JP3674129B2 - Heterogeneous core integrated heat exchanger - Google Patents

Heterogeneous core integrated heat exchanger Download PDF

Info

Publication number
JP3674129B2
JP3674129B2 JP2143396A JP2143396A JP3674129B2 JP 3674129 B2 JP3674129 B2 JP 3674129B2 JP 2143396 A JP2143396 A JP 2143396A JP 2143396 A JP2143396 A JP 2143396A JP 3674129 B2 JP3674129 B2 JP 3674129B2
Authority
JP
Japan
Prior art keywords
core
side plate
heat exchanger
core portion
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2143396A
Other languages
Japanese (ja)
Other versions
JPH09210591A (en
Inventor
竜雄 杉本
保利 山中
浩生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2143396A priority Critical patent/JP3674129B2/en
Publication of JPH09210591A publication Critical patent/JPH09210591A/en
Application granted granted Critical
Publication of JP3674129B2 publication Critical patent/JP3674129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • F28F2009/004Common frame elements for multiple cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress lowering of a heat exchange efficiency of a condenser core part in a heat exchanger wherein the condenser core part and a radiator core part are integrated. SOLUTION: In a side plate 4 coupling two core parts 2 and 3, notch parts 41a are formed in the end parts on the sides of radiator core tanks 5 and 6. Since a route of heat conduction in a portion wherein the amount of heat conduction is the largest is cut off thereby, the heat conduction can be interrupted effectively. Accordingly, lowering of a heat exchange efficiency in the condenser core part 2 can be suppressed. Moreover, a plurality of cut parts 41 are formed in portions corresponding to a gap between the two core parts 2 and 3 and, therefore, a jig for positioning tubes 21 and 31 of the two core parts and cooling fins 22 and 32 thereof can be fitted to the cut parts 41 at the time when cores are assembled. Accordingly, the fitting properties of the tubes 21 and 32 and the cooling fins 22 and 32 are improved.

Description

【0001】
【発明の属する技術分野】
本発明は、相互に異種のコア部(熱交換部)を一体化した熱交換器に関するもので、特に車両の駆動源であるエンジンのラジエータと車両用空調装置のコンデンサとの一体化に適用して有効である。
【0002】
【従来の技術】
従来は、車両完成後に車両販売店等で車両用空調装置を車両に組付けていたが、近年、車両用空調装置が車両に標準的装備されるようになったため、車両組み立て工程において、車両用部品とともに車両用空調装置も組付けるようになってきた。
【0003】
そこで、車両部品であるランジエータと車両用空調装置部品であるコンデンサとを一体化にすることにより、両者の小型化を図るとともに組付け工数の低減を図るべく、ラジエータやコンデンサ等の異種のコア部を一体化した熱交換器が多数提案されている。そして、例えば実公平5−40265号公報に記載の考案では、両コア部の両端側略全体を被覆するようなサイドプレートにて、両コア部を連結結合している。
【0004】
【発明が解決しようとする課題】
しかし、上記公報に記載の考案では、両コア部の両端側略全体を被覆するようなサイドプレートにて、両コア部を連結結合しているので、サイドプレートを介して高温側のコア部から低温側のコア部へ熱の移動が発生してしまう。そのため、熱移動先のコア部では、熱交換効率が低下するという問題が発生していた。すなわち、ラジエータコア部とコンデンサコア部とを一体化した場合には、ラジエータコア部の熱がコンデンサコア部に移動する(ラジエータコア部内冷却水温度の方が、コンデンサコア部内冷媒温度より高い)ので、コンデンサコア部の熱交換効率が低下するという問題が発生していた。
【0005】
本発明は、上記点に鑑み、異種のコア部を一体化した熱交換器において、熱の移動先コア部の熱交換効率の低下を抑制することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、以下の技術的手段を用いる。請求項1に記載の発明では、両コア部(2、3)を結合するサイドプレート(4)は、その長手方向の一端部側で第1コア部タンク(5、6)と第2コア部タンク(7、8)に組みつけられており、サイドプレート(4)のうち両コア部(2、3)間の所定隙間(46)に相当する部位には、サイドプレート(4)を伝導して両コア部(2、3)間を移動する熱を遮断する熱遮断部(41、41a)が形成され、熱遮断部(41、41a)は、サイドプレート(4)の一部を切断する切欠部(41、41a)によって構成されていることを特徴とする。
【0007】
請求項2に記載の発明では、請求項1に記載の異種コア一体型熱交換器において、切欠部(41a)は、サイドプレート(4)の長手方向の一端部に形成されていることを特徴とする
【0008】
請求項に記載の発明では、請求項に記載の熱交換機において、切欠部(41、41a)は、サイドプレートの長手方向に並んで複数本形成されていることを特徴とする。請求項4に記載の発明では、請求項3に記載の異種コア一体型熱交換器において、複数本の切欠部(41、41a)は、サイドプレート4の長手方向の一端部に形成された切欠部(41a)を有し、この切欠部(41a)より第1、第2コア部タンク(5、6、7、8)側には、隣合う2つ切欠部間の結合部分(42)が形成されていないことを特徴とする。請求項5に記載の発明では、第1コア部(2)は、車両用空調装置の冷媒を凝縮するコンデンサコア部(2)であり、第2コア部(3)は、車両用エンジンの冷却用ラジエータコア部(3)であることを特徴とする。
【0009】
次に作用効果を述べる。請求項1〜4に記載の発明によれば、両コア部(2、3)を結合するサイドプレート(4)のうち両コア部(2、3)間の所定隙間(46)に相当する部位には、サイドプレート(4)を伝導して両コア部(2、3)間を移動する熱を遮断する熱遮断部(41、41a)が形成され、熱遮断部(41、41a)は、サイドプレート(4)の一部を切断する切欠部(41、41a)によって構成されているので、熱移動先コア部の熱交換効率の低下を抑制することができる。
【0010】
請求項2に記載の発明によれば、切欠部(41a)は、サイドプレート(4)の長手方向の一端部、すなわち後述するように、熱移動量の最も大きいサイドプレート(4)の第1、第2コア部タンク(5、6、7、8)側端部に形成されているので、熱の移動量を有効に遮断することができる
【0011】
請求項5に記載の発明によれば、第1コア部(2)は、車両用空調装置の冷媒を凝縮するコンデンサコア部(2)を成し、第2コア部(3)は、車両用エンジンの冷却用ラジエータコア部(3)を成しているので、ラジエータコア部(3)からコンデンサコア部(2)への熱移動を抑制することができる。延いては、コンデンサコア部(2)での熱交換効率の低減を防止することができる。
【0012】
【発明の実施の形態】
以下、本発明を図に示す実施の形態について説明する。
(第1実施形態)
本実施形態は、第1コア部として車両空調装置用のコンデンサコア部を、第2コア部としてエンジン冷却用ラジエータコア部を用いた車両用熱交換器である。通常、コンデンサコア部を流れる冷媒の温度は、ラジエータコア部を流れるエンジン冷却水の温度に比べて低いので、この異種コア一体型熱交換器(以下、熱交換器と略す。)はコンデンサコア部をラジエータコア部より空気流れ上流に配置して、空気流れに対して直列に並んでエンジンルームの最前部に配置されている。以下に図1、2を用いて本実施形態に係る熱交換器の形状を述べる。
【0013】
図1は、本実施形態に係る熱交換器1の斜視図であり、図2は図1のA−A断面図である。2はコンデンサコア部であり、3はラジエータコア部である。そして、両コア部2、3は、互いに熱伝導を遮断するために後述する両チューブ間に所定の隙間46を有して空気流れに直列に並んでいる。
コンデンサコア部2は、偏平形状に形成された冷媒の通路をなすコンデンサチューブ21と、このコンデンサチューブ21にろう付けされたコルゲート状(波形状)の冷却フィン22とから構成されている。
【0014】
また、ラジエータコア部3もコンデンサコア部2と同様な構造をしており、コンデンサチューブ21と平行に配置されたラジエータチューブ31と、冷却フィン32とから構成されている。そして、これらのチューブ21、31と冷却フィン22、32とは交互に積層されて、冷却フィン22、32の表裏両面に被覆されたろう材にて各々ろう付けされている。
【0015】
なお、両冷却フィン22、32には、熱交換を促進するためのルーバ22a、32aが形成されており、両冷却フィン22、32は、ローラ成形法等によりルーバ22a、32aとともに一体に成形されている。
また、4は両コア部2、3の補強部材をなすサイドプレートで、このサイドプレート4は、図1に示すように、両コア部2、3の両端に配置されて両コア部2、3を結合している。このサイドプレート4は、図2に示すように、空気流れ方向の断面形状を略コの字状として、1枚のアルミニウム板から一体形成されている。
【0016】
そして、サイドプレート4のうち両コア部2、3間の隙間46に相当する部位には、サイドプレート4を伝導して両コア部2、3間を移動する熱を遮断する熱遮断部をなす切欠部41が形成されている。切欠部41は、図3に示すように、サイドプレート4の一部を切断除去するように、サイドプレート4の長手方向に並んで複数本形成されており、この切欠部41の大きさは、両コア部2、3間の熱移動を有効に遮断するとともに、補強部材として機械的強度を損なわない程度に形成しなければならない。なお、切欠部41の寸法のうち空気流れ方向の寸法は、図2に示すように、両コア部2、3間距離Lに等しい。
【0017】
因みに、これら複数本の切欠部41のうち熱遮断部として最も重要な切欠部41は、サイドプレート4の長手方向端部、すなわち後述するタンク5、6、7、8側の切欠部41aで(図1参照)、この切欠部41aよりタンク5、6、7、8側には、結合部分42(隣合う2つ切欠部41間の部位)が形成されていない。
【0018】
ところで、図1の5は図示されていないエンジンからの高温の冷却水を各ラジエータチューブ31に分配する第1ラジエータタンクで、6は熱交換を終えた低温の冷却水を各ラジエータチューブ31から集合させてエンジンに供給する第2ラジータタンクである。また、7は図示されていない車両用空調装置の圧縮機から圧送された高圧の気相冷媒を各コンデンサチューブ21に分配する第1コンデンサタンクで、8はコンデンサコア部2で凝縮した液相冷媒を各コンデンサチューブ21から集合させて図示されていない車両用空調装置の減圧器に供給する第2コンデンサタンクである。
【0019】
なお、これらのタンク5、6、7、8は、アルミニウム製の円筒部材5a、6a、7a、8aの両端側開口部をアルミニウム製のキャップ5b、6b、7b、8bにて閉塞して形成されており、円筒部材5a、6a、7a、8aとキャップ5b、6b、7b、8bとは、ろう付けにて結合している。
次に本実施形態に係る熱交換器1の組付け方法についての概略を述べる。
【0020】
図4の(B)に示すようなフィン位置決め治具100に対して、図4の(A)に示すように、先ず、切欠部41にフィン位置決め治具100の板状突起部101が挿入されるようにサイドプレート4を置く。なお、板等突起部101の板厚lは、両コア部間距離Lに等しくなっている。そして、両チューブ21、31および両冷却フィン22、32をフィン位置決め治具100の板状突起部101に接するように順次積層し、最後にサイドプレート4を積層する。
【0021】
次に、タンク5、6、7、8に形成された長穴5c、6c、7c、8cに両チューブ21、31およびサイドプレート4の長手方向端部が挿入されるようにタンク5、6、7、8を組付ける。そして、仮組付けされた熱交換器を炉内に入れ、加熱してろう付けを行う。
次に本実施形態の特徴を述べる。
【0022】
本実施形態に係る熱交換器1によれば、サイドプレート4のうち両コア部2、3間の隙間46に相当する部位には、サイドプレート4を伝導して両コア部2、3間を移動する熱を遮断する熱遮断部をなす切欠部41が形成されているので、ラジエータコア部3からコンデンサコア部3への熱移動を抑制することができる。したがって、コンデンサコア部2での熱交換効率の低下を抑制することができる。
【0023】
ところで、サイドプレート4の長手方向部位のうち、高温の冷却水が流入する第1ラジエータタンク5側の部位は、両コア部2、3間の温度差が最も大きくなるので、サイドプレート4の長手方向端部のうち、この第1ラジエータタンク5側の部位が最も熱移動量が大きい。因みに、コンデンサコア部2内では、冷媒は主に相変化を行うので冷媒温度変化は無視できる。
【0024】
そして、本実施形態に係るサイドプレート4では、この最も熱移動量の大きい部位に切欠部41aが設けられているので、ラジエータコア部3からコンデンサコア部3への熱移動をさらに良く抑制することができる。
また、サイドプレート4の切欠部41aより第1ラジエータタンク5側には、結合部分42が形成されていないので、第1ラジエータタンク5から最も近い結合部分42までの距離が長くなり、第1ラジエータタンク5から第1コンデンサタンク7までの熱伝達経路が長くなる。したがって、ラジエータコア部3からコンデンサコア部3への熱移動をより一層抑制することができる。
【0025】
また、サイドプレート4に切欠部41、41aが形成されているので、両コア部2、3間に侵入した虫や塵埃等が切欠部41、41aから熱交換器1の外部(具体的には、車両下方)に排出される。したがって、虫や塵埃等が両コア部2、3間に蓄積されることが抑制されるので、空気下流側に位置するラジエータコア部3への風量不足等を原因とするラジエータコア部3の熱交換効率の低減を抑制することができる。
【0026】
また、上述の熱交換器1の組付け方法によれば、両チューブ21、31および両冷却フィン22、32をフィン位置決め治具100の板状突起部101に接するように順次積層することにより、両チューブ21、31および両冷却フィン22、32間の隙間46を容易に設定することができるので、熱交換器1の組付け製造性が向上する。延いては、熱交換器の製造原価低減を図ることができる。
【0027】
また、切欠部41に板状突起部101を挿入することにより、熱交換器1に対するフィン位置決め治具100の位置決めを容易に行うことができるので、新たな治具等を必要としないので、新たな設備投資および設計変更等を抑制することができる。
(第2実施形態)
本実施形態は、サイドプレート4の機械的強度の向上を図ったものである。
【0028】
すなわち、図5に示すように、切欠部41、41aを形成する際に、切欠部41、41aに相当する部位を切断除去せず、いわゆるバーリング形状とするものである。つまり、バーリング形状とすることにより折曲部43が形成されるので、サイドプレート4の曲げ剛性(断面二次モーメント)が大きくなり、サイドプレート4の機械的強度が向上する。
【0029】
また、切欠部41、41aに相当する部位を切断除去せず、バーリング形状とするので廃材が減少する。延いては、産業廃棄物の減少を図ることができる。
【図面の簡単な説明】
【図1】第1実施形態に係る熱交換器の斜視図である。
【図2】図1のA−A断面図である。
【図3】サイドプレートの2面図である。
【図4】第1実施形態に係る熱交換器の組付け状態を示す分解斜視図である。
【図5】本発明の第2実施形態に係る熱交換器の断面図であって、図1のA−A断面に相当する断面図である。
【符号の説明】
1…異種コア一体型熱交換器、2…コンデンサコア部、
3…ラジエータコア部、4…サイドプレート、5…第1ラジエータタンク、
6…第2ラジエータタンク、7…第1コンデンサタンク、
8…第2コンデンサタンク、21…コンデンサチューブ、
22…冷却フィン、31…ラジエータチューブ、32…冷却フィン、
22a、32a…ルーバ、41、41a…切欠部、42…結合部、
43…折曲部46…隙間。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger in which different types of core parts (heat exchange parts) are integrated with each other, and is particularly applicable to the integration of an engine radiator as a vehicle drive source and a condenser of a vehicle air conditioner. It is effective.
[0002]
[Prior art]
Conventionally, vehicle air conditioners have been assembled to vehicles at vehicle dealers after completion of the vehicle, but in recent years, vehicle air conditioners have become standard equipment on vehicles. Vehicle air conditioners have also been assembled along with parts.
[0003]
Therefore, by integrating the radiator, which is a vehicle component, and the capacitor, which is a vehicle air conditioner component, to reduce the size and reduce the number of assembly steps, different core parts such as radiators and capacitors are used. Many heat exchangers have been proposed. For example, in the device described in Japanese Utility Model Publication No. 5-40265, both core portions are coupled and connected by a side plate that covers substantially the entire ends of both core portions.
[0004]
[Problems to be solved by the invention]
However, in the device described in the above publication, since both the core portions are connected and joined by the side plate that covers substantially the entire both end sides of the both core portions, from the high temperature side core portion via the side plate. Heat transfer occurs to the core portion on the low temperature side. For this reason, there has been a problem that the heat exchange efficiency is reduced in the core portion of the heat transfer destination. That is, when the radiator core part and the condenser core part are integrated, the heat of the radiator core part moves to the condenser core part (the cooling water temperature in the radiator core part is higher than the refrigerant temperature in the condenser core part). There has been a problem that the heat exchange efficiency of the capacitor core portion is reduced.
[0005]
In view of the above points, an object of the present invention is to suppress a decrease in heat exchange efficiency of a heat transfer destination core part in a heat exchanger in which different core parts are integrated.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses the following technical means. In the first aspect of the present invention, the side plate (4) that couples both the core portions (2, 3) has a first core portion tank (5, 6) and a second core portion on one end side in the longitudinal direction. It is assembled to the tanks (7, 8), and the side plate (4) is conducted to the portion corresponding to the predetermined gap (46) between the core parts (2, 3) of the side plate (4). Thus, heat blocking portions ( 41, 41 a) that block heat moving between the core portions (2, 3) are formed , and the heat blocking portions ( 41, 41 a) cut a part of the side plate (4). It is characterized by being constituted by notches (41, 41a) .
[0007]
According to a second aspect of the present invention, in the heterogeneous core integrated heat exchanger according to the first aspect, the notch (41a) is formed at one end in the longitudinal direction of the side plate (4). to.
[0008]
In the invention described in claim 3, in the heat exchanger according to claim 1, notch (41, 41a) is characterized by being a plurality of formed side by side in the longitudinal direction of the side plate. According to a fourth aspect of the present invention, in the heterogeneous core integrated heat exchanger according to the third aspect, the plurality of notches (41, 41a) are notches formed at one end in the longitudinal direction of the side plate 4. A connecting portion (42) between two adjacent notches on the side of the first and second core tanks (5, 6, 7, 8) from the notch (41a). It is not formed. In the invention according to claim 5, the first core part (2) is a condenser core part (2) for condensing the refrigerant of the vehicle air conditioner , and the second core part (3) is a cooling engine for the vehicle. characterized in that it is a use radiator core portion (3).
[0009]
Next, operational effects will be described. According to invention of Claims 1-4, the site | part corresponded to the predetermined clearance gap (46) between both core parts (2, 3) among the side plates (4) which couple | bond both core parts (2, 3). Are formed with heat blocking portions ( 41, 41 a) that block the heat that travels between the core portions (2, 3) through the side plate (4), and the heat blocking portions ( 41, 41 a) Since it is comprised by the notch part (41, 41a) which cut | disconnects a part of side plate (4), the fall of the heat exchange efficiency of a heat transfer destination core part can be suppressed.
[0010]
According to the second aspect of the present invention, the notch (41a) is one end in the longitudinal direction of the side plate (4), that is, the first of the side plate (4) having the largest heat transfer amount, as will be described later . Since it is formed at the second core portion tank (5, 6, 7, 8) side end, the amount of heat transfer can be effectively blocked .
[0011]
According to invention of Claim 5, a 1st core part (2) comprises the capacitor | condenser core part (2) which condenses the refrigerant | coolant of a vehicle air conditioner, and a 2nd core part (3) is for vehicles. Since it forms the radiator core portion (3) for cooling the engine, heat transfer from the radiator core portion (3) to the capacitor core portion (2) can be suppressed. As a result, it is possible to prevent a reduction in heat exchange efficiency in the capacitor core part (2).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention shown in the drawings will be described.
(First embodiment)
This embodiment is a vehicle heat exchanger using a condenser core part for a vehicle air conditioner as a first core part and a radiator core part for engine cooling as a second core part. Usually, the temperature of the refrigerant flowing through the condenser core portion is lower than the temperature of the engine cooling water flowing through the radiator core portion. Therefore, this heterogeneous core integrated heat exchanger (hereinafter abbreviated as heat exchanger) is the condenser core portion. Are arranged upstream of the radiator core portion in the air flow, and are arranged in series with the air flow in the foremost portion of the engine room. The shape of the heat exchanger according to this embodiment will be described below with reference to FIGS.
[0013]
FIG. 1 is a perspective view of a heat exchanger 1 according to the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG. 2 is a capacitor core part, and 3 is a radiator core part. And both the core parts 2 and 3 have the predetermined | prescribed clearance gap 46 between both the tubes mentioned later in order to interrupt | block heat conduction mutually, and are located in a line with the air flow in series.
The capacitor core portion 2 includes a condenser tube 21 that forms a flat refrigerant passage and a corrugated (wave-shaped) cooling fin 22 brazed to the condenser tube 21.
[0014]
The radiator core portion 3 has the same structure as the capacitor core portion 2, and includes a radiator tube 31 disposed in parallel with the capacitor tube 21 and cooling fins 32. The tubes 21 and 31 and the cooling fins 22 and 32 are alternately laminated and brazed with a brazing material coated on both the front and back surfaces of the cooling fins 22 and 32 .
[0015]
The cooling fins 22 and 32 are formed with louvers 22a and 32a for promoting heat exchange. The cooling fins 22 and 32 are integrally formed with the louvers 22a and 32a by a roller molding method or the like. ing.
Reference numeral 4 denotes a side plate that serves as a reinforcing member for both the core portions 2 and 3. As shown in FIG. 1, the side plate 4 is disposed at both ends of the both core portions 2 and 3. Are combined. As shown in FIG. 2, the side plate 4 is integrally formed from a single aluminum plate with the cross-sectional shape in the air flow direction being substantially U-shaped.
[0016]
A portion of the side plate 4 corresponding to the gap 46 between the core portions 2 and 3 forms a heat blocking portion that transfers the side plate 4 and blocks heat moving between the core portions 2 and 3. A notch 41 is formed. As shown in FIG. 3, a plurality of notches 41 are formed side by side in the longitudinal direction of the side plate 4 so as to cut and remove a part of the side plate 4. The heat transfer between the core portions 2 and 3 must be effectively blocked, and the reinforcing member must be formed to such an extent that the mechanical strength is not impaired. In addition, the dimension of an air flow direction among the dimensions of the notch part 41 is equal to the distance L between both the core parts 2 and 3 as shown in FIG.
[0017]
Incidentally, the most important cutout portion 41 as the heat shield portion among the plurality of cutout portions 41 is a longitudinal end portion of the side plate 4, that is, a cutout portion 41a on the side of tanks 5, 6, 7, and 8 to be described later ( As shown in FIG. 1, a coupling portion 42 (a portion between two adjacent notches 41) is not formed on the tanks 5, 6, 7, 8 side from the notches 41 a.
[0018]
Incidentally, 5 in FIG. 1 is a first radiator tank that distributes high-temperature cooling water from an engine (not shown) to each radiator tube 31, and 6 is a collection of low-temperature cooling water after heat exchange from each radiator tube 31. And a second radiator tank that is supplied to the engine. Reference numeral 7 denotes a first condenser tank that distributes a high-pressure gas-phase refrigerant pumped from a compressor of a vehicle air conditioner (not shown) to each condenser tube 21, and 8 denotes a liquid-phase refrigerant condensed in the condenser core portion 2. Is a second condenser tank that is collected from the condenser tubes 21 and supplied to a decompressor of a vehicle air conditioner (not shown).
[0019]
The tanks 5, 6, 7, and 8 are formed by closing the opening portions on both ends of the aluminum cylindrical members 5a, 6a, 7a, and 8a with aluminum caps 5b, 6b, 7b, and 8b. The cylindrical members 5a, 6a, 7a, 8a and the caps 5b, 6b, 7b, 8b are joined by brazing.
Next, the outline about the assembling method of the heat exchanger 1 which concerns on this embodiment is described.
[0020]
With respect to the fin positioning jig 100 as shown in FIG. 4B, first, the plate-like protrusion 101 of the fin positioning jig 100 is inserted into the notch 41 as shown in FIG. Place the side plate 4 as shown. The plate thickness l of the plate-like protrusion 101 is equal to the distance L between both cores. Then, the tubes 21 and 31 and the cooling fins 22 and 32 are sequentially stacked so as to be in contact with the plate-like protrusion 101 of the fin positioning jig 100, and finally the side plate 4 is stacked.
[0021]
Next, the tanks 5, 6, and 8 are inserted into the long holes 5 c, 6 c, 7 c, and 8 c formed in the tanks 5, 6, 7, and 8, so that the longitudinal ends of the tubes 21 and 31 and the side plate 4 are inserted. 7 and 8 are assembled. Then, the temporarily assembled heat exchanger is placed in a furnace and heated for brazing.
Next, features of this embodiment will be described.
[0022]
According to the heat exchanger 1 according to this embodiment, the side plate 4 is conducted to the portion corresponding to the gap 46 between the both core portions 2 and 3 in the side plate 4 so that the gap between the both core portions 2 and 3 is transmitted. Since the cutout portion 41 that forms a heat blocking portion that blocks the moving heat is formed, heat transfer from the radiator core portion 3 to the capacitor core portion 3 can be suppressed. Therefore, it is possible to suppress a decrease in heat exchange efficiency in the capacitor core portion 2.
[0023]
By the way, among the longitudinal direction parts of the side plate 4, the part on the first radiator tank 5 side where the high-temperature cooling water flows in has the largest temperature difference between the core parts 2 and 3. Of the end portions in the direction, the portion on the first radiator tank 5 side has the largest amount of heat transfer. Incidentally, in the capacitor core part 2, since the refrigerant mainly undergoes a phase change, the refrigerant temperature change can be ignored.
[0024]
And in the side plate 4 which concerns on this embodiment, since the notch part 41a is provided in this site | part with the largest heat transfer amount, the heat transfer from the radiator core part 3 to the capacitor | condenser core part 3 is suppressed further better. Can do.
Further, since the coupling portion 42 is not formed on the side of the first radiator tank 5 with respect to the cutout portion 41a of the side plate 4, the distance from the first radiator tank 5 to the nearest coupling portion 42 is increased, and the first radiator is increased. The heat transfer path from the tank 5 to the first condenser tank 7 becomes longer. Therefore, heat transfer from the radiator core portion 3 to the capacitor core portion 3 can be further suppressed.
[0025]
In addition, since the cutout portions 41 and 41a are formed in the side plate 4, insects, dust, and the like that have entered between the core portions 2 and 3 pass through the cutout portions 41 and 41a to the outside of the heat exchanger 1 (specifically, , The vehicle is discharged downward). Therefore, since insects, dust and the like are prevented from accumulating between the core portions 2 and 3, the heat of the radiator core portion 3 due to insufficient air flow to the radiator core portion 3 located on the downstream side of the air. Reduction of exchange efficiency can be suppressed.
[0026]
Further, according to the method for assembling the heat exchanger 1 described above, by sequentially laminating both the tubes 21 and 31 and both the cooling fins 22 and 32 so as to be in contact with the plate-like protrusions 101 of the fin positioning jig 100, Since the gaps 46 between the tubes 21 and 31 and the cooling fins 22 and 32 can be easily set, the assembly manufacturability of the heat exchanger 1 is improved. As a result, the manufacturing cost of the heat exchanger can be reduced.
[0027]
Moreover, since the fin positioning jig 100 can be easily positioned with respect to the heat exchanger 1 by inserting the plate-like protrusion 101 into the notch 41, a new jig or the like is not required. Capital investment and design changes can be suppressed.
(Second Embodiment)
In the present embodiment, the mechanical strength of the side plate 4 is improved.
[0028]
That is, as shown in FIG. 5, when the notches 41 and 41a are formed, the portions corresponding to the notches 41 and 41a are not cut and removed, and a so-called burring shape is formed. That is, since the bent portion 43 is formed by using the burring shape, the bending rigidity (secondary moment of cross section) of the side plate 4 is increased, and the mechanical strength of the side plate 4 is improved.
[0029]
Further, the portions corresponding to the notches 41 and 41a are not cut and removed, and are formed in a burring shape, so that waste materials are reduced. As a result, industrial waste can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view of a heat exchanger according to a first embodiment.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 is a two-side view of a side plate.
FIG. 4 is an exploded perspective view showing an assembled state of the heat exchanger according to the first embodiment.
FIG. 5 is a cross-sectional view of a heat exchanger according to a second embodiment of the present invention, and is a cross-sectional view corresponding to the AA cross section of FIG.
[Explanation of symbols]
1 ... heat exchanger with integrated different core, 2 ... capacitor core,
3 ... radiator core, 4 ... side plate, 5 ... first radiator tank,
6 ... 2nd radiator tank, 7 ... 1st capacitor tank,
8 ... Second capacitor tank, 21 ... Condenser tube,
22 ... Cooling fins, 31 ... Radiator tube, 32 ... Cooling fins,
22a, 32a ... louver, 41, 41a ... notch, 42 ... coupling part,
43 ... bent portion 46 ... gap.

Claims (5)

第1媒体の通路をなすチューブ(21)と、冷却フィン(22)とを有し、前記第1媒体と被熱交換媒体との間で熱交換を行う第1コア部(2)と、
前記第1コア部(2)の被熱交換媒体流れ下流側に、所定の隙間(46)を有して配置され、第2媒体の通路をなし前記第1コア部のチューブ(21)と平行に配置されたチューブ(31)と、冷却フィン(32)とを有し、前記第2媒体と被熱交換媒体との間で熱交換を行う第2コア部(3)と、
前記両コア部(2、3)の端部に配置され、両コア部(2、3)を結合するサイドプレート(4)と
前記第1コア部(2)の端部のうち前記サイドプレート(4)が配置されていない側の端部に配置され、前記第1冷媒を前記第1コア部のチューブ(21)に分配集合させる第1コア部タンク(5、6)と、
前記第2コア部(3)の端部のうち前記サイドプレート(4)が配置されていない側の端部に配置され、前記第2冷媒を前記第2コア部のチューブ(31)に分配集合させる第2コア部タンク(7、8)とを有し、
前記サイドプレート(4)は、その長手方向の一端部側で前記第1コア部タンク(5、6)と前記第2コア部タンク(7、8)に組みつけられており、
前記サイドプレート(4)のうち前記両コア部(2、3)間の隙間(46)に相当する部位には、前記サイドプレート(4)を伝導して前記両コア部(2、3)間を移動する熱を遮断する熱遮断部(41、41a)が形成され、前記熱遮断部(41、41a)は、前記サイドプレート(4)の一部を切断する切欠部(41、41a)によって構成されていることを特徴とする異種コア一体型熱交換器。
A first core section (2) having a tube (21) forming a passage of the first medium and a cooling fin (22), and performing heat exchange between the first medium and the heat exchange medium;
The first core portion (2) is disposed downstream of the heat exchange medium flow with a predetermined gap (46), forms a passage for the second medium, and is parallel to the tube (21) of the first core portion. A second core portion (3) having a tube (31) and a cooling fin (32) disposed on the second core and performing heat exchange between the second medium and the heat exchange medium;
A side plate (4) that is disposed at the end of both core parts (2, 3) and joins both core parts (2, 3) ;
Disposed at the end of the first core portion (2) on the side where the side plate (4) is not disposed, and distributes the first refrigerant to the tube (21) of the first core portion. A first core tank (5, 6)
Disposed at the end of the second core portion (3) on the side where the side plate (4) is not disposed, and the second refrigerant is distributed to the tube (31) of the second core portion. A second core tank (7, 8)
The side plate (4) is assembled to the first core tank (5, 6) and the second core tank (7, 8) on one end side in the longitudinal direction,
A portion of the side plate (4) corresponding to a gap (46) between the core portions (2, 3) is conducted between the core portions (2, 3) through the side plate (4). Are formed by notches ( 41, 41a) for cutting part of the side plate (4). A heterogeneous core-integrated heat exchanger characterized by being configured .
前記切欠部(41a)は、前記サイドプレート(4)の長手方向の前記一端部に形成されていることを特徴とする請求項1に記載の異種コア一体型熱交換器。The heterogeneous core-integrated heat exchanger according to claim 1, wherein the notch (41a) is formed at the one end in the longitudinal direction of the side plate (4). 前記切欠部(41、41a)は、前記サイドプレートの長手方向に並んで複数本形成されていることを特徴とする請求項に記載の熱交換器。 2. The heat exchanger according to claim 1 , wherein a plurality of the notches (41, 41 a) are formed side by side in the longitudinal direction of the side plate . 前記複数本の切欠部(41、41a)は、前記サイドプレート4の長手方向の前記一端部に形成された切欠部(41a)を有し、この切欠部(41a)より前記第1、第2コア部タンク(5、6、7、8)側には、隣合う2つ切欠部間の結合部分(42)が形成されていないことを特徴とする請求項3に記載の異種コア一体型熱交換器。 The plurality of cutout portions (41, 41a) have a cutout portion (41a) formed at the one end portion in the longitudinal direction of the side plate 4, and the first and second cutout portions (41a) have the first and second portions. 4. The heterogeneous core-integrated heat according to claim 3, wherein the core tank (5, 6, 7, 8) is not formed with a connecting portion (42) between two adjacent notches. Exchanger. 記第1コア部(2)は、車両用空調装置の冷媒を凝縮するコンデンサコア部(2)であり、前記第2コア部(3)は、車両用エンジンの冷却用ラジエータコア部(3)であることを特徴とする請求項1ないし4のいずれか1つに記載の異種コア一体型熱交換器。The first core portion prior SL (2) is a condenser core portion for condensing refrigerant of the vehicle air conditioner (2), said second core portion (3), the cooling radiator core portion of a vehicle engine (3 heterogeneous core integrated heat exchanger according to any one of claims 1 to 4 you wherein a) is.
JP2143396A 1996-02-07 1996-02-07 Heterogeneous core integrated heat exchanger Expired - Fee Related JP3674129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143396A JP3674129B2 (en) 1996-02-07 1996-02-07 Heterogeneous core integrated heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143396A JP3674129B2 (en) 1996-02-07 1996-02-07 Heterogeneous core integrated heat exchanger

Publications (2)

Publication Number Publication Date
JPH09210591A JPH09210591A (en) 1997-08-12
JP3674129B2 true JP3674129B2 (en) 2005-07-20

Family

ID=12054857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143396A Expired - Fee Related JP3674129B2 (en) 1996-02-07 1996-02-07 Heterogeneous core integrated heat exchanger

Country Status (1)

Country Link
JP (1) JP3674129B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218396A (en) * 1997-11-28 1999-08-10 Zexel:Kk Parallel installation integrated type heat exchanger and manufacture thereof
JP3991433B2 (en) * 1998-03-18 2007-10-17 日本軽金属株式会社 Multi-stage heat exchanger
JP2002147973A (en) * 2000-08-30 2002-05-22 Denso Corp Duplex heat exchanger
KR100389697B1 (en) * 2000-12-05 2003-06-27 삼성공조 주식회사 Combination Heat Exchanger
KR20040033493A (en) * 2002-10-14 2004-04-28 현대모비스 주식회사 Assembling Method for an integrated heat exchanger of a radiator and a condenser
JP2004225990A (en) * 2003-01-22 2004-08-12 Calsonic Kansei Corp Composite heat exchanger
JP5243162B2 (en) * 2008-09-18 2013-07-24 東芝キヤリア株式会社 Air conditioner indoor unit
US20120024508A1 (en) * 2010-07-28 2012-02-02 Delphi Technologies, Inc. Reinforcement plate for multiple row heat exchanger
JP5940895B2 (en) * 2012-06-04 2016-06-29 シャープ株式会社 Parallel flow type heat exchanger and air conditioner equipped with the same
WO2015061447A2 (en) 2013-10-23 2015-04-30 Modine Manufacturing Comapny Heat exchanger and side plate
CN104654830A (en) * 2015-02-09 2015-05-27 赖卫华 Energy-saving methane heat exchanger
JP2021169907A (en) * 2020-04-17 2021-10-28 株式会社デンソー Heat exchanger
US20210381778A1 (en) * 2020-06-04 2021-12-09 Denso International America, Inc. Heat exchanger with thermal stress-relief areas

Also Published As

Publication number Publication date
JPH09210591A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
EP1058080B1 (en) Heat exchanger
JP4379967B2 (en) Double heat exchanger
JP3674129B2 (en) Heterogeneous core integrated heat exchanger
US6213196B1 (en) Double heat exchanger for vehicle air conditioner
US6209628B1 (en) Heat exchanger having several heat exchanging portions
JP4105320B2 (en) Heat exchanger
JP3855346B2 (en) Heat exchanger
JP3653909B2 (en) Heat exchanger
JP2004116937A (en) Heat exchanger module
CN111448438A (en) Heat exchanger
JP3674120B2 (en) Heat exchanger
US7905277B2 (en) Method of producing a heat exchanger module
JPS63282490A (en) Manufacture of heat exchanger
JPH10306993A (en) Composite heat exchanger for vehicle
JPH09257388A (en) Heat exchanger
JPH04366397A (en) Heat exchanger
JP3677898B2 (en) Double heat exchanger
JP3358380B2 (en) Heat exchanger and its manufacturing method
JPH0596773U (en) Heat exchanger
JPH04363591A (en) Heat exchanger
JP2002318090A (en) Duplex heat exchanger
JPH11304378A (en) Heat exchanger for vehicle
JPH04288484A (en) Assembled brazing method of mounting bracket in heat exchanger
JP2560437Y2 (en) Automotive capacitors
EP1256771A1 (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees