそれぞれ整流する整流手段とを備えることを特徴とする電流制御型素子用駆動装置。
  3. 請求項2に記載の電流制御型素子用駆動装置において、
    前記交流発生手段は、前記直流電圧源の出力両端を前記トランスの一次巻線の両端から正方向に印加するように接続する第1のスイッチおよび第2のスイッチと、
    前記直流電圧源の出力両端を前記トランスの一次巻線の両端から負方向に印加するように接続する第3のスイッチおよび第4のスイッチと、
    前記正方向に印加するように接続する時間および前記負方向に印加するように接続する時間の長い方は、他方の時間と前記正方向および負方向のいずれにも接続しない時間との和より短くするように前記第1〜第4のスイッチを開閉制御するスイッチ制御手段とを備えることを特徴とする電流制御型素子用駆動装置。
  4. 請求項2または3に記載の電流制御型素子用駆動装置において、
    前記整流手段は、互いに極性が逆向きになるように直列に接続される第1の整流素子および第2の整流素子と、
    前記第1の整流素子および前記第2の整流素子にそれぞれ並列に接続される第5のスイッチおよび第6のスイッチと、
    前記電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間と、前記電流制御型トランジスタが前記逆方向にオンしている状態から逆回復する時点とで前記第1の整流素子および前記第2の整流素子による整流方向を切換えるように前記第5のスイッチおよび前記第6のスイッチを開閉制御する第2のスイッチ制御手段とを備えることを特徴とする電流制御型素子用駆動装置。
  5. 請求項2または3に記載の電流制御型素子用駆動装置において、
    前記整流手段は、直列に接続される第1の整流素子および第5のスイッチと、直列に接続される第2の整流素子および第6のスイッチとを前記第1の整流素子および前記第2の整流素子の極性が逆向きになるように並列に接続し、
    前記電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間と、前記電流制御型トランジスタが前記逆方向にオンしている状態から逆回復する時点とで前記第1の整流素子および前記第2の整流素子による整流方向を切換えるように前記第5のスイッチおよび前記第6のスイッチを開閉制御する第2のスイッチ制御手段を備えることを特徴とする電流制御型素子用駆動装置。
  6. 誘導性負荷に対して上アーム側に位置して第1の方向に駆動電流を供給するとともに、前記誘導性負荷から生じる逆起電力による電流を逆方向に流す第1の電流制御型トランジスタと、
    前記第1の電流制御型トランジスタと直列に接続され、前記誘導性負荷に対して下アーム側に位置して前記第1の方向と異なる第2の方向に駆動電流を供給するとともに、前記誘導性負荷から生じる逆起電力による電流を逆方向に流す第2の電流制御型トランジスタと、
    前記第1の電流制御型トランジスタの制御端子に正のパルス状電流および負のパルス状電流のいずれか一方を供給する第1のパルス電流発生手段と、
    前記第1の電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間に前記正のパルス状電流を前記第1の電流制御型トランジスタの制御端子へ連続的に2パルス以上供給し、前記第1の電流制御型トランジスタが前記逆方向にオンしている状態から逆回復する時点に前記負のパルス状電流を前記第1の電流制御型トランジスタの制御端子へ少なくとも1パルス供給するように前記第1のパルス電流発生手段を制御する第1の制御手段と、
    前記第2の電流制御型トランジスタの制御端子に正のパルス状電流および負のパルス状電流のいずれか一方を供給する第2のパルス電流発生手段と、
    前記第2の電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間に前記正のパルス状電流を前記第2の電流制御型トランジスタの制御端子へ連続的に2パルス以上供給し、前記第2の電流制御型トランジスタが前記逆方向にオンしている状態から逆回復する時点に前記負のパルス状電流を前記第2の電流制御型トランジスタの制御端子へ少なくとも1パルス供給するように前記第2のパルス電流発生手段を制御する第2の制御手段とを備えることを特徴とする電流制御型素子用駆動装置。
  7. 請求項6に記載の電流制御型素子用駆動装置において、
    前記第1のパルス電流発生手段および前記第2のパルス電流発生手段は、直流電圧源の出力両端をトランスの一次巻線の両端から正負両方向に交互に印加する交流発生手段と、前記トランスの二次巻線に誘起する正負の電圧を時分割で整流する整流手段とをそれぞれ備えることを特徴とする電流制御型素子用駆動装置。
  8. 請求項7に記載の電流制御型素子用駆動装置において、
    前記第1の制御手段および第2の制御手段は、一方の前記電流制御型トランジスタのオン/オフ状態により他方の前記電流制御型トランジスタの前記制御端子に供給する前記パルス状電流の正負を切換えるようにそれぞれの前記整流手段を制御することを特徴とする電流制御型素子用駆動装置。
  9. 誘導性負荷に対して上アーム側に位置して第1の方向に駆動電流を供給するとともに、前記誘導性負荷から生じる逆起電力による電流を逆方向に流す第1の電流制御型トランジスタと、
    前記第1の電流制御型トランジスタと直列に接続され、前記誘導性負荷に対して下アーム側に位置して前記第1の方向と異なる第2の方向に駆動電流を供給するとともに、前記誘導性負荷から生じる逆起電力による電流を逆方向に流す第2の電流制御型トランジスタと、
    前記第1の電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間に前記第1の電流制御型トランジスタの制御端子に正のパルス状電流を供給する第1のパルス電流発生手段と、
    前記第2の電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間に前記第2の電流制御型トランジスタの制御端子に正のパルス状電流を供給する第2のパルス電流発生手段とを備え、
    前記第1のパルス電流発生手段および前記第2のパルス電流発生手段は、互いの位相が反転するパルス状電流を前記第1の電流制御型トランジスタおよび前記第2の電流制御型トランジスタにそれぞれ供給するように同期されることを特徴とする電流制御型素子用駆動装置。
  10. 請求項9に記載の電流制御型素子用駆動装置において、
    前記第1のパルス電流発生手段は、前記第1の電流制御型トランジスタが前記逆方向にオンしている状態から逆回復する時点に負のパルス状電流を前記第1の電流制御型トランジスタの制御端子にさらに供給し、
    前記第2のパルス電流発生手段は、前記第2の電流制御型トランジスタが前記逆方向にオンしている状態から逆回復する時点に負のパルス状電流を前記第2の電流制御型トランジスタの制御端子にさらに供給し、
    前記第1のパルス電流発生手段および前記第2のパルス電流発生手段は、前記第1のパルス電流発生手段による正のパルス状電流および前記第2のパルス電流発生手段による負のパルス状電流の位相が一致し、前記第1のパルス電流発生手段による負のパルス状電流および前記第2のパルス電流発生手段による正のパルス状電流の位相が一致するパルス状電流を、前記第1の電流制御型トランジスタおよび前記第2の電流制御型トランジスタにそれぞれ供給することを特徴とする電流制御型素子用駆動装置。
  11. 請求項10に記載の電流制御型素子用駆動装置において、
    前記第1のパルス電流発生手段は、第1のトランスと、直流電圧源の出力両端を前記第1のトランスの一次巻線の両端から正負両方向に交互に印加する第1の交流発生手段と、前記第1のトランスの二次巻線に誘起する正負の電圧を時分割で整流する第1の整流手段とを備え、
    前記第2のパルス電流発生手段は、第2のトランスと、直流電圧源の出力両端を前記第2のトランスの一次巻線の両端から正負両方向に交互に印加する第2の交流発生手段と、前記第2のトランスの二次巻線に誘起する正負の電圧を時分割で整流する第2の整流手段とを備え、
    前記第1のトランスの二次巻線に誘起される電圧の位相および前記第2のトランスの二次巻線に誘起される電圧の位相は、反転していることを特徴とする電流制御型素子用駆動装置。
  12. 請求項11に記載の電流制御型素子用駆動装置において、
    前記第1のトランスおよび前記第2のトランスは1つのトランスで構成され、このトランスは、
    共用される一次巻線と、正負の電圧を誘起する第1の二次巻線と、前記第1の二次巻線によって誘起される正負の電圧と位相が反転する正負の電圧を誘起する第2の二次巻線とを備えることを特徴とする電流制御型素子用駆動装置。
  13. 請求項9に記載の電流制御型素子用駆動装置において、
    前記誘導性負荷に対して上アーム側に位置して前記第2の方向に駆動電流を供給するとともに、前記誘導性負荷から生じる逆起電力による電流を逆方向に流す第3の電流制御型トランジスタと、
    前記第3の電流制御型トランジスタと直列に接続され、前記誘導性負荷に対して下アーム側に位置して前記第1の方向駆動電流を供給するとともに、前記誘導性負荷から生じる逆起電力による電流を逆方向に流す第4の電流制御型トランジスタと、
    前記第3の電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間に前記第3の電流制御型トランジスタの制御端子に正のパルス状電流を供給する第3のパルス電流発生手段と、
    前記第4の電流制御型トランジスタが前記誘導性負荷を駆動する向きにオンする期間に前記第4の電流制御型トランジスタの制御端子に正のパルス状電流を供給する第4のパルス電流発生手段とをさらに備え、
    前記第1のパルス電流発生手段〜前記第4のパルス電流発生手段は、(1)前記第1のパルス電流発生手段による正のパルス状電流および前記第2のパルス電流発生手段による正のパルス状電流の位相が反転し、(2)前記第1のパルス電流発生手段による正のパルス状電流および前記第4のパルス電流発生手段による正のパルス状電流の位相が一致し、(3)前記第3のパルス電流発生手段による正のパルス状電流および前記第4のパルス電流発生手段による正のパルス状電流の位相が反転し、(4)前記第3のパルス電流発生手段による正のパルス状電流および前記第2のパルス電流発生手段による正のパルス状電流の位相が一致するパルス状電流を、前記第1の電流制御型トランジスタ〜第4の電流制御型トランジスタにそれぞれ供給することを特徴とする電流制御型素子用駆動装置。
JP2001198690A 2000-11-09 2001-06-29 電流制御型素子用駆動装置 Expired - Fee Related JP3674547B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001198690A JP3674547B2 (ja) 2000-11-09 2001-06-29 電流制御型素子用駆動装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000342088 2000-11-09
JP2000-342088 2000-11-09
JP2001198690A JP3674547B2 (ja) 2000-11-09 2001-06-29 電流制御型素子用駆動装置

Publications (2)

Publication Number Publication Date
JP2002209387A JP2002209387A (ja) 2002-07-26
JP3674547B2 true JP3674547B2 (ja) 2005-07-20

Family

ID=26603664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001198690A Expired - Fee Related JP3674547B2 (ja) 2000-11-09 2001-06-29 電流制御型素子用駆動装置

Country Status (1)

Country Link
JP (1) JP3674547B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091752B2 (en) 2003-09-30 2006-08-15 Power Integrations, Inc. Method and apparatus for simplifying the control of a switch
JP2006345641A (ja) * 2005-06-09 2006-12-21 Toyota Industries Corp Dc/ac変換回路およびdc/ac変換方法
JP5310758B2 (ja) * 2011-02-15 2013-10-09 株式会社デンソー 半導体スイッチング素子の駆動回路
JP5831737B2 (ja) * 2011-05-09 2015-12-09 大平電子株式会社 双方向電力変換装置

Also Published As

Publication number Publication date
JP2002209387A (ja) 2002-07-26

Similar Documents

Publication Publication Date Title
US4566059A (en) Converter with lossless snubbing components
JP2008206304A (ja) スイッチング電源装置
JPH0748942B2 (ja) 同期スイッチングシステムを備えた高効率パワーコンバータ
KR20130126580A (ko) 전압 컨버터
EP1624561A2 (en) Push-pull switching power converter
JP4913395B2 (ja) 変換器
WO2007091374A1 (ja) 同期整流型フォワードコンバータ
US7075032B2 (en) Power supply apparatus
JP2006345641A (ja) Dc/ac変換回路およびdc/ac変換方法
JP3674547B2 (ja) 電流制御型素子用駆動装置
JP3574849B2 (ja) Dc−dcコンバータ装置
JP2005507628A (ja) 同期整流回路
EP1511173B1 (en) Power conversion apparatus and dead time generator
US6697266B2 (en) Method and system for providing a DC voltage with low ripple by overlaying a plurality of AC signals
ITMI20002611A1 (it) Circuito di pilotaggio di motori commutati elettronicamente
JP6803993B2 (ja) 直流電圧変換器、および直流電圧変換器の作動方法
JPH07298610A (ja) スイッチング電源装置
JPH0522945A (ja) 電源電圧発生回路
US6005779A (en) Rectification and inversion circuits
JP6493033B2 (ja) 電力変換装置及び電力変換システム
JP4423565B2 (ja) スイッチング電源装置
JPH1118426A (ja) スイッチング電源回路
JPS6127989B2 (ja)
US6400588B1 (en) Non-isolated A.C./D.C. converter
JP4644950B2 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees