JP3672224B2 - Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same - Google Patents

Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same Download PDF

Info

Publication number
JP3672224B2
JP3672224B2 JP24409199A JP24409199A JP3672224B2 JP 3672224 B2 JP3672224 B2 JP 3672224B2 JP 24409199 A JP24409199 A JP 24409199A JP 24409199 A JP24409199 A JP 24409199A JP 3672224 B2 JP3672224 B2 JP 3672224B2
Authority
JP
Japan
Prior art keywords
compound
group
molding material
epoxy resin
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24409199A
Other languages
Japanese (ja)
Other versions
JP2001064366A (en
Inventor
澄也 三宅
義幸 郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP24409199A priority Critical patent/JP3672224B2/en
Publication of JP2001064366A publication Critical patent/JP2001064366A/en
Application granted granted Critical
Publication of JP3672224B2 publication Critical patent/JP3672224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硬化性と保存性が良好で、電気・電子材料分野に有用な熱硬化性樹脂組成物、およびこれを用いたエポキシ樹脂成形材料ならびにその硬化物にて封止された半導体装置に関するものである。
【0002】
【従来の技術】
電気・電子材料、特にIC封止材料は近年、生産効率の向上を目的とした速硬化性と、物流・保管時のハンドリング性向上のための保存性の向上とが求められるようになってきている。
【0003】
従来、電子電気分野向けエポキシ樹脂には、硬化触媒としてアミン類、イミダゾール系化合物、ジアザビシクロウンデセンなどの含窒素複素環式化合物、第四級アンモニウム、ホスホニウムあるいはアルソニウム化合物などの種々の化合物が使用されている。
【0004】
これら一般に使用される硬化触媒は、常温などの比較的低温においても硬化促進作用を示す場合が多い。このことは、樹脂組成物の製造および保存時の粘度上昇や、流動性の低下、硬化性のばらつきなど、製品としての品質を低下させる原因となっている。
【0005】
この問題を解決すべく、近年では低温での粘度、流動性の経時変化を抑え、賦形、成形時の加熱によってのみ硬化反応を起こすような、いわゆる潜伏性硬化促進剤の研究が盛んになされている。その手段として、硬化促進剤の活性点をイオン対により保護することで、潜伏性を発現する研究がなされており、特開平8−41290号公報では、種々の有機酸とホスホニウムイオンとの塩構造を有する潜伏性硬化促進剤が提示されている。しかし、このホスホニウム塩は、特定の高次の分子構造を有さず、イオン対が比較的容易に外部環境の影響を受けるため、近年の低分子エポキシ樹脂やフェノールアラルキル樹脂のような分子の動きやすい硬化剤を用いる半導体封止材料では、保存性が低下する問題が生じている。
【0006】
【発明が解決しようとする課題】
本発明は、硬化性と保存性が良好で、電気・電子材料分野に有用な熱硬化性樹脂組成物、および、これを用いたエポキシ樹脂成形材料ならびにその硬化物にて封止された耐湿性に優れた半導体装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、一般式(3)及び(4)で表される化合物からなる群より、また、さらには一般式(7)及び(8)で表される化合物からなる群より、少なくとも1つ選ばれる分子化合物(C)を必須成分とすることを特徴とする熱硬化性樹脂組成物、
【0010】
【化3】

Figure 0003672224
【0011】
【化4】
Figure 0003672224
【0012】
(ただし、式中、Pはリン原子、R1、R2、R3、R4は置換もしくは無置換の芳香族基、またはアルキル基、A2は2価の芳香族基、Bは2価の脂肪族基、単結合または2価の芳香環を含む有機基、Oは酸素原子、Hはプロトンを表す
【0015】
【化7】
Figure 0003672224
【0016】
【化8】
Figure 0003672224
【0017】
(ただし、式中、Pはリン原子、E1及びE2は2価の脂肪族基、単結合、または2価の芳香環を含む有機基、Oは酸素原子、Hはプロトンを表す。式(7)中、E1及びE2は互いに同一であっても異なってもよい。)
【0018】
1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、一般式(3)及び(4)で表される化合物からなる群より、また、さらには一般式(7)及び(8)で表される化合物からなる群より、少なくとも1つ選ばれる分子化合物(C)、無機充填材(D)を必須成分とすることを特徴とするエポキシ樹脂成形材料、ならびにその硬化物にて封止された半導体装置において、きわめて優れた硬化性と保存性を有する樹脂組成物、ならびにエポキシ樹脂成形材料が得られ、さらには高い信頼性を有する半導体装置が得られることを見いだし、本発明を完成するに至った。
【0019】
【発明の実施の形態】
本発明において用いる1分子内にエポキシ基を2個以上有する化合物(A)は、1分子内にエポキシ基を2個以上有するものであれば何ら制限はなく、例えば、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂など、ビフェノールなどのフェノール類やフェノール樹脂、ナフトール類などの水酸基にエピクロロヒドリンを反応させて製造するエポキシ樹脂、エポキシ化合物の他、脂環式エポキシ樹脂のようにオレフィンを過酸を用いて酸化させエポキシ化したエポキシ樹脂や、ハイドロキノン等のジヒドロキシベンゼン類をエピクロロヒドリンでエポキシ化したものも含まれる。
【0020】
また、1分子内にフェノール性水酸基を2個以上有する化合物(B)は、1分子内にエポキシ基を2個以上有する化合物(A)の硬化剤として作用するものである。具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、アルキル変性ノボラック樹脂(シクロアルケンの二重結合をフリーデルクラフツ型の反応でフェノール類と反応、共縮合した樹脂を含む)、フェノールアラルキル樹脂、ナフトール類及びフェノール類とカルボニル基含有化合物とを共縮合した樹脂などが例示されるが、1分子内で芳香族性の環に結合する水素原子が水酸基で2個以上置換された化合物であればよい。
【0021】
本発明において硬化促進剤として機能する分子化合物(C)は、一般式(3)および(4)さらには一般式(7)および(8)で表される化合物などの、テトラ置換ホスホニウムとフェノール化合物との分子会合体である。この分子化合物は、1個のテトラ置換ホスホニウムと、3個のフェノール性水酸基および1個のフェノキシドアニオンの単位で構成され、テトラ置換ホスホニウムイオンの正電荷の周囲を3個のフェノール性水酸基と1個のフェノキシドアニオンが取り囲み、安定化させた構造となっていると考えられる。
【0022】
このような構造を取りうるホスホニウムイオンは、置換または無置換のアリール基やアルキル基を置換基にもつテトラ置換ホスホニウムイオンが熱や、加水分解に対して安定であり、具体的には、テトラフェニルホスホニウム、テトラトリルホスホニウムなどのテトラアリール置換ホスホニウム、トリフェニルメチルホスニウムなどのトリアリールホスフィンとアルキルハライドから合成されたホスホニウムハライドに起源をもつトリアリールモノアルキルホスホニウム、テトラブチルホスホニウムなどのテトラアルキル置換ホスホニウムなどが例示される。
【0023】
また、分子化合物(C)を形成するもう一方の成分である、フェノール化合物としては、ビスフェノールA、ビスフェノールFなどのビスフェノール類、ジヒドロキシナフタレン、ビフェノール、カテコール、レゾルシノールなどが例示されるが、分子化合物の安定性や硬化性、硬化物物性の点でジヒドロキシナフタレン、ビフェノールやビスフェノールA、ビスフェノールF(ビス(4−ヒドロキシフェニル)メタン、ビス(2−ヒドロキシフェニル)メタン、(4−ヒドロキシフェニル)(2−ヒドロキシフェニル)メタンや本州化学製ビスフェノールF−Dのような異性体混合物を含む)などのビスフェノール類が好適である。
【0024】
分子化合物(C)は、前述のようなフェノール化合物と、最終的に脱ハロゲン化水素を助ける塩基、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物や、ピリジン、トリエチルアミンなどの有機塩基をアルコールなどの溶媒に溶解し、続いて適当な溶媒に溶解した、前記テトラ置換ホスホニウムのハライドを添加し、反応させて、最終的には、再結晶や再沈などの操作により固形分として取り出す方法や、テトラ置換ホスホニウムテトラ置換ボレートとフェノール化合物を熱反応後、アルコールなどの溶媒中で加熱反応させる方法で合成可能である。
【0025】
本発明において用いる分子化合物(C)は、前述のようにホスホニウム−フェノキシド型の塩を構造に有するが、これが従来のホスホニウム−有機酸アニオン塩型の化合物と異なる点は、分子化合物(C)ではフェノール性水酸基のプロトンが関与した水素結合による高次構造がこのイオン結合を取り囲んでいる点である。従来の塩では、イオン結合の強さのみにより反応性を制御していたのに対し、分子化合物(C)では、常温では反応活性点のイオン対が高次構造により囲い込まれて、活性点が保護され、一方、実際の賦形の段階においては、この高次構造が崩れることで活性点がむき出しになり、反応性を発現する、いわゆる潜伏性が付与される。
【0026】
本発明において用いる、硬化促進剤として機能する、分子化合物(C)の配合量は、1分子内にエポキシ基を2個以上有する化合物(A)と、硬化剤として機能する、1分子内にフェノール性水酸基を2個以上有する化合物(B)の合計量を100重量部とした場合、0.5〜20重量部程度が硬化性、保存性、他特性のバランスがよく好適である。また1分子内にエポキシ基を2個以上有する化合物(A)と、1分子内にフェノール性水酸基を2個以上有する化合物(B)の比率は、エポキシ基1モルに対し、化合物(B)のフェノール性水酸基と分子化合物(C)に含まれるフェノール性水酸基との合算にて0.5〜2モル、好ましくは、0.8〜1.2程度のモル比となるよう用いると硬化性、耐熱性、電気特性等がより良好となる。
【0027】
本発明において用いる無機充填材(D)の種類については、特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば、溶融破砕シリカ粉末、溶融球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、ガラス繊維等が挙げられ、特に溶融球状シリカ粉末が好ましい。形状は限りなく真球状であることが好ましく、又、粒子の大きさの異なるものを混合することにより充填量を多くすることができる。
【0028】
この無機充填材の配合量としては、1分子内にエポキシ基を2個以上有する化合物(A)と1分子内にフェノール性水酸基を2個以上有する化合物(B)の合計量100重量部あたり200〜2400重量部が好ましい。200重量部未満だと、無機充填材による補強効果が充分に発現しないおそれがあり、2400重量部を越えると、樹脂組成物の流動性が低下し成形時に充填不良等が生じるおそれがあるので好ましくない。特に、無機充填材の配合量が、化合物(A)と化合物(B)の合計量100重量部あたり、250〜1400重量部であれば、樹脂組成物の硬化物の吸湿率が低くなり、半田クラックの発生を防止することができ、更に溶融時の樹脂組成物の粘度が低くなるため、半導体装置内部の金線変形を引き起こすおそれがなく、より好ましい。又、無機充填材は、予め充分混合しておくことが好ましい。
【0029】
本発明のエポキシ樹脂成形材料は、(A)〜(D)成分の他、必要に応じてγ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類、パラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができ、また本発明において硬化促進剤として機能する分子化合物(C)の特性を損なわない範囲で、トリフェニルホスフィン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7,2−メチルイミダゾール等の他の公知の触媒と併用しても何ら問題はない。
【0030】
本発明のエポキシ樹脂成形材料は、(A)〜(D)成分、及びその他の添加剤等をミキサーを用いて常温混合し、ロール、押出機等の混練機で混練し、冷却後粉砕して得られる。
【0031】
本発明のエポキシ樹脂成形材料を用いて、半導体等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形することができる。
【0032】
本発明のエポキシ樹脂成形材料の硬化物で封止された半導体装置は、本発明の技術的範囲に含まれ、優れた耐湿性を示す。
【0033】
【実施例】
以下に、この発明の実施例を示すが、本発明がこれにより何らかの制限を受けるものではない。
【0034】
[硬化促進剤の合成]
合成した分子化合物(C)の構造確認は、NMR、元素分析、及び下記方法による中和滴定により実施した。
・中和滴定(ホスホニウムフェノキシド当量の測定)
合成した分子化合物(C)をメタノール/水系溶媒中で、重量既知の過剰のシュウ酸と反応させ、残余のシュウ酸を規定度既知の水酸化ナトリウム水溶液で定量して、分子化合物(C)の重量あたり規定度(N/g)を算出。この値の逆数がホスホニウムフェノキシド当量となる。
【0035】
(合成例1)
3リットルのセパラブルフラスコに、2,6−ジヒドロキシナフタレン32.0g(水酸基0.4モル)を入れ、メタノールに少量のアセトンを混合した溶媒に溶解し、さらに攪拌しながら水酸化カリウム5.6gを予めメタノールで溶解したものを添加した後、ただちにテトラフェニルホスホニウムブロマイド41.9g(0.1モル)のメタノール溶液を加えた。しばらく攪拌を継続し、溶媒を含む反応物の3倍重量のメタノールを追加した後、大量の水へ内容物を投入、固形分を回収した。この化合物をC3とする。C3は、NMR、元素分析の結果および中和滴定の値からホスホニウムフェノキシド当量が、665で理論値660に近いことから、平均構造が一般式(8)で表される構造であることがわかった。
【0036】
(合成例2〜6
合成例2〜6では、表1に示した条件により、基本的な操作はすべて合成例1と同様に行い、それぞれ化合物C4〜C8を調製した。結果を表1に示す。
【0037】
(比較合成例1)
3リットルのセパラブルフラスコにビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタンを12.8g(0.05モル)を入れ、メタノールに溶解、さらに攪拌しながら水酸化ナトリウム4.0gを予めメタノールで溶解したものを添加した後、ただちにテトラブチルホスホニウムブロマイド33.9g(0.1モル)のメタノール溶液を加えた。しばらく攪拌を継続し、溶媒を含む反応物の3倍重量のメタノールを追加した後、大量の水へ内容物を投入、固形分を回収した。この化合物をD1とする。D1は分子化合物ではなく、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタンの2個の水酸基のプロトンが解離した各々のフェノキシドに各1分子のテトラブチルホスホニウムがイオン結合した化合物である。
【0038】
(比較合成例2)
安息香酸61.1g(0.5モル)、水酸化ナトリウム20gを200gのメタノールに溶解したものを室温で攪拌し、テトラフェニルホスホニウムブロマイド209.6g(0.5モル)をメタノール200gに溶解したものをこれに滴下した。完全に滴下後、溶液を加熱し析出分を再溶解したのち、これに純水150gを加えて析出物を得た。この化合物をD2とする。このD2も単なるホスホニウム塩であって本発明の分子化合物ではない。
比較合成例1、2の結果も他の合成例と同様表1にまとめた。
【0039】
【表1】
Figure 0003672224
【0040】
[熱硬化性樹脂組成物の評価]
まず、合成した分子化合物(C)を、1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、に加えて粉砕混合し、さらに100℃で5分間熱板上で溶融混練した後、冷却粉砕して組成物のサンプルを調製し、評価を行った。評価方法は下記のとおりである。
(1)硬化トルク
前記のサンプル調製方法により作製した樹脂組成物を用いて、キュラストメーター(オリエンテック社製、JSRキュラストメーターPS型)により、175℃、45秒後のトルクを求めた。キュラストメーターにおけるトルクは硬化性のパラメータであり、値の大きい方が硬化性が高いことを示す。
(2)硬化発熱量残存率(保存性評価)
前記のサンプル調製方法により作製した樹脂組成物を用いて、調製直後の初期硬化発熱量、および40℃で3日間保存処理後の硬化発熱量を測定し、初期硬化発熱量(mj/mg)に対する保存処理後の硬化発熱量(mj/mg)の百分率を算出した。尚、硬化発熱量の測定は、昇温速度10℃/minの条件で示差熱分析により測定した。この値が大きいほど保存性が良好であることを示す。
【0041】
(実施例1〜6、および比較例1〜3)
表2に示した配合により、前記の方法で組成物のサンプルを調製し評価した。比較例1では、実施例における化合物(C)にかえてトリフェニルホスフィンを、比較例2〜3では、前述比較合成例1、2で合成された化合物D1、D2を用いた。得られた各組成物の評価結果は、表2に示した通りであった。
【0042】
【表2】
Figure 0003672224
【0043】
実施例に示すように本発明の熱硬化性樹脂組成物は硬化性、保存性が良好であるのに対し、比較例1のトリフェニルホスフィンを硬化促進剤に用いた樹脂組成物は硬化性、保存性とも悪く、比較例2、3の本発明の分子化合物ではないホスホニウム塩は硬化性がよいものの保存性がよくない。
【0044】
[エポキシ樹脂成形材料の評価]
実施例7
油化シェルエポキシ製YX-4000H(ビフェニル型エポキシ樹脂) 52
重量部三井化学製XL225(フェノールアラルキル樹脂) 48重量部
分子化合物C5 3 重量部
溶融球状シリカ(平均粒径15μm) 500重量部
カーボンブラック 2重量部
臭素化ビスフェノールA型エポキシ樹脂 2重量部
カルナバワックス 2重量部
を混合し、熱ロールを用いて、95℃で8分間混練して冷却後粉砕し、エポキシ樹脂成形材料を得た。得られたエポキシ樹脂成形材料を以下の方法で評価した。結果を表3に示す。
【0045】
評価方法
1)スパイラルフロー:EMMI−I−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。スパイラルフローは流動性のパラメータであり、数値が大きい方が流動性が良好である。単位はcm。
2)硬化トルク:キュラストメーター(オリエンテック(株)製、JSRキュラストメーター PS型)を用い、175℃、45秒後のトルクを求める。この値の大きい方が硬化性は良好である。単位はkgf・cm
3)フロー残存率:30℃で1週間保存した後、スパイラルフローを測定し、調製直後のスパイラルフローに対する百分率として表す。単位は%。
4)耐湿信頼性:金型温度175℃、圧力70kg/cm2、硬化時間2分で16pDIPを成形した後、175℃、8時間で後硬化を行った。125℃、相対湿度100%の水蒸気中で20Vの電圧を印可した後、断線不良を調べた。15個のパッケージのうちの8個以上に不良が出るまでの時間を不良時間とした。単位は時間。なお、測定時間は最長で500時間とし、その時点で不良パッケージ数が8個未満であったものは、不良時間は500時間以上と示した。不良時間が長いほど、耐湿信頼性に優れる。
【0045】
(比較例4、5)
表3の配合に従い、実施例と同様にしてエポキシ樹脂成形材料を調製し評価した。結果を表3に示す。
【0046】
【表3】
Figure 0003672224
【0047】
実施例7の本発明のエポキシ樹脂成形材料は保存性、硬化性がきわめて良好であり、またこのエポキシ樹脂成形材料の硬化物で封止された半導体装置は耐湿性が良好であることがわかる。
【0048】
【発明の効果】
本発明の熱硬化性樹脂組成物及びエポキシ樹脂成形材料は優れた硬化性、保存性を有し、このエポキシ樹脂成形材料の硬化物で封止された半導体装置は、耐湿信頼性に優れ有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosetting resin composition having good curability and storage stability and useful in the field of electric and electronic materials, an epoxy resin molding material using the same, and a semiconductor device sealed with the cured product. Is.
[0002]
[Prior art]
In recent years, electrical and electronic materials, especially IC encapsulating materials, have been required to have fast curing properties for the purpose of improving production efficiency and storage stability to improve handling during distribution and storage. Yes.
[0003]
Conventionally, epoxy resins for electronic and electrical fields include various compounds such as amines, imidazole compounds, nitrogen-containing heterocyclic compounds such as diazabicycloundecene, quaternary ammonium, phosphonium or arsonium compounds as curing catalysts. in use.
[0004]
These generally used curing catalysts often exhibit a curing accelerating action even at a relatively low temperature such as room temperature. This is a cause of lowering the quality of the product, such as an increase in viscosity during production and storage of the resin composition, a decrease in fluidity, and a variation in curability.
[0005]
In recent years, in order to solve this problem, so-called latent curing accelerators have been actively studied that suppress the change in viscosity and fluidity at low temperatures with time and cause a curing reaction only by heating during shaping and molding. ing. As a means for this, studies have been made to develop the latent property by protecting the active sites of the curing accelerator with ion pairs. JP-A-8-41290 discloses salt structures of various organic acids and phosphonium ions. Latent cure accelerators having the following are presented: However, this phosphonium salt does not have a specific higher-order molecular structure, and the ion pair is relatively easily affected by the external environment. Therefore, the movement of molecules such as low-molecular epoxy resins and phenol aralkyl resins in recent years In the semiconductor sealing material using the easy hardening | curing agent, the problem that storage stability falls has arisen.
[0006]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention has a good curability and storage stability and is useful in the field of electrical and electronic materials, and an epoxy resin molding material using the same and a moisture resistance sealed with the cured product. An object of the present invention is to provide a semiconductor device excellent in the above.
[0007]
[Means for Solving the Problems]
Compound (A) having two or more epoxy groups in one molecule, compound (B) having two or more phenolic hydroxyl groups in one molecule, a group represented by the formulas ( 3) and (4) Furthermore, a thermosetting resin composition characterized by comprising as an essential component at least one molecular compound (C) selected from the group consisting of compounds represented by formulas ( 7) and (8). Stuff,
[0010]
[Chemical 3]
Figure 0003672224
[0011]
[Formula 4]
Figure 0003672224
[0012]
(Wherein, P is a phosphorus atom, R 1 , R 2 , R 3 and R 4 are substituted or unsubstituted aromatic groups or alkyl groups, A 2 is a divalent aromatic group , and B is a divalent group . aliphatic group, a single bond or a divalent organic group containing an aromatic ring, O represents an oxygen atom, H is representative of the protons.)
[0015]
[Chemical 7]
Figure 0003672224
[0016]
[Chemical 8]
Figure 0003672224
[0017]
(Wherein, P is a phosphorus atom, E 1 and E 2 divalent aliphatic group, a single bond, or a divalent organic group containing an aromatic ring, O represents an oxygen atom, H is representative of the protons. In formula (7), E 1 and E 2 may be the same or different from each other.)
[0018]
Compound (A) having two or more epoxy groups in one molecule, compound (B) having two or more phenolic hydroxyl groups in one molecule, a group represented by the formulas ( 3) and (4) Furthermore, it is characterized in that at least one molecular compound (C) selected from the group consisting of compounds represented by the general formulas ( 7) and (8) and the inorganic filler (D) are essential components. In an epoxy resin molding material and a semiconductor device encapsulated with the cured product, a resin composition having extremely excellent curability and storage stability, and an epoxy resin molding material can be obtained, and further high reliability can be obtained. It has been found that a semiconductor device having the above can be obtained, and the present invention has been completed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The compound (A) having two or more epoxy groups in one molecule used in the present invention is not limited as long as it has two or more epoxy groups in one molecule. For example, biphenyl type epoxy resin, novolak type Epoxy resins such as epoxy resins and naphthalene type epoxy resins, phenolic resins such as biphenol, phenolic resins, epoxy resins produced by reacting hydroxyl groups such as naphthols with epichlorohydrin, epoxy compounds, and alicyclic epoxy resins Also included are epoxy resins obtained by oxidizing olefins with peracids and epoxidized, and those obtained by epoxidizing dihydroxybenzenes such as hydroquinone with epichlorohydrin.
[0020]
The compound (B) having two or more phenolic hydroxyl groups in one molecule acts as a curing agent for the compound (A) having two or more epoxy groups in one molecule. Specifically, phenol novolak resins, cresol novolak resins, alkyl-modified novolak resins (including resins obtained by reacting and co-condensing cycloalkene double bonds with Friedel-Crafts-type reactions), phenol aralkyl resins, naphthols Examples include resins obtained by co-condensation of phenols and phenols with carbonyl group-containing compounds, as long as two or more hydrogen atoms bonded to an aromatic ring in one molecule are substituted with hydroxyl groups. .
[0021]
In the present invention, the molecular compound (C) functioning as a curing accelerator includes tetra-substituted phosphonium and a phenol compound such as the compounds represented by the general formulas (3) and (4) and further the general formulas (7) and (8) . And molecular aggregates. This molecular compound is composed of a unit of one tetra-substituted phosphonium, three phenolic hydroxyl groups and one phenoxide anion, and around the positive charge of the tetra-substituted phosphonium ion, three phenolic hydroxyl groups and one unit. The phenoxide anion is surrounded and stabilized.
[0022]
Among the phosphonium ions that can take such a structure, a tetra-substituted phosphonium ion having a substituted or unsubstituted aryl group or alkyl group as a substituent is stable to heat and hydrolysis. Tetraaryl substituted phosphoniums such as phosphonium, tetratolylphosphonium, etc. Tetraalkyl substituted phosphoniums such as triarylmonoalkylphosphonium and tetrabutylphosphonium derived from phosphonium halides synthesized from triarylphosphine and alkyl halides such as triphenylmethylphosnium Etc. are exemplified.
[0023]
It is also the other components forming the molecular compound (C), as the phenol compound, bisphenol A, bisphenols such as bisphenol F, dihydroxynaphthalene, biphenol, catechol, although resorcinol are exemplified, molecular stability and curing of the compound, of di hydroxynaphthalene terms of a cured product physical properties, biphenol, bisphenol a, bisphenol F (bis (4-hydroxyphenyl) methane, bis (2-hydroxyphenyl) methane, (4-hydroxyphenyl) Bisphenols such as (2-hydroxyphenyl) methane and a mixture of isomers such as bisphenol F-D manufactured by Honshu Chemical are suitable.
[0024]
The molecular compound (C) includes a phenol compound as described above and a base that finally assists dehydrohalogenation, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or an organic base such as pyridine or triethylamine. Is dissolved in a solvent such as alcohol, followed by addition and reaction of the tetra-substituted phosphonium halide dissolved in a suitable solvent, and finally, it is taken out as a solid content by operations such as recrystallization and reprecipitation. It can be synthesized by a method or a method in which a tetra-substituted phosphonium tetra-substituted borate and a phenol compound are subjected to a thermal reaction in a solvent such as alcohol after a thermal reaction.
[0025]
The molecular compound (C) used in the present invention has a phosphonium-phenoxide type salt in the structure as described above, but this is different from the conventional phosphonium-organic acid anion salt type compound in the molecular compound (C). The higher-order structure by the hydrogen bond involving the proton of the phenolic hydroxyl group surrounds this ionic bond. In the conventional salt, the reactivity is controlled only by the strength of the ionic bond, whereas in the molecular compound (C), the ion pair of the reaction active site is surrounded by the higher order structure at room temperature, and the active site On the other hand, in the actual shaping stage, this higher-order structure collapses, so that the active sites are exposed, and so-called latency that expresses reactivity is imparted.
[0026]
The compounding amount of the molecular compound (C) that functions as a curing accelerator used in the present invention is a compound (A) having two or more epoxy groups in one molecule and a phenol in one molecule that functions as a curing agent. When the total amount of the compound (B) having two or more functional hydroxyl groups is 100 parts by weight, about 0.5 to 20 parts by weight is preferable because of a good balance between curability, storage stability and other characteristics. The ratio of the compound (A) having two or more epoxy groups in one molecule and the compound (B) having two or more phenolic hydroxyl groups in one molecule is as follows. Curability and heat resistance when used in a molar ratio of about 0.5 to 2 mol, preferably about 0.8 to 1.2 in terms of the total of the phenolic hydroxyl group and the phenolic hydroxyl group contained in the molecular compound (C). Property, electrical characteristics and the like are improved.
[0027]
There is no restriction | limiting in particular about the kind of inorganic filler (D) used in this invention, What is generally used for the sealing material can be used. Examples thereof include fused crushed silica powder, fused spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, alumina, titanium white, aluminum hydroxide, talc, clay, and glass fiber, with fused spherical silica powder being particularly preferred. The shape is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes.
[0028]
The blending amount of the inorganic filler is 200 per 100 parts by weight of the total amount of the compound (A) having two or more epoxy groups in one molecule and the compound (B) having two or more phenolic hydroxyl groups in one molecule. ~ 2400 parts by weight are preferred. If the amount is less than 200 parts by weight, the reinforcing effect of the inorganic filler may not be sufficiently exhibited. If the amount exceeds 2400 parts by weight, the fluidity of the resin composition may be reduced, and there is a risk of poor filling during molding. Absent. In particular, if the blending amount of the inorganic filler is 250 to 1400 parts by weight per 100 parts by weight of the total amount of the compound (A) and the compound (B), the moisture absorption rate of the cured product of the resin composition becomes low, and the solder Since the generation of cracks can be prevented and the viscosity of the resin composition at the time of melting is lowered, there is no possibility of causing gold wire deformation inside the semiconductor device, which is more preferable. Moreover, it is preferable that the inorganic filler is sufficiently mixed in advance.
[0029]
The epoxy resin molding material of the present invention includes components (A) to (D), a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and a brominated epoxy resin as necessary. Flame retardants such as antimony oxide and phosphorus compounds, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, higher fatty acids and their metal salts, release agents such as paraffin, various additives such as antioxidants As long as the properties of the molecular compound (C) that functions as a curing accelerator in the present invention are not impaired, triphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7, There is no problem even if used in combination with other known catalysts such as 2-methylimidazole.
[0030]
In the epoxy resin molding material of the present invention, components (A) to (D) and other additives are mixed at room temperature using a mixer, kneaded with a kneader such as a roll or an extruder, pulverized after cooling. can get.
[0031]
In order to seal an electronic component such as a semiconductor and manufacture a semiconductor device by using the epoxy resin molding material of the present invention, it can be cured and molded by a molding method such as transfer molding, compression molding, or injection molding.
[0032]
A semiconductor device sealed with a cured product of the epoxy resin molding material of the present invention is included in the technical scope of the present invention and exhibits excellent moisture resistance.
[0033]
【Example】
Examples of the present invention will be described below, but the present invention is not limited by these.
[0034]
[Synthesis of curing accelerator]
The structure of the synthesized molecular compound (C) was confirmed by NMR, elemental analysis, and neutralization titration by the following method.
・ Neutralization titration (measurement of phosphonium phenoxide equivalent)
The synthesized molecular compound (C) is reacted with an excess of oxalic acid of known weight in a methanol / water solvent, and the remaining oxalic acid is quantified with an aqueous sodium hydroxide solution of known normality. Calculate normality per weight (N / g). The reciprocal of this value is the phosphonium phenoxide equivalent.
[0035]
(Synthesis Example 1)
Into a 3 liter separable flask, 32.0 g of 2,6-dihydroxynaphthalene (hydroxyl 0.4 mol) was added, dissolved in a mixture of methanol and a small amount of acetone, and further stirred with 5.6 g of potassium hydroxide. Was added in advance with methanol, and immediately, a methanol solution of 41.9 g (0.1 mol) of tetraphenylphosphonium bromide was added. Stirring was continued for a while, and after adding methanol three times the weight of the reaction product containing the solvent, the contents were charged into a large amount of water, and the solid content was recovered. This compound is referred to as C3 . From the results of NMR, elemental analysis and neutralization titration, C3 has a phosphonium phenoxide equivalent of 665, which is close to the theoretical value 660, and thus it was found that the average structure is a structure represented by the general formula (8) . .
[0036]
(Synthesis Examples 2-6 )
In Synthesis Examples 2 to 6 , under the conditions shown in Table 1, all basic operations were performed in the same manner as in Synthesis Example 1 to prepare compounds C4 to C8 , respectively. The results are shown in Table 1.
[0037]
(Comparative Synthesis Example 1)
Add 12.8 g (0.05 mol) of bis (4-hydroxy-3,5-dimethylphenyl) methane to a 3 liter separable flask, dissolve in methanol, and add 4.0 g of sodium hydroxide in advance while stirring. After adding the one dissolved in methanol, a methanol solution of 33.9 g (0.1 mol) of tetrabutylphosphonium bromide was immediately added. Stirring was continued for a while, and after adding methanol three times the weight of the reaction product containing the solvent, the contents were charged into a large amount of water, and the solid content was recovered. This compound is designated as D1. D1 is not a molecular compound but a compound in which one molecule of tetrabutylphosphonium is ionically bonded to each phenoxide in which protons of two hydroxyl groups of bis (4-hydroxy-3,5-dimethylphenyl) methane are dissociated.
[0038]
(Comparative Synthesis Example 2)
A solution prepared by dissolving 61.1 g (0.5 mol) of benzoic acid and 20 g of sodium hydroxide in 200 g of methanol at room temperature, and dissolving 209.6 g (0.5 mol) of tetraphenylphosphonium bromide in 200 g of methanol Was added dropwise thereto. After dripping completely, the solution was heated to redissolve the precipitate, and then 150 g of pure water was added thereto to obtain a precipitate. This compound is designated as D2. This D2 is also a simple phosphonium salt and not the molecular compound of the present invention.
The results of Comparative Synthesis Examples 1 and 2 are also summarized in Table 1 as in the other synthesis examples.
[0039]
[Table 1]
Figure 0003672224
[0040]
[Evaluation of thermosetting resin composition]
First, the synthesized molecular compound (C) is pulverized and mixed with a compound (A) having two or more epoxy groups in one molecule and a compound (B) having two or more phenolic hydroxyl groups in one molecule. Further, after melt-kneading on a hot plate at 100 ° C. for 5 minutes, a sample of the composition was prepared by cooling and pulverizing and evaluated. The evaluation method is as follows.
(1) Curing torque Using the resin composition produced by the above sample preparation method, the torque after 175 ° C. and 45 seconds was determined with a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter PS type). The torque in the curast meter is a curability parameter, and a larger value indicates higher curability.
(2) Curing heat generation residual rate (preservation evaluation)
Using the resin composition produced by the above sample preparation method, the initial curing calorific value immediately after the preparation and the curing calorific value after storage treatment at 40 ° C. for 3 days are measured, and the initial curing calorific value (mj / mg) is measured. The percentage of the heating value (mj / mg) after the storage treatment was calculated. The amount of heat generated by curing was measured by differential thermal analysis under the condition of a temperature increase rate of 10 ° C./min. The larger this value, the better the storage stability.
[0041]
(Examples 1-6 and Comparative Examples 1-3)
According to the formulation shown in Table 2, a sample of the composition was prepared and evaluated by the method described above. In Comparative Example 1, triphenylphosphine was used instead of Compound (C) in Examples, and in Comparative Examples 2-3, Compounds D1 and D2 synthesized in Comparative Synthesis Examples 1 and 2 were used. The evaluation results of the obtained compositions were as shown in Table 2.
[0042]
[Table 2]
Figure 0003672224
[0043]
As shown in the examples, the thermosetting resin composition of the present invention has good curability and storage stability, whereas the resin composition using triphenylphosphine of Comparative Example 1 as a curing accelerator is curable. The phosphonium salt which is not a molecular compound of the present invention of Comparative Examples 2 and 3 has good curability but poor storage properties.
[0044]
[Evaluation of epoxy resin molding materials]
( Example 7 )
YX-4000H (biphenyl type epoxy resin) 52
Parts by weight Mitsui Chemicals XL225 (phenol aralkyl resin) 48 parts by weight molecular compound C5 3 parts by weight fused spherical silica (average particle size 15 [mu] m) 500 parts by weight carbon black 2 parts by weight brominated bisphenol A type epoxy resin 2 parts by weight 2 parts by weight of part carnauba wax was mixed, kneaded at 95 ° C. for 8 minutes using a hot roll, cooled and pulverized to obtain an epoxy resin molding material. The obtained epoxy resin molding material was evaluated by the following methods. The results are shown in Table 3.
[0045]
Evaluation method 1) Spiral flow: Using a mold for spiral flow measurement according to EMMI-I-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. Spiral flow is a fluidity parameter, and a larger value means better fluidity. The unit is cm.
2) Curing torque: Using a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter PS type), determine the torque after 175 ° C. for 45 seconds. The larger this value, the better the curability. The unit is kgf · cm
3) Flow residual ratio: After storing for 1 week at 30 ° C., the spiral flow was measured and expressed as a percentage of the spiral flow immediately after preparation. Units%.
4) Moisture resistance reliability: After molding 16 pDIP at a mold temperature of 175 ° C., a pressure of 70 kg / cm 2 and a curing time of 2 minutes, post-curing was performed at 175 ° C. for 8 hours. After applying a voltage of 20 V in water vapor at 125 ° C. and 100% relative humidity, the disconnection failure was examined. The time until a defect appears in eight or more of the 15 packages was defined as a defect time. The unit is time. The measurement time was 500 hours at the longest, and when the number of defective packages was less than 8 at that time, the defective time was indicated as 500 hours or more. The longer the defect time, the better the moisture resistance reliability.
[0045]
(Ratio Comparative Examples 4 and 5)
According to the composition of Table 3, an epoxy resin molding material was prepared and evaluated in the same manner as in Example 7 . The results are shown in Table 3.
[0046]
[Table 3]
Figure 0003672224
[0047]
It can be seen that the epoxy resin molding material of Example 7 of the present invention has very good storage stability and curability, and the semiconductor device encapsulated with a cured product of this epoxy resin molding material has good moisture resistance.
[0048]
【The invention's effect】
The thermosetting resin composition and epoxy resin molding material of the present invention have excellent curability and storage stability, and a semiconductor device encapsulated with a cured product of this epoxy resin molding material is excellent in moisture resistance reliability and useful. is there.

Claims (5)

1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、一般式(3)及び(4)で表される化合物からなる群より少なくとも1つ選ばれる分子化合物(C)を必須成分とすることを特徴とする熱硬化性樹脂組成物。
Figure 0003672224
Figure 0003672224
(ただし、式中、Pはリン原子、R1、R2、R3、R4は置換もしくは無置換の芳香族基、またはアルキル基、A2は2価の芳香族基、Bは2価の脂肪族基、単結合または2価の芳香環を含む有機基、Oは酸素原子、Hはプロトンを表す。)
Compound (A) having two or more epoxy groups in one molecule, compound (B) having two or more phenolic hydroxyl groups in one molecule, a group represented by the general formulas (3) and (4) A thermosetting resin composition characterized by comprising at least one molecular compound (C) as an essential component.
Figure 0003672224
Figure 0003672224
(Wherein, P is a phosphorus atom, R 1 , R 2 , R 3 and R 4 are substituted or unsubstituted aromatic groups or alkyl groups, A 2 is a divalent aromatic group, and B is a divalent group. An organic group containing a single bond or a divalent aromatic ring, O represents an oxygen atom, and H represents a proton.)
分子化合物(C)が、一般式(7)及び(8)で表される化合物からなる群より少なくとも1つ選ばれる化合物である請求項1記載の熱硬化性樹脂組成物。
Figure 0003672224
Figure 0003672224
(ただし、式中、Pはリン原子、E1及びE2は2価の脂肪族基、単結合、または2価の芳香環を含む有機基、Oは酸素原子、Hはプロトンを表す。式(7)中、E1及びE2は互いに同一であっても異なってもよい。)
The thermosetting resin composition according to claim 1, wherein the molecular compound (C) is a compound selected from the group consisting of compounds represented by the general formulas (7) and (8).
Figure 0003672224
Figure 0003672224
(Wherein, P represents a phosphorus atom, E 1 and E 2 represent a divalent aliphatic group, a single bond, or an organic group containing a divalent aromatic ring, O represents an oxygen atom, and H represents a proton. (In (7), E 1 and E 2 may be the same or different from each other.)
1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、一般式(3)及び(4)で表される化合物からなる群より少なくとも1つ選ばれる分子化合物(C)、無機充填材(D)を必須成分とすることを特徴とするエポキシ樹脂成形材料。
Figure 0003672224
Figure 0003672224
(ただし、式中、Pはリン原子、R 1 、R 2 、R 3 、R 4 は置換もしくは無置換の芳香族基、またはアルキル基、A 2 は2価の芳香族基、Bは2価の脂肪族基、単結合または2価の芳香環を含む有機基、Oは酸素原子、Hはプロトンを表す。)
Compound (A) having two or more epoxy groups in one molecule, compound (B) having two or more phenolic hydroxyl groups in one molecule, a group represented by the general formulas (3) and (4) An epoxy resin molding material characterized by comprising at least one molecular compound (C) and an inorganic filler (D) as essential components.
Figure 0003672224
Figure 0003672224
(Wherein, P is a phosphorus atom, R 1 , R 2 , R 3 and R 4 are substituted or unsubstituted aromatic groups or alkyl groups, A 2 is a divalent aromatic group, and B is a divalent group. An organic group containing a single bond or a divalent aromatic ring, O represents an oxygen atom, and H represents a proton.)
分子化合物(C)が、一般式(7)及び(8)で表される化合物からなる群より少なくとも1つ選ばれる化合物である請求項3記載のエポキシ樹脂成形材料。
Figure 0003672224
Figure 0003672224
(ただし、式中、Pはリン原子、E 1 及びE 2 は2価の脂肪族基、単結合、または2価の芳香環を含む有機基、Oは酸素原子、Hはプロトンを表す。式(7)中、E 1 及びE 2 は互いに同一であっても異なってもよい。)
The epoxy resin molding material according to claim 3, wherein the molecular compound (C) is a compound selected from the group consisting of compounds represented by the general formulas (7) and (8).
Figure 0003672224
Figure 0003672224
(Wherein, P represents a phosphorus atom, E 1 and E 2 represent a divalent aliphatic group, a single bond, or an organic group containing a divalent aromatic ring, O represents an oxygen atom, and H represents a proton. (In (7), E 1 and E 2 may be the same or different from each other.)
請求項3または4記載のエポキシ樹脂成形材料の硬化物にて封止された半導体装置。 A semiconductor device sealed with a cured product of the epoxy resin molding material according to claim 3.
JP24409199A 1999-08-30 1999-08-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same Expired - Fee Related JP3672224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24409199A JP3672224B2 (en) 1999-08-30 1999-08-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24409199A JP3672224B2 (en) 1999-08-30 1999-08-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2001064366A JP2001064366A (en) 2001-03-13
JP3672224B2 true JP3672224B2 (en) 2005-07-20

Family

ID=17113620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24409199A Expired - Fee Related JP3672224B2 (en) 1999-08-30 1999-08-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3672224B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595223B2 (en) * 2001-03-27 2010-12-08 住友ベークライト株式会社 Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4742435B2 (en) * 2001-03-28 2011-08-10 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
EP1400567B1 (en) 2002-09-18 2006-03-08 Sumitomo Bakelite Co., Ltd. Thermosetting resin composition, epoxy resin molding material and semiconductor device
SG131750A1 (en) * 2002-09-18 2007-05-28 Sumitomo Bakelite Co Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP6686428B2 (en) * 2015-12-25 2020-04-22 住友ベークライト株式会社 Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2001064366A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP4163162B2 (en) Latency catalyst for epoxy resin, epoxy resin composition and semiconductor device
JP3672225B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
TWI687449B (en) Epoxy resin hardening accelerator
JP5055679B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP6917707B2 (en) Epoxy resin curing accelerator
JP4367046B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
WO2013136746A1 (en) Epoxy resin curing accelerator
JP2006225630A (en) Epoxy resin composition, method for forming latent of the same and semiconductor device
JP3672224B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP4595223B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
KR20010079864A (en) Epoxy resin composition and semiconductor device
JP2018203916A (en) Epoxy resin composition
JP2003292732A (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
WO2003082976A1 (en) Thermosetting resin composition and epoxy resin molding material using the composition and semiconductor device
JP4341261B2 (en) Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
EP1400567B1 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4742435B2 (en) Epoxy resin composition and semiconductor device
JP4244662B2 (en) Thermosetting resin composition and semiconductor device using the same
JP2000319359A (en) Thermosetting resin composition
KR100971062B1 (en) Thermosetting resin composition, epoxy resin forming material and semiconductor apparatus
JP2003292584A (en) Thermosetting resin composition and epoxy resin molding material and semiconductor device using the same
JP4341254B2 (en) Curing accelerator for epoxy resin composition, epoxy resin composition and semiconductor device
JP6678075B2 (en) Epoxy resin curing accelerator
JP2002284854A (en) Thermosetting resin composition, epoxy resin molding material using the same, and semiconductor device
JP2002284855A (en) Thermosetting resin composition, epoxy resin molding material using the same, and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Ref document number: 3672224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees