JP3674431B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP3674431B2
JP3674431B2 JP36983099A JP36983099A JP3674431B2 JP 3674431 B2 JP3674431 B2 JP 3674431B2 JP 36983099 A JP36983099 A JP 36983099A JP 36983099 A JP36983099 A JP 36983099A JP 3674431 B2 JP3674431 B2 JP 3674431B2
Authority
JP
Japan
Prior art keywords
radiator
temperature gas
heat
high temperature
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36983099A
Other languages
Japanese (ja)
Other versions
JP2001182952A (en
Inventor
範幸 米野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP36983099A priority Critical patent/JP3674431B2/en
Publication of JP2001182952A publication Critical patent/JP2001182952A/en
Application granted granted Critical
Publication of JP3674431B2 publication Critical patent/JP3674431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼熱を用いた暖房装置、特に輻射熱を用いた暖房装置に関するものである。
【0002】
【従来の技術】
従来のこの種の暖房装置は実公昭63−11548号公報に記載されているようなものが一般的であった。この暖房装置は図11に示すように本体下部に設けられたバーナー1と、前記バーナー1からの燃焼ガスを通過させる中空の薄型箱状の熱交換器2とこの熱交換器2の両側に形成された縦長の開口3と、前記熱交換器2の少なくとも前面に塗装された遠赤外線塗料4と、室内空気を前記熱交換器2に送風して熱交換し温風として本体吐出口より吐出する対流ファン5からなり、前記上記熱交換器2は内部を中空にして前記バーナー1からの燃焼ガス6が通過するように中空形成して通路7を設け、熱交換器2の各部に前記燃焼ガス6が行き渡るよう通路7の一部に凹形のビード8を設けて開口3から排出する構成となっていた。
【0003】
そしてバーナー1で発生した燃焼ガス6を熱交換器2に通過させて300℃〜500℃に加熱する事により、遠赤外線塗料で塗装された前面より遠赤外線を輻射し輻射暖房を行う。また、同時に熱交換器2の後面に沿って対流ファン5で取り入れた室内空気を送風し、熱交換器2の開口3で排出される燃焼ガス6と混合して室内へ温風として吐出し温風暖房を行うようになっていた。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の暖房装置では、燃焼ガスは熱交換器内に流入し対流熱伝達で熱交換器を加熱するが、対流熱伝達量Qcは(数1)で示すように熱交換器温度と燃焼ガス温度の差に比例するが、熱交換器からの輻射量Qrは(数2)で示すように熱交換器の温度の4乗と輻射吸熱面の温度の4乗差に比例する。
【0005】
【数1】

Figure 0003674431
【0006】
【数2】
Figure 0003674431
【0007】
従来の暖房装置における熱交換器の構成は、燃焼ガスと熱交換器の面積がほぼ等しく、また、熱交換器の熱伝達率は、平板のため10W/m2K程度であり、熱交換器温度を300℃にするためには、燃焼ガス温度とパネル部材の温度差を大きくする必要があり、パネル部材へ導入する燃焼ガス温度を約870℃の高温にしなければならないのでバーナーや熱交換器を高温に耐える材質にする必要があり、また、バーナーで発生させた火炎で直接熱交換器を加熱する必要があった。また熱交換器通路内の燃焼ガスは流れが下流になるにしたがって境界層の厚さが大きくなり、熱交換器温度はバーナー付近より開口端付近の温度が低下するという課題があった。さらに、熱交換器が高温になった場合、熱膨張によって熱交換器が変形するという課題があった。
【0008】
【課題を解決するための手段】
本発明は前記課題を解決するため高温ガスを発生する高温ガス発生手段と、前記高温ガスの熱によって加熱される採熱面と輻射エネルギーを発生する輻射面との両面を持ち、前記高温ガス発生手段の前側から上方にかけて配置した輻射体と、前記輻射体の採熱面に対向して下端より上端に向って形成し、前記採熱面に高温ガスを導く輻射体加熱風路と、前記輻射体加熱風路の下部と前記高温ガス発生手段とを結ぶ連結風路を備え、前記輻射体の採熱面及び輻射面の両面に高温ガス発生手段の高温ガスを輻射体の下端より上昇気流として導き、輻射体を採熱面と輻射面の両面から加熱する構成とし、かつ前記輻射体の中にフィンを配設した構成としたものである。
【0009】
上記構成により、高温ガスは採熱面と輻射面の両面を輻射体の下端より上昇気流によって加熱し、さらにフィンも加熱し、高温ガスが輻射体に熱伝達する際の伝熱面積は一層、拡大される。また、フィンも輻射体となるので輻射面の面積が減少することもない。さらに採熱面と輻射面の両面加熱によって熱伝達率が大きくなるので、高温ガスの熱が効率よく輻射面に伝わる。したがって、高温ガスの温度が低くても高い輻射体温度が得られ、また輻射面の温度変化も少なくすることができる。
【0010】
さらにフィンによって境界層の発達が小さくなり熱伝達率が大きくなるので、高温ガスの熱が効率よく輻射面に伝わる。したがって、高温ガスの温度が低くても高い輻射体温度が得られる。また境界層が発達しないので輻射面の温度変化が少なく、また、フィンによって輻射体が補強されるので輻射体の変形を小さくすることができる。
【0011】
【発明の実施の形態】
本発明の請求項1にかかる暖房装置は、燃料を燃焼させるバーナー等の高温ガスを発生する高温ガス発生手段と、高温ガスの熱によって加熱される採熱面と輻射エネルギーを発生する輻射面との両面を持ち、前記高温ガス発生手段の前側から上方にかけて配置した輻射体と、輻射体の採熱面に対向して下端より上端に向って形成し、前記採熱面に高温ガスを導く輻射体加熱風路と、輻射体加熱風路の下部と高温ガス発生手段とを結ぶ連結風路を備え、前記輻射体の採熱面及び輻射面の両面に高温ガス発生手段の高温ガスを輻射体の下端より上昇気流として導き、輻射体を採熱面と輻射面の両面から加熱する構成とし、かつ前記輻射体の中にフィンを配設している。上記実施形態により、フィンによって高温ガスが輻射体に熱伝達する際の伝熱面積が拡大されるので、高温ガスの熱がフィンによって効率よく輻射面に伝わるので、高温ガスの温度と輻射面の温度差を小さくすることができる。
【0012】
本発明の請求項にかかる暖房装置は、高温ガスを発生する高温ガス発生手段と、高温ガスの熱によって加熱される採熱面と輻射エネルギーを発生する輻射面との両方の面を持ち、前記高温ガス発生手段の前側から上方にかけて配置し、かつ前記採熱面に突起や切れ込みなどの熱伝達促進手段を設けられた輻射体と、輻射体の採熱面に対向して下端より上端に向って形成し、前記採熱面に高温ガスを導く輻射体加熱風路と、輻射体加熱風路の下部と高温ガス発生手段とを結ぶ連結風路を備え、前記輻射体の採熱面及び輻射面の両面に高温ガス発生手段の高温ガスを輻射体の下端より上昇気流として導き、輻射体を採熱面と輻射面の両面から加熱する構成としている。そして上記構成の実施形態により、熱伝達促進手段が設けられているので、境界層の発達が小さくなり熱伝達率が大きくなる。従って高温ガスの熱が効率よく輻射面に伝わり、高温ガスの温度と輻射面の温度差をより小さくすることと、輻射面の温度変化を少なくすることができる。
【0013】
本発明の請求項にかかる暖房装置は、請求項記載の暖房装置において、輻射体は採熱面から輻射面に貫通し、ルーバーを付けた穴で熱促進手段を形成して輻射体の輻射面に高温ガスを導いてなる構成である。そして上記構成の実施形態により、輻射体にルーバーを付けた穴が設けられているので高温ガスは輻射体加熱風路から輻射体の輻射面にも流れ、高温ガスは採熱面と輻射面の両面から輻射体を加熱し、さらにルーバーも加熱し、高温ガスが輻射体に熱伝達する際の伝熱面積は拡大される。また、ルーバーも輻射体となるので穴によって輻射面の面積が減少することもない。さらに穴によって境界層の発達が小さくなり熱伝達率が大きくなるので、高温ガスの熱が効率よく輻射面に伝わる。したがって、高温ガスの温度と輻射面の温度差をより小さくすることができる。境界層が発達しないので輻射面の温度変化が少なく、また、ルーバーによって輻射体が補強されるので輻射体の変形を小さくすることができる。
【0014】
本発明の請求項にかかる暖房装置は、請求項記載の暖房装置において熱伝達促進手段として、ルーバーを付けた穴の開口端が重力方向の上方に設けられた構成としたものである。そして上記構成の実施形態により高温ガスは輻射体加熱風路からドラフト効果により輻射体輻射面上方に流れ出すので、開口端からの風速が増し輻射面での熱伝達率が増加するので高温ガスの温度と輻射面の温度差をより小さくすることができる。さらに、高温ガス送風の圧力損失を小さくすることができ、送風機を小型化することができる。
【0015】
本発明の請求項にかかる暖房装置は請求項または請求項記載の暖房装置において輻射体に千鳥配置にルーバーを付けた穴が設けられた構成となっている。そして上記構成の実施形態により、高温ガスは加熱風路からルーバーを付けた穴を通って輻射体輻射面に流れ輻射面をむらなく加熱するので、高温ガスが輻射体に熱伝達する際の伝熱面積はより拡大され、高温ガスの熱が効率よく輻射面に伝わり、高温ガスの温度と輻射面の温度差をより小さくすることができる。
【0016】
本発明の請求項にかかる暖房装置は請求項3または請求項4記載の暖房装置において輻射体に設けられたルーバーを付けた穴が連結風路から離れるにしたがって数が多くなる構成となっている。そして上記構成の実施形態により請求項3または請求項4の効果に加え、連結風路から流入した燃焼ガス温度は連結風路から離れるほど低下するが、燃焼ガスは加熱風路から離れるほど輻射体輻射面にも流れ加熱風路側と輻射面側の両面から輻射面を加熱するので、輻射体の温度を均一にすることができる。
【0017】
本発明の請求項にかかる暖房装置は請求項ないし、請求項6のうちのいずれか1項に記載の暖房装置において輻射体が連続的に折り曲げられた形状としたものである。そして上記構成の実施形態により請求項ないし、請求項6の効果に加え、高温ガスは輻射体加熱風路からルーバーを付けた穴を通って輻射体輻射面にも流れ出し、加熱風路側と輻射面側の両面から輻射面を加熱するとともに、流れ出した高温ガスが室内に広がらず折り曲げられた隣り合う輻射体も加熱するので、燃焼ガスの熱が効率よく輻射面に伝わるので、燃焼ガスの温度と輻射面の温度差をさらに小さくすることができる。
【0018】
【実施例】
(実施例1)
図1は本発明の実施例1の暖房装置の一部を切り欠いて要部を示した斜視図である。図において、11は石油やガス燃料を燃焼させる円形バーナー等の高温ガスを発生する高温ガス発生手段であり、24は高温ガスの熱によって加熱される採熱面25と輻射エネルギーを発生する輻射面26を持った輻射体であり、高温ガスを採熱面25および輻射面26に送風する採熱面加熱風路27および輻射面下端に設けられた輻射面加熱風路28を持ち、採熱面加熱風路27および輻射面加熱風路28は連結風路17によって高温ガス発生手段11から高温ガスが導かれる構成となっている。上記構成により、高温ガス発生手段11の燃焼で発生した高温ガスは連結風路17によって採熱面加熱風路27の下部に設けられた輻射体加熱風路入口29に導かれ採熱面加熱風路27を通ってドラフト作用によって風速を増しながら、採熱面25を加熱し採熱面加熱風路27の上方に設けられた輻射体加熱風路出口30に導かれる。さらに高温ガスは連結風路17から輻射面加熱風路28に導かれ、輻射面26にも送風され輻射面26の下端から上昇気流となって上昇し輻射面26を加熱する。このため輻射体24は、高温ガスによって採熱面25、および輻射面26の両方から加熱される。そして、輻射体24が約300℃に加熱され、輻射面から遠赤外線が輻射され、輻射によって室内の暖房を行う。このため人体に直接風が当たる事なく快適な暖房感が得られる。
【0019】
本実施例の構成では高温ガスと輻射体24の熱伝達面積は、採熱面25のみの加熱に対して2倍になるので、従来例と同じように輻射体温度300℃の温度にするには、580℃で良い。このため高温ガス発生手段11としてラインバーナーを用い火炎で直接熱交換器を加熱する必要がなく、排気ガス特性の良い円形バーナーを用い、高温ガスによって輻射暖房を行う事が出来る。なお、輻射体24の中にフィンを配設すればより熱伝達効率を向上させることができる。
【0020】
実施例2
図2は本発明の実施例2の暖房装置の一部を切り欠いて要部を示した斜視図である。図2において、11は石油やガス燃料を燃焼させる円形バーナー等の高温ガスを発生する高温ガス発生手段であり、31は高温ガスの熱によって加熱される採熱面32と輻射エネルギーを発生する輻射面33を持ち、採熱面32から輻射面33に直径5mmで20mmピッチに配置した貫通した穴34を設けた輻射体であり、輻射体31の採熱面32には高温ガスを導く輻射体加熱風路16が取り付けられ、輻射体加熱風路16には連結風路17によって高温ガス発生手段11から高温ガスが導かれる構成となっている。
【0021】
上記構成により、高温ガス発生手段11の燃焼により発生した高温ガスは連結風路17によって輻射体加熱風路16の下部に設けられた輻射体加熱風路入口29に導かれ輻射体加熱風路16を通ってドラフト作用によって風速を増しながら、採熱面32を加熱するとともに、穴34を通って輻射面33に導かれ、上昇流となって輻射面33を加熱する。このため輻射体31は、高温ガスによって採熱面32、および輻射面33の両方から加熱される。そして、輻射体31が約300℃に加熱され、輻射面33から遠赤外線が輻射され、輻射によって室内の暖房を行う。このため人体に直接風が当たる事なく快適な暖房感が得られる。
【0022】
本実施例の構成では高温ガスと輻射体31の熱伝達面積は、採熱面32のみの加熱に対して2倍になるとともに、穴34によって境界層の発達が小さくなり熱伝達率が15W/m2Kとなる。したがって高温ガスの熱が効率よく輻射面33に伝わり、燃焼ガスの温度と輻射面33の温度差をより小さくすることができる。従来例と同じように輻射体温度を300℃の温度にするには、高温ガス温度は490℃で良い。このため高温ガス発生手段11としてラインバーナーを用い火炎で直接熱交換器を加熱する必要がなく、排気ガス特性の良い円形バーナーを用い、高温ガスによって輻射暖房を行う事が出来る。さらに、境界層が発達しないので輻射面33の温度変化を少なくすることができる。
【0023】
実施例3
図3は本発明の実施例3の暖房装置の一部を切り欠いて要部を示す斜視図である。図3において、実施例2と同じ部分は同様の構成であり、輻射体31には採熱面32から輻射面33に直径5mmで20mmピッチに配置した貫通した穴34を千鳥配置に設けられている。
【0024】
上記構成により、高温ガス発生手段11の燃焼で発生した高温ガスは連結風路17によって輻射体加熱風路16の下部に設けられた輻射体加熱風路入口29に導かれ輻射体加熱風路16を通ってドラフト作用によって風速を増しながら、採熱面33を加熱するとともに、千鳥配置に設けられた穴34を通って輻射面33に導かれ、上昇流となって輻射面33を加熱する。したがって実施例2の構成に比べ輻射面33の加熱効率が良く、従来例と同じように輻射体温度を300℃の温度にするには、高温ガス温度は470℃で良く、さらに輻射面33の温度差をより小さくすることができる。
【0025】
実施例4
図4は本発明の実施例4の暖房装置の一部を切り欠いて要部を示した斜視図である。図4において、実施例2と同じ部分は同様の構成であり、輻射体31には採熱面32から輻射面33に直径5mmで貫通した穴34を連結風路17から離れるにしたがって数が多くなるように配置している。
【0026】
上記構成により、高温ガス発生手段11の燃焼で発生した高温ガスは連結風路17によって輻射体加熱風路16の下部に設けられた輻射体加熱風路入口29に導かれ輻射体加熱風路16を通ってドラフト作用によって風速を増しながら、採熱面33を加熱するとともに、穴34を通って輻射面33に導かれ、上昇流となって輻射面33を加熱する。連結風路17から流入した高温ガス温度は連結風路17から離れるほど低下するが、輻射面33の穴34を通過した高温ガスによる加熱は連結風路17から離れるほど数が多くなるので、実施例2の特徴に加え、輻射体31の輻射体加熱方向の温度分布を均一にすることができる。
【0027】
実施例5
図5は本発明の実施例5の暖房装置の一部を切り欠いて要部を示した斜視図である。図5において、11は石油やガス燃料を燃焼させる円形バーナー等の高温ガスを発生する高温ガス発生手段であり、35は高温ガスの熱によって加熱される採熱面36と輻射エネルギーを発生する輻射面37を持ち採熱面36から輻射面37に直径5mmで20mmピッチに配置した貫通した穴38を設け、投影面積に対し採熱面36、および輻射面37の面積が3倍になるようなピッチと深さで連続的に折り曲げられた形状の輻射体であり、輻射体35の採熱面37には高温ガスを導く輻射体加熱風路16が取り付けられ、輻射体加熱風路16には連結風路17によって高温ガス発生手段11から高温ガスが導かれる構成となっている。
【0028】
上記構成により、高温ガス発生手段11の燃焼で発生した高温ガスは連結風路17によって輻射体加熱風路16の下部に設けられた輻射体加熱風路入口29に導かれ輻射体加熱風路16を通ってドラフト作用によって風速を増しながら、採熱面36を加熱するとともに、穴38を通って輻射面37に導かれ、上昇流となって輻射面37を加熱する。このため輻射体36は、高温ガスによって採熱面36、および輻射面37の両方から加熱される。そして、輻射体35が約300℃に加熱され、輻射面37から遠赤外線が輻射され、輻射によって室内の暖房を行う。このため人体に直接風が当たる事なく快適な暖房感が得られる。本実施例の構成では高温ガスと輻射体35の熱伝達面積は、採熱面のみの加熱に対して2倍になるとともに、採熱面36の面積が投影面積に対して3倍になるように折り曲げらているので、高温ガスから輻射体35への伝熱面積は6倍になっており、穴38によって境界層の発達が小さくなり熱伝達率が15W/m2Kとなる。したがって高温ガスの熱が効率よく輻射面37に伝わり、燃焼ガスの温度と輻射面37の温度差をより小さくすることができる。従来例と同じように輻射体温度を300℃の温度にするには、高温ガス温度は370℃で良い。このため高温ガス発生手段11としてラインバーナーを用い火炎で直接熱交換器を加熱する必要がなく、排気ガス特性の良い円形バーナーを用い、火炎で間接的に高温ガスを作って輻射暖房を行う事が出来る。
【0029】
さらに輻射面37の面積が投影面積に対して3倍になっているので、見かけの輻射率が上がり、同じ輻射体36の温度でも暖房時の輻射量を大きくする事が出来る。
【0030】
また、さらに輻射体35が高温になり熱膨張した場合も、折り曲げ部によって膨張が吸収されるので、輻射体全体の変形を防止する事が出来る
実施例6
図6は本発明の実施例6の暖房装置の一部を切り欠いて要部を示した斜視図である。図6において、11は石油やガス燃料を燃焼させる円形バーナー等の高温ガスを発生する高温ガス発生手段であり、39は、高温ガスの熱によって加熱される採熱面40と輻射エネルギーを発生する輻射面41を持ち、採熱面40から輻射面41に貫通し熱伝達促進手段として輻射面41を切り起こし開口端42があるルーバーを付けた穴43を設けた輻射体であり、輻射体39の採熱面40には高温ガスを導く輻射体加熱風路16が取り付けられ、輻射体加熱風路16には連結風路17によって高温ガス発生手段11から高温ガスが導かれる構成となっている。
【0031】
上記構成により、高温ガス発生手段11の燃焼で発生した高温ガスは連結風路17によって輻射体加熱風路16の下部に設けられた輻射体加熱風路入口18に導かれ輻射体加熱風路16を通ってドラフト作用によって風速を増しながら、採熱面40を加熱するとともに、ルーバーを付けた穴43によって輻射面41に導かれ開口端42から輻射面41に吹き付けられ、上昇流となって輻射面41を加熱する。このため輻射体39は、高温ガスによって採熱面40、および輻射面41の両方から加熱される。そして、輻射体39が約300℃に加熱され、輻射面41から遠赤外線が輻射され、輻射によって室内の暖房を行う。このため人体に直接風が当たる事なく快適な暖房感が得られる。
【0032】
本実施例の構成では高温ガスと輻射体39の熱伝達面積は、採熱面40のみの加熱に対して2倍になるとともに、ルーバーも輻射体となるのでルーバーを付けた穴43によって輻射面41の面積が減少することもない。またルーバーを付けた穴43によって境界層の発達が小さくなり熱伝達率が25W/m2Kとなる。したがって高温ガスの熱が効率よく輻射面41に伝わり、燃焼ガスの温度と輻射面41の温度差をより小さくすることができる。従来例と同じように輻射体温度を300℃の温度にするには、高温ガス温度は410℃で良い。このため高温ガス発生手段11としてラインバーナーを用い火炎で直接熱交換器を加熱する必要がなく、排気ガス特性の良い円形バーナーを用い、高温ガスによって輻射暖房を行う事が出来る。さらに、境界層が発達しないので輻射面の温度変化を少なくすることができる。また、ルーバーによって輻射体が補強されるので輻射体の変形を小さくすることができる。
【0033】
実施例7
図7は本発明の実施例7の暖房装置の一部を切り欠いて要部を示した斜視図である。図7において、実施例6と同じ番号の部分は同様の構成であり熱伝達促進手段として、ルーバーを付けた穴43の開口端42が重力方向の上方に設けられた構成としたものである。そして上記構成により高温ガスは輻射体加熱風路16からドラフト効果により輻射体39の輻射面41の上方に流れ出すので、開口端42からの風速が増し輻射面41での熱伝達率が増加するので高温ガスの温度と輻射面41の温度差をより小さくすることができる。さらに、高温ガス送風の圧力損失を小さくすることができ、送風機44を小型化することができる。
【0034】
実施例8
図8は本発明の実施例8の暖房装置の一部を切り欠いて要部を示した斜視図である。図8において、実施例6と同じ番号の部分は同様の構成であり、千鳥配置に輻射体39の採熱面40から輻射面41に貫通し熱伝達促進手段としてあるルーバーを付けた穴43を設けた構成となっている。そして上記構成により、高温ガスは輻射体加熱風路16から千鳥配置に設けられたルーバーを付けた穴43を通って開口端42から輻射面41に流れ輻射面41をむらなく加熱するので、高温ガスが輻射体39に熱伝達する際の伝熱面積はより拡大され、高温ガスの熱が効率よく輻射面41に伝わり、高温ガスの温度と輻射面の温度差をより小さくすることができる。
【0035】
実施例9
図9は本発明の実施例9の暖房装置の一部を切り欠いて要部を示した斜視図である。図9において、実施例6と同じ番号の部分は同様の構成であり、輻射体39には採熱面40から輻射面41に貫通し熱伝達促進手段として輻射面41を切り起こし開口端42があるルーバーを付けた穴43を連結風路17から離れるにしたがって数多くなるよう配置している。
【0036】
上記構成により、高温ガス発生手段11の燃焼で発生した高温ガスは連結風路17によって輻射体加熱風路16の下部に設けられた輻射体加熱風路入口18に導かれ輻射体加熱風路16を通ってドラフト作用によって風速を増しながら、採熱面40を加熱するとともに、ルーバーを付けた穴43を通って輻射面41に導かれ、上昇気流となって輻射面41を加熱する。連結風路17から流入した高温ガス温度は連結風路17から離れるほど低下するが、輻射面41のルーバーを付けた穴43を通過した高温ガスによる加熱は連結風路17から離れるほど穴43の数が多くなるので、実施例6の特徴に加え、輻射体の輻射体加熱方向の温度分布を均一にすることができる。
【0037】
実施例10
図10は本発明の実施例10の暖房装置の一部を切り欠いて要部を示した斜視図である。
【0038】
図10において、11は石油やガス燃料を燃焼させる円形バーナー等の高温ガスを発生する高温ガス発生手段であり、45は高温ガスの熱によって加熱される採熱面46と輻射エネルギーを発生する輻射面47を持ち採熱面46から輻射面47に貫通し熱伝達促進手段として輻射面47を切り起こし開口端48があるルーバーを付けた穴49を設けた輻射体であり、採熱面46および輻射面47の面積が3倍になるようなピッチと深さで連続的に折り曲げられた形状であり、輻射体45の採熱面46には高温ガスを導く輻射体加熱風路16が取り付けられ、輻射体加熱風路16には連結風路17によって高温ガス発生手段11から高温ガスが導かれる構成となっている。上記構成により、高温ガス発生手段11の燃焼により発生した高温ガスは連結風路17によって輻射体加熱風路16の下部に設けられた輻射体加熱風路入口29に導かれ輻射体加熱風路16を通ってドラフト作用によって風速を増しながら、輻射体加熱風路16の途中にある採熱面46を加熱するとともに、ルーバーを付けた穴49を通って開口端48から輻射面47に導かれ、上昇気流となって輻射面47を加熱する。このため輻射体45は、高温ガスによって採熱面46、および輻射面47の両方から加熱される。そして、輻射体45が約300℃に加熱され、輻射面47から遠赤外線が輻射され、輻射によって室内の暖房を行う。このため人体に直接風が当たる事なく快適な暖房感が得られる。本実施例の構成では高温ガスと輻射体45の熱伝達面積は、採熱面46のみの加熱に対して2倍になるとともに、採熱面46の面積が投影面積に対して3倍になるように折り曲げらているので、高温ガスから輻射体45への伝熱面積は6倍になっており、ルーバーを付けた穴49によって境界層の発達が小さくなり熱伝達率が25W/m2Kとなる。したがって高温ガスの熱が効率よく輻射面47に伝わり、燃焼ガスの温度と輻射面47の温度差をより小さくすることができる。従来例と同じように輻射体温度を300℃の温度にするには、高温ガス温度は350℃で良い。このため高温ガス発生手段11としてラインバーナーを用い火炎で直接熱交換器を加熱する必要がなく、排気ガス特性の良い円形バーナーを用い、火炎で間接的に高温ガスを作って輻射暖房を行う事が出来る。
【0039】
さらに輻射面47の面積が投影面積に対して3倍になっているので、見かけの輻射率が上がり、同じ輻射体47の温度でも暖房時の輻射量を大きくする事が出来る。
【0040】
また、さらに輻射面47が高温になり熱膨張した場合も、ルーバーによって輻射体が補強されるとともに折り曲げ部によって膨張が吸収されるので、輻射体全体の変形を防止する事が出来る。
【0041】
【発明の効果】
以上説明したように本発明に係る暖房装置によれば、連結風路を介して輻射体加熱風路に導かれた高温ガス発生手段の高温ガスが輻射体の下端より上昇気流として導かれ、輻射体の採熱面と輻射面の両方の面を加熱するので、高温ガスが輻射体に熱伝達する伝熱面積は2倍になり、高温ガスの熱が効率よく輻射面に伝わり、高温ガスの温度と輻射面の温度差を小さくできるとともに、フィンによって高温ガスが輻射体に熱伝達する際の伝熱面積が拡大されるので、高温ガスの熱がフィンによって効率よく輻射面に伝わり、高温ガスの温度と輻射面の温度差を小さくすることができる。
【0042】
また、本発明に係る暖房装置によれば、輻射体の採熱面に突起や切れ込みなどの熱伝達促進手段を設けた構成としているので、境界層の発達が小さくなり熱伝達率が大きくなり、高温ガスの熱が効率よく輻射面に伝わり、高温ガスの温度と輻射面の温度差をより小さくすることと、輻射面の温度変化を少なくすることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における暖房装置の一部を切り欠いて要部を示した斜視図
【図2】 同実施例2における暖房装置の一部を切り欠いて要部を示した斜視図
【図3】 同実施例3における暖房装置の一部切り欠いて要部を示した斜視図
【図4】 同実施例4における暖房装置の一部を切り欠いて要部を示した斜視図
【図5】 同実施例5における暖房装置の一部切り欠いて要部を示した斜視図
【図6】 同実施例6における暖房装置の一部切り欠いて要部を示した斜視図
【図7】 同実施例7における暖房装置の一部切り欠いて要部を示した斜視図
【図8】 同実施例8における暖房装置の一部切り欠いて要部を示した斜視図
【図9】 同実施例9における暖房装置の一部切り欠いて要部を示した斜視図
【図10】 同実施例10における暖房装置の一部切り欠いて要部を示した斜視図
【図11】 従来の暖房装置の一部切り欠いて要部を示した斜視図
【符号の説明】
11 高温ガス発生手段
24、31、35、39、45 輻射体
25、32、36、40、46 採熱面
26、33、37、41、47 輻射面
16 輻射体加熱風路
17 連結風路
18、29 輻射体加熱風路入口
30 輻射体加熱風路出口
27 採熱面加熱風路
28 輻射面加熱風路
34、38 穴
42、48 開口端
43、49 ルーバーを付けた穴[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heating device using combustion heat, and more particularly to a heating device using radiant heat.
[0002]
[Prior art]
  A conventional heating apparatus of this type is generally described in Japanese Utility Model Publication No. 63-11548. This heating deviceIn FIG.As shown, a burner 1 provided at the lower part of the main body, a hollow thin box-shaped heat exchanger 2 through which combustion gas from the burner 1 passes, and a vertically long opening 3 formed on both sides of the heat exchanger 2 The far-infrared paint 4 painted on at least the front surface of the heat exchanger 2 and the convection fan 5 that blows indoor air to the heat exchanger 2 to exchange heat and discharge it as hot air from the main body outlet, The heat exchanger 2 is hollow so that the combustion gas 6 from the burner 1 passes therethrough and is provided with a passage 7, and the passage 7 is provided so that the combustion gas 6 can reach each part of the heat exchanger 2. A concave bead 8 is provided in a part, and is discharged from the opening 3.
[0003]
  The combustion gas 6 generated in the burner 1 is passed through the heat exchanger 2 and heated to 300 ° C. to 500 ° C., so that far infrared rays are radiated from the front surface coated with the far infrared paint and radiant heating is performed. At the same time, the indoor air taken in by the convection fan 5 is blown along the rear surface of the heat exchanger 2, mixed with the combustion gas 6 discharged from the opening 3 of the heat exchanger 2, and discharged into the room as hot air. I was supposed to do air heating.
[0004]
[Problems to be solved by the invention]
  However, in the above conventional heating device, the combustion gas flows into the heat exchanger and heats the heat exchanger by convective heat transfer, but the convective heat transfer amount Qc is equal to the heat exchanger temperature and the combustion as shown in (Equation 1). Although proportional to the difference in gas temperature, the amount of radiation Qr from the heat exchanger is proportional to the fourth power difference between the temperature of the heat exchanger and the temperature of the radiation endothermic surface as shown in (Equation 2).
[0005]
[Expression 1]
Figure 0003674431
[0006]
[Expression 2]
Figure 0003674431
[0007]
  Conventional heating systemInThe structure of the heat exchanger is such that the area of the combustion gas and the heat exchanger is almost equal, and the heat transfer coefficient of the heat exchanger is about 10 W / m 2 K due to the flat plate, and the heat exchanger temperature is set to 300 ° C. Therefore, it is necessary to increase the temperature difference between the combustion gas temperature and the panel member, and the combustion gas temperature introduced into the panel member has to be a high temperature of about 870 ° C. It was also necessary to heat the heat exchanger directly with a flame generated by a burner. Further, the combustion gas in the heat exchanger passage has a problem that the thickness of the boundary layer increases as the flow becomes downstream, and the heat exchanger temperature is lower in the vicinity of the opening end than in the vicinity of the burner. Furthermore, when a heat exchanger became high temperature, the subject that a heat exchanger deform | transforms by thermal expansion occurred.
[0008]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a high temperature gas generating means for generating a high temperature gas,SaidHeated by hot gas heatHeat collecting surfaceAnd the radiant surface that generates radiant energyIt has both sides and is arranged from the front side to the upper side of the hot gas generating means.A radiator,SaidOn the heat collecting surface of the radiatorOppositely formed from the lower end toward the upper end, on the heat collecting surfaceA radiator heating air passage for guiding a high temperature gas, and the radiator heating air passageBottom ofAnd a connecting air passage connecting the hot gas generating meansAnd a structure in which the high temperature gas of the high temperature gas generating means is guided as an upward air flow from the lower end of the radiator on both the heat collecting surface and the radiation surface of the radiator, and the radiator is heated from both the heat collecting surface and the radiation surface, and Fins are disposed in the radiator.It is a configuration.
[0009]
  With the above configuration,The hot gas heats both the heat-collecting surface and the radiant surface from the lower end of the radiant by an updraft,Furthermore, the fins are also heated, and the heat transfer area when the high-temperature gas transfers heat to the radiator is further expanded. Further, since the fin also becomes a radiator, the area of the radiation surface does not decrease. furtherSince the heat transfer coefficient is increased by heating both the heat collecting surface and the radiation surface, the heat of the high-temperature gas is efficiently transmitted to the radiation surface. Therefore, even if the temperature of the high temperature gas is low, a high radiator temperature can be obtained, and the temperature change of the radiation surface can be reduced.
[0010]
  Further, the development of the boundary layer is reduced by the fins and the heat transfer coefficient is increased, so that the heat of the high temperature gas is efficiently transmitted to the radiation surface. Therefore, even if the temperature of the high temperature gas is low, a high radiator temperature can be obtained. Further, since the boundary layer does not develop, the temperature change of the radiation surface is small, and the radiator is reinforced by the fins, so that the deformation of the radiator can be reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
  A heating apparatus according to claim 1 of the present invention is a high-temperature gas generating means for generating a high-temperature gas such as a burner for burning fuel, and is heated by heat of the high-temperature gas.Heat collecting surfaceAnd the radiant surface that generates radiant energyIt has both sides and is arranged from the front side to the upper side of the hot gas generating means.On the radiator and the heat collecting surface of the radiatorOppositely formed from the lower end toward the upper end, on the heat collecting surfaceRadiant heating air channel that guides high-temperature gas, and radiator heating air channelBottom ofA connecting air passage connecting the gas and the hot gas generation meansAnd a structure in which the high temperature gas of the high temperature gas generating means is guided as an upward air flow from the lower end of the radiator on both the heat collecting surface and the radiation surface of the radiator, and the radiator is heated from both the heat collecting surface and the radiation surface, and Fins are arranged in the radiator.ing. According to the above embodiment, the heat transfer area when the high temperature gas is transferred to the radiant by the fin is expanded, so the heat of the high temperature gas is efficiently transferred to the radiant surface by the fin. To reduce the temperature differenceit can.
[0012]
  Of the present inventionClaim2The heating device according to the present invention has both a hot gas generating means for generating hot gas, a heat collecting surface heated by the heat of the hot gas, and a radiant surface for generating radiant energy.And arranged from the front side to the upper side of the hot gas generating means, andA radiator provided with heat transfer promoting means such as protrusions and cuts on the heat collecting surface, and a heat collecting surface of the radiatorOppositely formed from the lower end toward the upper end, on the heat collecting surfaceRadiant heating air channel that guides high-temperature gas, and radiator heating air channelBottom ofA connecting air passage connecting the gas and the hot gas generation meansThe high temperature gas of the high temperature gas generating means is guided as an updraft from the lower end of the radiator to both the heat collecting surface and the radiation surface of the radiator, and the radiator is heated from both the heat collecting surface and the radiation surface.It is configured. And since the heat transfer promotion means is provided by the embodiment of the above configuration, the development of the boundary layer is reduced and the heat transfer coefficient is increased. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface, and the temperature difference between the temperature of the high-temperature gas and the radiation surface can be further reduced and the temperature change of the radiation surface can be reduced.
[0013]
  Claims of the invention3The heating device according to claim2In the described heating device,The radiator penetrates from the heat collection surface to the radiation surface,Hole with louverIt forms a heat promoting means and guides high temperature gas to the radiation surface of the radiator.It is a configuration. According to the embodiment of the above configuration, since the radiator is provided with a hole with a louver, the hot gas flows from the radiator heating air passage to the radiation surface of the radiator, and the high temperature gas flows between the heat collecting surface and the radiation surface. The radiator is heated from both sides, and the louver is also heated, so that the heat transfer area when the high-temperature gas transfers heat to the radiator is expanded. Further, since the louver also becomes a radiator, the area of the radiation surface is not reduced by the hole. Furthermore, since the development of the boundary layer is reduced by the holes and the heat transfer coefficient is increased, the heat of the hot gas is efficiently transmitted to the radiation surface. Therefore, the temperature difference between the temperature of the hot gas and the radiation surface can be further reduced. Since the boundary layer does not develop, the temperature change of the radiation surface is small, and the radiator is reinforced by the louver, so that the deformation of the radiator can be reduced.
[0014]
  Claims of the invention4The heating device according to claim3In the described heating apparatus, the opening end of the hole provided with the louver is provided as the heat transfer promoting means above the gravitational direction. According to the embodiment of the above configuration, the hot gas flows out from the radiator heating air passage above the radiator radiation surface due to the draft effect, so that the wind speed from the opening end increases and the heat transfer coefficient at the radiation surface increases, so the temperature of the high temperature gas increases. And the temperature difference between the radiation surfaces can be further reduced. Furthermore, the pressure loss of high temperature gas blowing can be reduced, and the blower can be downsized.
[0015]
  Claims of the invention5The heating device according to claim3Or claims4In the described heating apparatus, the radiator is provided with holes provided with louvers in a staggered arrangement. According to the embodiment of the above configuration, the high temperature gas flows from the heating air passage through the holes provided with louvers to the radiator radiation surface and heats the radiation surface evenly. Therefore, the high temperature gas is transferred when heat is transferred to the radiator. The heat area is further expanded, the heat of the high temperature gas is efficiently transmitted to the radiation surface, and the temperature difference between the temperature of the high temperature gas and the radiation surface can be further reduced.
[0016]
  Claims of the invention6The heating deviceClaim 3 or claim 4In the heating apparatus described, the number of holes with louvers provided in the radiator increases as the distance from the connection air passage increases. And according to an embodiment of the above configuration,3 or claim 4In addition to the above effects, the temperature of the combustion gas flowing in from the connected air passage decreases as the distance from the connected air passage decreases, but the combustion gas flows to the radiator radiation surface as the distance from the heating air passage increases. Since the radiation surface is heated, the temperature of the radiator can be made uniform.
[0017]
  Claims of the invention7The heating device according to claim3And in the heating apparatus of any one of Claim 6, it is set as the shape by which the radiator was bent continuously. And according to an embodiment of the above configuration,3Moreover, in addition to the effect of claim 6, the high temperature gas flows out from the radiator heating air passage through the hole provided with the louver to the radiation radiation surface, and heats the radiation surface from both the heating air passage side and the radiation surface side. At the same time, the heated radiant gas does not spread into the room but also heats the adjacent radiant body, so that the heat of the combustion gas is efficiently transferred to the radiant surface, further reducing the temperature difference between the combustion gas and the radiant surface. Canit can.
[0018]
【Example】
  (Example 1)
  FIG.Of the present inventionExample 1It is the perspective view which notched a part of heating apparatus of this and showed the principal part. In the figure, 11 is a high temperature gas generating means for generating a high temperature gas such as a circular burner for burning oil or gas fuel, and 24 is a heat collecting surface 25 heated by the heat of the high temperature gas and a radiation surface for generating radiant energy. 26, a heat collecting surface heating air passage 27 for blowing high-temperature gas to the heat collecting surface 25 and the radiation surface 26, and a radiation surface heating air passage 28 provided at the lower end of the radiation surface. The heating air passage 27 and the radiation surface heating air passage 28 are configured such that the high-temperature gas is guided from the high-temperature gas generating means 11 by the connecting air passage 17. With the above configuration, the high temperature gas generated by the combustion of the high temperature gas generating means 11 is guided by the connecting air passage 17 to the radiant heating air passage inlet 29 provided at the lower portion of the heat collection surface heating air passage 27, and the heat collection surface heating air. The heat collecting surface 25 is heated through the passage 27 while increasing the wind speed by the draft action, and is guided to the radiator heating air passage outlet 30 provided above the heat collecting surface heating air passage 27. Further, the high-temperature gas is guided from the connection air passage 17 to the radiation surface heating air passage 28, blown also to the radiation surface 26, rises from the lower end of the radiation surface 26 as an ascending current, and heats the radiation surface 26. For this reason, the radiator 24 is heated from both the heat collection surface 25 and the radiation surface 26 by the high-temperature gas. The radiator 24 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface, and the room is heated by radiation. For this reason, a comfortable heating feeling can be obtained without directly hitting the human body.
[0019]
  In the configuration of the present embodiment, the heat transfer area of the high temperature gas and the radiator 24 is doubled with respect to the heating of only the heat collecting surface 25, so that the radiator temperature is the same as in the conventional example.The580 ° C. is sufficient for a temperature of 300 ° C. For this reason, it is not necessary to directly heat the heat exchanger with a flame using a line burner as the high temperature gas generating means 11, and a radiant heating can be performed with a high temperature gas using a circular burner with good exhaust gas characteristics. In addition, if a fin is arrange | positioned in the radiator 24, heat transfer efficiency can be improved more.
[0020]
  (Example 2)
  FIG.Of the present inventionExample 2It is the perspective view which notched a part of heating apparatus of this and showed the principal part.FIG., 11 is a high temperature gas generating means for generating a high temperature gas such as a circular burner for burning oil or gas fuel, and 31 is a heat collecting surface 32 heated by the heat of the high temperature gas and a radiation surface 33 for generating radiation energy. The radiator 31 is provided with through holes 34 arranged at a pitch of 20 mm with a diameter of 5 mm from the heat collection surface 32 to the radiation surface 33, and a radiator heating air for introducing high temperature gas to the heat collection surface 32 of the radiation body 31. A path 16 is attached, and the high-temperature gas is guided from the high-temperature gas generating means 11 to the radiator heating air path 16 by the connecting air path 17.
[0021]
  With the above configuration, the high-temperature gas generated by the combustion of the high-temperature gas generation means 11 is guided to the radiator heating air passage inlet 29 provided below the radiator heating air passage 16 through the connection air passage 17 and is then applied to the radiator heating air passage 16. The heat collecting surface 32 is heated while increasing the wind speed through the draft through the air, and is guided to the radiation surface 33 through the hole 34 to heat the radiation surface 33 as an upward flow. For this reason, the radiator 31 is heated from both the heat collection surface 32 and the radiation surface 33 by the high-temperature gas. The radiator 31 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 33, and the room is heated by radiation. For this reason, a comfortable heating feeling can be obtained without directly hitting the human body.
[0022]
  In the configuration of the present embodiment, the heat transfer area of the high temperature gas and the radiator 31 is doubled as compared with the heating of only the heat collecting surface 32, and the development of the boundary layer is reduced by the holes 34, so that the heat transfer coefficient is 15 W / m2K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface 33, and the temperature difference between the combustion gas temperature and the radiation surface 33 can be further reduced. In order to set the radiator temperature to 300 ° C. as in the conventional example, the high temperature gas temperature may be 490 ° C. For this reason, it is not necessary to directly heat the heat exchanger with a flame using a line burner as the high temperature gas generating means 11, and a radiant heating can be performed with a high temperature gas using a circular burner with good exhaust gas characteristics. Furthermore, since the boundary layer does not develop, the temperature change of the radiation surface 33 can be reduced.
[0023]
  (Example 3)
  FIG.Of the present inventionExample 3It is a perspective view which cuts out a part of heating apparatus and shows a principal part.FIG.InExample 2The same part has the same configuration, and the radiator 31 is provided with through holes 34 arranged in a staggered arrangement with a diameter of 5 mm and a pitch of 20 mm from the heat collecting surface 32 to the radiation surface 33.
[0024]
  With the above configuration, the high-temperature gas generated by the combustion of the high-temperature gas generation means 11 is led to the radiator heating air passage inlet 29 provided at the lower part of the radiator heating air passage 16 by the connecting air passage 17, and the radiator heating air passage 16 is provided. The heat collecting surface 33 is heated while increasing the wind speed through the draft through the holes, and is guided to the radiation surface 33 through the holes 34 provided in the staggered arrangement to heat the radiation surface 33 as an upward flow. ThereforeExample 2The heating efficiency of the radiating surface 33 is better than that of the above structure, and in order to set the radiant temperature to 300 ° C. as in the conventional example, the high temperature gas temperature may be 470 ° C.,The temperature difference of the radiation surface 33 can be made smaller.
[0025]
  (Example 4)
  FIG.Of the present inventionExample 4It is the perspective view which notched a part of heating apparatus of this and showed the principal part.FIG.InExample 2The same portion has the same configuration, and the radiator 31 is provided with holes 34 penetrating from the heat collecting surface 32 to the radiation surface 33 with a diameter of 5 mm so that the number increases as the distance from the connection air passage 17 increases. .
[0026]
  With the above configuration, the high-temperature gas generated by the combustion of the high-temperature gas generation means 11 is led to the radiator heating air passage inlet 29 provided at the lower part of the radiator heating air passage 16 by the connecting air passage 17, and the radiator heating air passage 16 is provided. The heat collecting surface 33 is heated while increasing the wind speed through the draft through the air, and is guided to the radiation surface 33 through the hole 34 to heat the radiation surface 33 as an upward flow. Although the temperature of the hot gas flowing in from the connection air passage 17 decreases as the distance from the connection air passage 17 decreases, the heating by the high temperature gas that has passed through the hole 34 of the radiation surface 33 increases as the distance from the connection air passage 17 increases.Example 2In addition to this feature, the temperature distribution of the radiator 31 in the radiator heating direction can be made uniform.
[0027]
  (Example 5)
  FIG.Of the present inventionExample 5It is the perspective view which notched a part of heating apparatus of this and showed the principal part.FIG., 11 is a high temperature gas generating means for generating a high temperature gas such as a circular burner for burning oil or gas fuel, and 35 is a heat collecting surface 36 heated by the heat of the high temperature gas and a radiation surface 37 for generating radiation energy. A through hole 38 having a diameter of 5 mm and a pitch of 20 mm is provided from the heat collection surface 36 to the radiation surface 37, and the pitch of the heat collection surface 36 and the radiation surface 37 is three times the projected area. The radiator has a shape that is continuously bent at a depth. A radiator heating air passage 16 that guides a high-temperature gas is attached to a heat collecting surface 37 of the radiator 35, and a connected wind is connected to the radiator heating air passage 16. The high-temperature gas is guided from the high-temperature gas generation means 11 by the path 17.
[0028]
  With the above configuration, the high-temperature gas generated by the combustion of the high-temperature gas generation means 11 is led to the radiator heating air passage inlet 29 provided at the lower part of the radiator heating air passage 16 by the connecting air passage 17, and the radiator heating air passage 16 is provided. The heat collecting surface 36 is heated while increasing the wind speed by the draft action through the air, and is guided to the radiation surface 37 through the hole 38 to heat the radiation surface 37 as an upward flow. For this reason, the radiator 36 is heated from both the heat collection surface 36 and the radiation surface 37 by the high-temperature gas. The radiator 35 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 37, and the room is heated by radiation. For this reason, a comfortable heating feeling can be obtained without directly hitting the human body. In the configuration of the present embodiment, the heat transfer area of the high temperature gas and the radiator 35 is doubled with respect to the heating of only the heat collecting surface, and the area of the heat collecting surface 36 is tripled with respect to the projected area. Therefore, the heat transfer area from the high temperature gas to the radiator 35 is 6 times, and the development of the boundary layer is reduced by the holes 38, and the heat transfer coefficient is 15 W / m 2 K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface 37, and the temperature difference between the combustion gas temperature and the radiation surface 37 can be further reduced. In order to set the radiator temperature to 300 ° C. as in the conventional example, the high temperature gas temperature may be 370 ° C. For this reason, it is not necessary to directly heat the heat exchanger with a flame using a line burner as the high temperature gas generating means 11, and to use a circular burner with good exhaust gas characteristics to indirectly produce a high temperature gas with the flame and perform radiant heating. I can do it.
[0029]
  Furthermore, since the area of the radiation surface 37 is three times the projected area, the apparent radiation rate is increased, and the radiation amount during heating can be increased even at the same temperature of the radiator 36.
[0030]
  Further, even when the radiator 35 becomes hot and thermally expands, the expansion is absorbed by the bent portion, so that deformation of the entire radiator can be prevented.
  (Example 6)
  FIG.Of the present inventionExample 6It is the perspective view which notched a part of heating apparatus of this and showed the principal part.FIG.11 is a high temperature gas generating means for generating a high temperature gas such as a circular burner for burning oil or gas fuel, and 39 is a heat collecting surface 40 heated by the heat of the high temperature gas and a radiation surface for generating radiation energy. 41 from the heat collecting surface 40Radiation surface 41Radiant surface that cuts and raises the radiant surface 41 as a heat transfer accelerating means and is provided with a hole 43 with a louver having an open end 42, and radiant heating that guides high temperature gas to the heat collecting surface 40 of the radiant member 39. An air passage 16 is attached, and a high-temperature gas generating means is connected to the radiator heating air passage 16 by a connecting air passage 17.11From this, high temperature gas is guided.
[0031]
  With the above configuration, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is led to the radiator heating air passage inlet 18 provided below the radiator heating air passage 16 through the connecting air passage 17 and is then applied to the radiator heating air passage 16. The heating surface 40 is heated while increasing the wind speed by the drafting action, and is guided to the radiation surface 41 by the hole 43 provided with the louver and blown to the radiation surface 41 from the opening end 42 to radiate as an upward flow. The surface 41 is heated. For this reason, the radiator 39 is heated from both the heat collection surface 40 and the radiation surface 41 by the high-temperature gas. The radiator 39 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 41, and the room is heated by radiation. For this reason, a comfortable heating feeling can be obtained without directly hitting the human body.
[0032]
  In the configuration of the present embodiment, the heat transfer area of the high-temperature gas and the radiator 39 is doubled as compared with the heating of the heat collecting surface 40 alone, and the louver is also a radiator, so that the radiant surface is provided by the hole 43 provided with the louver. The area of 41 does not decrease. Moreover, the development of the boundary layer is reduced by the holes 43 with louvers, and the heat transfer coefficient is 25 W / m 2 K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface 41, and the temperature difference between the combustion gas temperature and the radiation surface 41 can be further reduced. In order to set the radiator temperature to 300 ° C. as in the conventional example, the high temperature gas temperature may be 410 ° C. For this reason, it is not necessary to directly heat the heat exchanger with a flame using a line burner as the high temperature gas generating means 11, and a radiant heating can be performed with a high temperature gas using a circular burner with good exhaust gas characteristics. Furthermore, since the boundary layer does not develop, the temperature change of the radiation surface can be reduced. Further, since the radiator is reinforced by the louvers, the deformation of the radiator can be reduced.
[0033]
  (Example 7)
  FIG.Of the present inventionExample 7It is the perspective view which notched a part of heating apparatus of this and showed the principal part.FIG.In this example, the same reference numerals as in Example 6 have the same configuration, and the heat transfer promoting means has a configuration in which the opening end 42 of the hole 43 provided with a louver is provided above the direction of gravity. With the above configuration, the high temperature gas is caused by the draft effect from the radiator heating air passage 16Radiant 39Since the air velocity from the opening end 42 increases and the heat transfer coefficient at the radiation surface 41 increases, the temperature difference between the hot gas and the radiation surface 41 can be further reduced. Furthermore, the pressure loss of high temperature gas blowing can be reduced, and the blower 44 can be downsized.
[0034]
  (Example 8)
  FIG.Of the present inventionExample 8It is the perspective view which notched a part of heating apparatus of this and showed the principal part.FIG.InExample 6The parts with the same numbers as those in FIG. 1 have the same configuration, and are provided with holes 43 with a louver provided as a heat transfer promotion means that penetrates the radiation surface 41 from the heat collection surface 40 to the radiation surface 41 in a staggered arrangement. . And by the said structure, since a high temperature gas flows into the radiation surface 41 from the opening end 42 through the hole 43 which attached the louver provided in the staggered arrangement from the radiator heating air path 16, and heats the radiation surface 41 uniformly, The heat transfer area when the gas transfers heat to the radiator 39 is further expanded, the heat of the high temperature gas is efficiently transmitted to the radiation surface 41, and the temperature difference between the temperature of the high temperature gas and the radiation surface can be further reduced.
[0035]
  (Example 9)
  FIG.Of the present inventionExample 9It is the perspective view which notched a part of heating apparatus of this and showed the principal part.FIG.InExample 6The same numbered parts have the same configuration, and the radiator 39 has a heat collecting surface 40.Radiation surface 41As a means to promote heat transferRadiation surface 41Are arranged so that the number of the holes 43 provided with louvers with the open ends 42 increases as the distance from the connection air passage 17 increases.
[0036]
  With the above configuration, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is led to the radiator heating air passage inlet 18 provided below the radiator heating air passage 16 through the connecting air passage 17 and is then applied to the radiator heating air passage 16. The heat collecting surface 40 is heated while increasing the wind speed by the draft action through the air, and is guided to the radiation surface 41 through the hole 43 provided with the louver to heat the radiation surface 41 as an ascending current. Hot gas flowing from the connecting air passage 17ofAlthough the temperature decreases as the distance from the connection air passage 17 decreases, the heating by the high-temperature gas that has passed through the louvered hole 43 of the radiation surface 41 increases the distance from the connection air passage 17.Of hole 43Because the number increasesExample 6In addition to this feature, the temperature distribution in the radiator heating direction of the radiator can be made uniform.
[0037]
  (Example 10)
  FIG.Of the present inventionExample 10It is the perspective view which notched a part of heating apparatus of this and showed the principal part.
[0038]
  FIG., 11 is a high temperature gas generating means for generating a high temperature gas such as a circular burner for burning oil or gas fuel, and 45 is a heat collecting surface 46 heated by the heat of the high temperature gas and a radiation surface 47 for generating radiant energy. The radiant body is provided with a hole 49 with a louver having an opening end 48 that cuts and raises the radiant surface 47 as heat transfer promoting means from the heat collecting surface 46 to the radiant surface 47. The radiator 47 is continuously bent at a pitch and depth such that the area of the radiator 47 is tripled, and a radiator heating air passage 16 for guiding a high-temperature gas is attached to the heat collecting surface 46 of the radiator 45, thereby radiating. The body heating air passage 16 is configured such that the high temperature gas is guided from the high temperature gas generating means 11 by the connecting air passage 17. With the above configuration, the high temperature gas generated by the combustion of the high temperature gas generating means 11 is guided to the radiator heating air passage inlet 29 provided at the lower portion of the radiator heating air passage 16 through the connecting air passage 17, and the radiator heating air passage 16. The heating surface 46 in the middle of the radiator heating air passage 16 is heated while increasing the wind speed by the draft action, and is guided to the radiation surface 47 from the opening end 48 through the hole 49 provided with a louver. The radiation surface 47 is heated as an ascending current. For this reason, the radiator 45 is heated from both the heat collection surface 46 and the radiation surface 47 by the high-temperature gas. The radiator 45 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 47, and the room is heated by radiation. For this reason, a comfortable heating feeling can be obtained without directly hitting the human body. In the configuration of the present embodiment, the heat transfer area of the high temperature gas and the radiator 45 is doubled with respect to the heating of only the heat collecting surface 46, and the area of the heat collecting surface 46 is tripled with respect to the projected area. Therefore, the heat transfer area from the high temperature gas to the radiator 45 is 6 times, and the development of the boundary layer is reduced by the louvered holes 49, and the heat transfer coefficient is 25 W / m 2 K. . Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface 47, and the temperature difference between the combustion gas temperature and the radiation surface 47 can be further reduced. In order to set the radiator temperature to 300 ° C. as in the conventional example, the high temperature gas temperature may be 350 ° C. For this reason, it is not necessary to directly heat the heat exchanger with a flame using a line burner as the high-temperature gas generating means 11, and to use a circular burner with good exhaust gas characteristics to produce high-temperature gas indirectly with a flame and perform radiant heating. I can do it.
[0039]
  Furthermore, since the area of the radiation surface 47 is three times as large as the projected area, the apparent radiation rate is increased, and the radiation amount during heating can be increased even at the same temperature of the radiation body 47.
[0040]
  Further, even when the radiating surface 47 becomes hot and thermally expands, the radiant is reinforced by the louver and the expansion is absorbed by the bent portion, so that deformation of the entire radiant body can be prevented.
[0041]
【The invention's effect】
  As explained aboveAccording to the present inventionAccording to the heating deviceThe hot gas of the hot gas generating means guided to the radiator heating air passage through the connection air passage is guided as an updraft from the lower end of the radiator, and heats both the heat collecting surface and the radiation surface of the radiator. Therefore, the heat transfer area where the high temperature gas transfers heat to the radiant is doubled, the heat of the high temperature gas is efficiently transferred to the radiant surface, and the temperature difference between the high temperature gas and the radiant surface can be reduced,By finsAlsoSince the heat transfer area when the high temperature gas transfers heat to the radiator is expanded, the heat of the high temperature gas is efficiently transferred to the radiation surface by the fins, and the temperature difference between the high temperature gas and the radiation surface can be reduced.it can.
[0042]
  Further, according to the present inventionAccording to the heating device, the heat collection surface of the radiator is provided with heat transfer promotion means such as protrusions and cuts, so the development of the boundary layer is reduced, the heat transfer coefficient is increased, and the heat of the hot gas is efficient. It is often transmitted to the radiation surface, and the temperature difference between the temperature of the hot gas and the radiation surface can be made smaller and the temperature change of the radiation surface can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a main part of a heating device according to a first embodiment of the present invention by cutting out a part thereof.
FIG. 2 is a perspective view showing a main part with a part of the heating device cut out in the second embodiment.
FIG. 3 is a perspective view showing a main part of the heating device according to the third embodiment with a part cut away.
FIG. 4 is a perspective view showing a main part of the heating device in Example 4 with a part cut away.
FIG. 5 is a perspective view showing a main part of the heating device according to Example 5 with a part cut away.
FIG. 6 is a perspective view showing a main part of the heating device according to Example 6 with a part cut away.
7 is a perspective view showing a main part of the heating apparatus according to Example 7 with a part cut away. FIG.
FIG. 8 is a perspective view showing a main part of the heating apparatus according to Example 8 with a part cut away.
FIG. 9 is a perspective view showing a main part of the heating apparatus according to Example 9 with a part cut away.
FIG. 10 is a perspective view showing a main part of the heating device according to Example 10 with a part cut away.
FIG. 11The perspective view which showed the principal part by notching part of the conventional heating apparatus
[Explanation of symbols]
  11 High temperature gas generation means
  24, 31, 35, 39, 45 Radiator
  25, 32, 36, 40, 46 Heat collecting surface
  26, 33, 37, 41, 47 Radiation surface
  16 Radiator heating air passage
  17 Connecting air passage
  18, 29 Radiant heating airway entrance
  30 Radiator heating airway exit
  27 Heating surface heating air passage
  28 Radiation surface heating air passage
  34, 38 holes
  42, 48 Open end
  43, 49 holes with louvers

Claims (7)

高温ガスを発生する高温ガス発生手段と、前記高温ガスの熱によって加熱される採熱面と輻射エネルギーを発生する輻射面との両面を持ち、前記高温ガス発生手段の前側から上方にかけて配置した輻射体と、前記輻射体の採熱面に対向して下端より上端に向って形成し、前記採熱面に高温ガスを導く輻射体加熱風路と、前記輻射体加熱風路の下部と前記高温ガス発生手段とを結ぶ連結風路を備え、前記輻射体の採熱面及び輻射面の両面に高温ガス発生手段の高温ガスを輻射体の下端より上昇気流として導き、輻射体を採熱面と輻射面の両面から加熱する構成とし、かつ前記輻射体の中にフィンを配設した暖房装置。A radiation having a high temperature gas generating means for generating a high temperature gas, a heat collection surface heated by the heat of the high temperature gas and a radiation surface for generating radiant energy, and arranged from the front side to the upper side of the high temperature gas generation means. Body, a radiator heating air passage that is formed to face the heat collecting surface of the radiator toward the upper end from the lower end, and guides a high temperature gas to the heat collecting surface, a lower portion of the radiator heating air passage , and the high temperature A connecting air passage connecting the gas generating means, the high temperature gas of the high temperature gas generating means is guided as an updraft from the lower end of the radiator on both the heat collecting surface and the radiation surface of the radiator, and the radiator is a heat collecting surface. A heating apparatus configured to heat from both sides of a radiant surface and having fins disposed in the radiant body . 高温ガスを発生する高温ガス発生手段と、前記高温ガスの熱によって加熱される採熱面と輻射エネルギーを発生する輻射面との両方の面を持ち、前記高温ガス発生手段の前側から上方にかけて配置し、かつ前記採熱面に熱伝達促進手段を設けた輻射体と、前記輻射体の採熱面に対向して下端より上端に向って形成し、前記採熱面に高温ガスを導く輻射体加熱風路と、前記輻射体加熱風路の下部と前記高温ガス発生手段とを結ぶ連結風路とを備え、前記輻射体の採熱面及び輻射面に高温ガス発生手段の高温ガスを輻射体の下端より上昇気流として導き、輻射体を採熱面と輻射面の両面から加熱する構成とした暖房装置。The hot gas generating means for generating the high temperature gas and the heat collecting surface heated by the heat of the high temperature gas and the radiation surface for generating radiant energy are both arranged from the front side to the upper side of the high temperature gas generating means. And a radiator provided with heat transfer promoting means on the heat collecting surface, and a radiator that is formed to face the heat collecting surface of the radiator from the lower end toward the upper end, and to guide the high temperature gas to the heat collecting surface. A heating air passage, and a connecting air passage connecting the lower portion of the radiator heating air passage and the high-temperature gas generation means, and the high-temperature gas of the high-temperature gas generation means is applied to the radiator on the heat collecting surface and the radiation surface of the radiator. A heating device that is configured to guide the radiant body from both the heat collecting surface and the radiant surface as a rising air flow from the lower end of the radiant . 輻射体は採熱面から輻射面に貫通し、ルーバーを付けた穴で熱促進手段を形成して輻射体の輻射面に高温ガスを導いてなる請求項2に記載の暖房装置。The heating device according to claim 2, wherein the radiant body penetrates the radiant surface from the heat collecting surface, and heat promoting means is formed by holes provided with louvers to guide the high temperature gas to the radiant surface of the radiant body . ルーバーを付けた穴の開口端は重力方向の上方とした請求項3に記載の暖房装置。The heating device according to claim 3 , wherein the opening end of the hole provided with the louver is above the gravity direction . 輻射体に千鳥配置にルーバーを付けた穴を設けた請求項3または請求項4に記載の暖房装置。The heating apparatus of Claim 3 or Claim 4 which provided the hole which attached the louver to the radiator at zigzag arrangement | positioning . 輻射体に設けたルーバーを付けた穴の数は連結風路から離れるにしたがって多くした請求項3または請求項4に記載の暖房装置。The heating device according to claim 3 or claim 4 , wherein the number of holes provided with louvers in the radiator is increased as the distance from the connection air passage increases . 輻射体は連続的に折り曲げられた形状とした請求項3ないし請求項6のいずれか1項に記載の暖房装置。The heating device according to any one of claims 3 to 6 , wherein the radiator has a continuously bent shape .
JP36983099A 1999-12-27 1999-12-27 Heating system Expired - Fee Related JP3674431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36983099A JP3674431B2 (en) 1999-12-27 1999-12-27 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36983099A JP3674431B2 (en) 1999-12-27 1999-12-27 Heating system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001320180A Division JP3461817B2 (en) 2001-10-18 2001-10-18 Heating system

Publications (2)

Publication Number Publication Date
JP2001182952A JP2001182952A (en) 2001-07-06
JP3674431B2 true JP3674431B2 (en) 2005-07-20

Family

ID=18495422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36983099A Expired - Fee Related JP3674431B2 (en) 1999-12-27 1999-12-27 Heating system

Country Status (1)

Country Link
JP (1) JP3674431B2 (en)

Also Published As

Publication number Publication date
JP2001182952A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JPH05196383A (en) Corrugated fin type heat-exchanger
CN107806663B (en) Indoor unit of air conditioner and air conditioning system
CN210441329U (en) Air type radiation air conditioner
JP3674431B2 (en) Heating system
JP3461817B2 (en) Heating system
US20040255927A1 (en) Radiant energy source systems, devices, and methods capturing, controlling, or recycling gas flows
JP2002162053A (en) Air conditioner
US4784110A (en) Wall furnace
JPH10510912A (en) Gas burners for heating devices, especially water heaters
JP3849497B2 (en) Air conditioner
JP2003042472A (en) Air conditioner
JP2001336750A (en) Space heater
JP2001336765A (en) Heating device
RU2126942C1 (en) Heat producer
CN216048338U (en) Gas water heater with heating device
JP2002267270A (en) Heater
JP2001263820A (en) Heater
CN216924503U (en) Heating device
RU2133919C1 (en) Radiator screen
JP2002286241A (en) Air-conditioning device
JP2002039548A (en) Heating apparatus
JP2003227660A (en) Heating system
JP2002168470A (en) Air conditioner
HU220805B1 (en) Heating apparatus producing radiant and convective heat
JP2001336764A (en) Heating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

LAPS Cancellation because of no payment of annual fees